
I��4-E-01

��� Language�

User's�����





Copyright Notice
The information contained herein is the property of Omron Adept Technologies, Inc., and shall not be
reproduced in whole or in part without prior written approval of Omron Adept Technologies, Inc. The
information herein is subject to change without notice and should not be construed as a commitment by
Omron Adept Technologies, Inc. The documentation is periodically reviewed and revised.

Omron Adept Technologies, Inc., assumes no responsibility for any errors or omissions in the
documentation. Critical evaluation of the documentation by the user is welcomed. Your comments assist
us in preparation of future documentation. Please submit your comments to: techpubs@adept.com.

Copyright © 1994 - 2016 by Omron Adept Technologies, Inc.

Created in the United States of America

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 3

mailto:techpubs@adept.com




Table Of Contents

eV+ Language User's Guide Introduction 9
Introduction to the eV+ Language User's Guide 10
Compatibility 10
Manual Overview 10
eV+ Release Notes 11
Related Publications 11
Dangers, Warnings, Cautions, and Notes 12
Safety 13
Notations and Conventions 15

Programming eV+ 17
Creating a Program 19
eV+ Program Types 20
Format of Programs 22
Executing Programs 24
Program Stacks 25
Flow of Program Execution 27
Subroutines 28

The SEE Editor and Debugger 35

Data Types and Operators 37
Introduction 39
String Data Type 40
Real and Integer Data Types 42
Location Data Types 44
Arrays 45
Variable Classes 47
Operators 51
String Operator 55
Order of Evaluation 56

Program Control 57
Introduction 59

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 5



Unconditional Branch Instructions 60
Program Interrupt Instructions 62
Logical (Boolean) Expressions 68
Conditional Branching Instructions 69
Looping Structures 72
Summary of Program Control Keywords 76

Functions 79
Using Functions 81
String-Related Functions 82
Location, Motion, and External Encoder Functions 84
Numeric Value Functions 85
Logical Functions 87
System Control Functions 88

Switches and Parameters 91
Introduction 93
Parameters 94
Switches 96

Motion Control Operations 99
Introduction 101
Location Variables 102
Creating and Altering Location Variables 109
Motion Control Instructions 116
Tool Transformations 124
Summary of Motion Keywords 126

Input/Output Operations 135
Digital I/O 137
Serial and Disk I/O Basics 139
Disk I/O 143
Advanced Disk Operations 148
Serial Line I/O 152
DeviceNet 156
Summary of I/O Operations 157

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 6



Graphics Programming 161
Creating Windows 162
Monitoring Events 165
Building a Menu Structure 167
Creating Buttons 170
Creating a Slide Bar 172
Graphics Programming Considerations 174
Communicating With the System Windows 176
Additional Graphics Instructions 178

Programming the Omron Adept T20 Pendant 179
Introduction 179
Writing to the Pendant Display 180
Detecting User Input 181
Programming Example: Pendant Menu 183

Conveyor Tracking 187
Introduction to Conveyor Tracking 189
Installation 190
Calibration 191
Basic Programming Concepts 192
Conveyor-Tracking Programming 199
Sample Programs 201

Multiprocessor Systems 203

Example eV+ Programs 205
Introduction 207
Pick and Place 208
Menu Program 212

External Encoder Device 215
Introduction 217
Parameters 218
Device Setup 219
Reading Device Data 220

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 7



Character Sets 223

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 8



eV+ Language User's Guide Introduction
The following topics are described in this chapter:

Introduction to the eV+ Language User's Guide 10
Compatibility 10
Manual Overview 10
eV+ Release Notes 11
Related Publications 11
Dangers, Warnings, Cautions, and Notes 12
Safety 13
Notations and Conventions 15

eV+ Language User's Guide Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 9



Introduction to the eV+ Language User's Guide
eV+ is a computer-based control system and programming language designed specifically for
use with Omron Adept Technologies, Inc. industrial robots, vision systems, andmotion-
control systems.

As a real-time system, continuous trajectory computation by eV+ permits complex motions
to be executed quickly, with efficient use of system memory and reduction in overall system
complexity. The eV+ system continuously generates robot-control commands and can
concurrently interact with an operator, permitting on-line program generation and
modification.

eV+ provides all the functionality of modern high-level programming languages, including:

l Callable subroutines

l Control structures

l Multitasking environment

l Recursive, reentrant program execution

Compatibility
This manual is for use with eV+ v2.x and later. This manual covers the basic eV+ system. If
your system is equippedwith optional vision, see the ACE Sight User's Guide and the ACE
Sight Reference Guide, for details on your vision system.

Manual Overview
This manual details the concepts and strategies of programming in eV+. Material covered
includes:

l Functional overview of eV+

l A description of the data types used in eV+

l A description of the system parameters and switches

l Basic programming of eV+ systems

l Editing and debugging eV+ programs

l Communication with peripheral devices

l Communication with the manual control pendant ("the pendant")

l Conveyor tracking feature

l Example programs

Introduction to the eV+ Language User's Guide

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 10



l Using tool transformations

l Accessing external encoders

Many eV+ keywords are shown in abbreviated form in this user guide. See the eV+
Language Reference Guide for complete details on all eV+ keywords.

eV+ Release Notes
For information on new features or enhanced keywords listed by eV+ software release,
select a link below:

eV+ v2.x Release Notes

Related Publications
In addition to this manual, have the following publications handy as you set up and program
your Omron Adept automation system.

Manual Material Covered

eV+ Language Reference Guide This manual provides a complete description of
the keywords used in the basic eV+ system.

eV+ Operating System User's
Guide

This manual provides a description of the eV+
operating system. Loading, storing, and
executing programs are covered in this manual.

eV+ Operating System
Reference Guide

This manual provides descriptions of the eV+
operating system commands (known asmonitor
commands).

ACE User's Guide This manual describes the ACE graphical user
interface, which is used to program your Adept
motion system.

ACE Reference Guide This manual provides descriptions of the
commands available with systems that include
the optional ACE Sight vision system.

Adept SmartController EX User's
Guide

This manual detailsthe installation,
configuration, andmaintenance of your
controller. The controller must be set up and
configured before control programs will execute
properly.

Related Publications

eV+ Release Notes

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 11



Manual Material Covered

Adept SmartMotion Developer's
Guide

Adept SmartMotion  Installation
Guide

These manuals describe the installation,
configuration, and tuning of an Adept motion
system.

Adept T20 Pendant User’s Guide This manual describes the basic use of the T20
manual control pendant.

Dangers, Warnings, Cautions, and Notes
There are six levels of special alert notation that may be used in this manual. In descending
order of importance, they are:

DANGER: This indicates an imminently hazardous electrical situation
which, if not avoided, will result in death or serious injury.

DANGER: This indicates an imminently hazardous situation which, if
not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous electrical situation
which, if not avoided, could result in serious injury or major damage to
the equipment.

WARNING: This indicates a potentially hazardous situation which, if
not avoided, could result in serious injury or major damage to the
equipment.

Dangers, Warnings, Cautions, and Notes

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 12



CAUTION: This indicates a situation which, if not avoided, could result
in minor injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a point or procedure, or
gives a tip for easier operation.

Safety
The following sections discuss the safety measures you must take while operating an Omron
Adept robot.

Reading and Training for System Users

Omron Adept robot systems include computer-controlledmechanisms that are capable of
moving at high speeds and exerting considerable force. Like all robot systems and industrial
equipment, they must be treated with respect by the system user.

Impacts and Trapping Points

Omron Adept recommends that you read the American National Standard for Industrial
Robot Systems-Safety Requirements, published by the Robotic Industries Association in
conjunction with the American National Standards Institute. The publication, ANSI/RIA
R15.06-1986, contains guidelines for robot system installation, safeguarding, maintenance,
testing, startup, and operator training. The document is available from the American
National Standards Institute, 1430 Broadway, New York, NY 10018.

System Safeguards

Safeguards should be an integral part of robot workcell design, installation, operator training,
and operating procedures. Omron Adept robot systems have various communication
features to aid you in constructing system safeguards. These include remote emergency
stop circuitry and digital input and output lines.

Safety

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 13



Computer-Controlled Robots

Omron Adept robots are computer controlled, and the program that is running the robot may
cause it to move at times or along paths you may not anticipate. Your system should be
equippedwith indicator lights that tell operators when the system is active. The Front Panel
(FP) provides these lights. When the White HIGH POWER enable light on the FP or T20
Pendant is illuminated, do not enter the workcell because the robot may move unexpectedly.

High Power Enable Light

Manually Controlled Robots

Omron Adept robots can also be controlledmanually when the white HIGH POWER enable
light on the front of the controller is illuminated. When this light is lit, robot motion can be
initiated from the terminal or the pendant (see the T20 Pendant User's Guide for more
information). Before you enter the workspace, turn the keyswitch to manual mode and take
the key (or the T20 pendant) with you. This will prevent anyone else from initiating
unexpected robot motions from the terminal keyboard.

Other Computer-Controlled Devices

In addition, these systems can be programmed to control equipment or devices other than
the robot. As with the robot, the program controlling these devices may cause them to
operate at times not anticipated by personnel. Make sure that safeguards are in place to
prevent personnel from entering the workcell.

Safety

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 14



WARNING: Entering the robot workcell when the white HIGH POWER
enable light is illuminated can result in severe injury.

Omron Adept Technologies, Inc. recommends the use of additional safety features such as
light curtains, safety gates, or safety floor mats to prevent entry to the workcell while HIGH
POWER is enabled. These devices may be connected using the robot's remote emergency
stop circuitry.

Notations and Conventions
This section describes various notations used throughout this manual and conventions
observed by the eV+ system.

Uppercase and Lowercase Letters

You will notice that a mixture of uppercase (capital) and lowercase letters is used throughout
this manual when eV+ operations are presented. eV+ keywords are shown in uppercase
letters. Parameters to keywords are shown in lowercase. Many eV+ keywords have optional
parameters and/or elements. Required keyword elements and parameters are shown in
boldface type. Optional keyword elements and parameters are shown in normal type. If
there is a comma following an optional parameter, the commamust be retained if the
parameter is omitted, unless nothing follows.

Note that the commas preceding the number 300 must be present to correctly relate the
number with a Z-direction change.

Numeric Arguments

All numbers in this manual are decimal unless otherwise noted. Binary numbers are shown
as ^B, octal numbers as ^, and hexadecimal numbers as ^H.

Several types of numeric arguments can appear in commands and instructions. For each
type of argument, the value can generally be specified by a numeric constant, a variable
name, or a mathematical expression.

There are some restrictions on the numeric values that are accepted by eV+. The following
rules determine how a value will be interpreted in the various situations described.

1. Distances are used to define locations to which the robot is to move. The unit of
measure for distances is the millimeter, although units are never explicitly entered for
any value. Values entered for distances can be positive or negative.1

2. Angles in degrees are entered to define andmodify orientations the robot is to
assume at named locations, and to describe angular positions of robot joints. Angle
values can be positive or negative, with their magnitudes limited by 180 degrees or
360 degrees depending on the usage.

Notations and Conventions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 15



3. Joint numbers are integers from one up to the number of joints in the robot,
including the hand if a servo-controlled hand is operational. For Omron Adept SCARA
robots, joint numbering starts with the rotation about the base, referred to as joint 1.
For mechanisms controlled by AdeptMotion, see the device module documentation for
joint numbering.

4. Signal numbers are used to identify digital (on/off) signals. They are always
considered as integer values with magnitudes in the ranges 1 to 8, 33 to 512, 1001 to
1012, 1032 to 1512, 2001 to 2512, or 3001 to 3004. A negative signal number
indicates an off state.

5. Integer arguments can be satisfied with real values (that is, values with integer and
fractional parts). When an integer is required, the value is rounded and the resulting
integer is used.

6. Arguments indicated as being scalar variables can be satisfied with a real value
(that is, one with integer and fractional parts) except where noted. Scalars can range
from -9.22*1018 to 9.22*1018 in value (displayed as -9.22E18 and 9.22E18).2

1See the IPS instruction for a special case of specifying robot speed in inches per second.

2Numbers specifically declared to be double-precision values can range from -1.8*10-307 to
1.8*10-307.

Notations and Conventions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 16



Programming eV+
The following topics are described in this chapter:

Creating a Program 19
eV+ Program Types 20
Format of Programs 22
Executing Programs 24
Program Stacks 25
Flow of Program Execution 27
Subroutines 28

Programming eV+

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 17



Programming eV+

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 18



Creating a Program
Beginning with eV+ version v2.x, eV+ programs are created (and debugged) through the
ACE user interface. The eV+ Editor and Debugger tools provide a full-featured environment
for creating, editing and debugging eV+ programs. For more details, see the chapter
Programming ACE in the ACE User's Guide.

Program and Variable Name Requirements

Program and variable names can have up to 15 characters. Namesmust begin with a letter
and can be followed by any sequence of letters, numbers, periods, and underline characters.
Letters used in program names can be entered in either lowercase or uppercase. eV+ always
displays program and variable names in lowercase.

Creating a Program

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 19



eV+ Program Types
There are two types of eV+ programs:

l Executable Programs

l Command Programs

Executable programs are described in this section. Command programs are similar to MS-DOS
batch programs or UNIX scripts, and they are described in the eV+ Operating System User's
Guide.

Executable Programs

There are two classes of executable programs: robot control programs and general programs.

Robot Control Programs

A robot control program is an eV+ program that directly controls a robot or motion device. It
can contain any of the eV+ program instructions.

Robot control programs are usually executed by program task #0, but they can be executed
by any of the program tasks available in the eV+ system. Task #0 automatically attaches the
robot when program execution begins. If a robot control program is executed by a task other
than #0, however, the program must explicitly attach the robot (program tasks are described
in detail later in this chapter).

For normal execution of a robot control program, the system switch DRY.RUN must be
disabled and the robot must be attached by the robot control program. Then, any robot-
related error will stop execution of the program (unless an error-recovery program has been
established [see REACTE in the eV+ Language Reference Guide]).1

Exclusive Control of a Robot

l Whenever a robot is attached by an active task, no other task can attach that robot or
execute instructions that affect it, except for the REACTI and BRAKE instructions. For
details, see Program Interrupt Instructions on page 62.

l When the robot control task stops execution for any reason, the robot is detached until
the task resumes, at which time the task automatically attempts to reattach the
robot. If another task has attached the robot in the meantime, the first task cannot be
resumed.

l Task #0 always attempts to attach robot #1 when program execution begins. No
other tasks can successfully attach any robot unless an explicit ATTACH instruction is
executed.

l Since task #0 attempts to attach robot #1, that task cannot be executed after
another task has attached that robot. If you want another task to control the robot
and you want to execute task #0, you must follow this sequence of events:

eV+ Program Types

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 20



l Start task #0.

l Have task #0 DETACH the robot.

l Start the task that will control the robot. (The program executing as task #0
can start up another task.)

l Have that task ATTACH the robot.

For more information on the ATTACH andDETACH instructions, see CreatingWindows
on page 162.

l Note that robots are attached even in DRY.RUN mode. In this case, motion
commands issued by the task are ignored, and no other task can access the robot.

General Programs

A general program is any program that does not control a robot. With a robot system, there
can be one or more programs executing concurrently with the robot control program. For
example, an additional program might monitor and control external processes via the
external digital signal lines and analog signal lines.

General programs can also communicate with the robot control program (and each other)
through global variables and software signals. (General programs can also have a direct
effect on the robot motion with the BRAKE instruction, although that practice is not
recommended.)

With the exception of the BRAKE instruction, a general program cannot execute any
instruction that affects the robot motion. Also, the TOOL settings cannot be changed by
general programs.

Except for the robot, general-purpose control programs can access all the other features of
the system, including ACE Sight (if it is present in the system), the (internal and external)
digital signal lines, the USER serial lines, the system terminal, the disk drives, and the
manual control pendant.

Note that except for the exclusion of certain instructions, general-purpose control programs
are just like robot control programs. Thus, the term program is used in the remainder of this
chapter when the material applies to either type of control program.

1If the system is in DRY.RUN mode while a robot control program is executing, robot motion
instructions are ignored. Also, if the robot is detached from the program, robot-related errors
do not affect program execution.

eV+ Program Types

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 21



Format of Programs
This section presents the format that eV+ programsmust follow. The format of the individual
lines is described, followed by the overall organization of programs. This information applies to
all programs regardless of their type or intended use.

Program Lines

Each line or step of a program is interpreted by the eV+ system as a program instruction. The
general format of a eV+ program step is:

step_number step_label operation ;Comment

Each item is optional and is described in detail below.

Step
Number

Each step within a program is automatically assigned a step number.
Steps are numbered consecutively, and the numbers are automatically
adjusted whenever steps are inserted or deleted. Although you will never
enter step numbers into programs, you will see them displayed by the
eV+ system in several situations. Step numbers are also often referenced
as line numbers.

Step Label Because step numbers change as a program evolves, they are not useful
for identifying steps for program-controlled branching. Therefore,
program steps can contain a step label. A step label is a programmer-
specified integer (0 to 65535) that is placed at the start of a program line
to be referenced elsewhere in the program (usedwith GOTO statements).

Operation The operation portion of each stepmust be a valid eV+ language keyword
andmay contain parameters and additional keywords. The eV+
Language Reference Guide gives detailed descriptions of all the keywords
recognized by eV+. Other instructions may be recognized if your system
includes optional features.

Comment The semicolon character is used to indicate that the remainder of a
program line is comment information to be ignored by eV+.

When all the elements of a program step are omitted, a blank line
results. Blank program lines are acceptable in eV+ programs. Blank lines
are often useful to space out program steps to make them easier to read.

When only the comment element of a program step is present, the step is
called a comment line. Comments are useful to describe what the
program does and how it interacts with other programs. Use comments
to describe and explain the intent of the sections of the programs. Such
internal documentation will make it easier to modify and debug
programs.

Format of Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 22



The example programs in this manual, and the utility programs provided by Omron Adept
with your system, provide examples of programming format and style. Notice that Omron
Adept programs contain numerous comments and blank lines.

When program lines are entered, extra spaces can be entered between any elements in the
line. The eV+ editors add or delete spaces in program lines to make them conform with the
standard spacing. The editors also automatically format the lines to uppercase for all
keywords and lowercase for all user-defined names.

When you complete a program line (by entering a carriage return, moving off a line, or
exiting the editor), the editor checks the syntax of the line. If the line cannot be executed, it
is displayed in red in the ACE editor.

Certain control structure errors are displayed in the status bar of the editor and the program
is marked as not executable. (Error checking stops at that point in the program. Thus, only
one control structure error at a time can be detected.)

Program Organization

The first step of every eV+ program must be a .PROGRAM instruction. This instruction names
the program, defines any arguments it receives or returns, and has the format:

.PROGRAM program_name(parameter_list) ;Comment

The program name is required, but the parameter list and comment are optional.

After the .PROGRAM line, there are only two restrictions on the order of other instructions in
a program.

l AUTO, LOCAL, or GLOBAL instructions must precede any executable program
instructions. Only comment lines, blank lines, and other AUTO, LOCAL, or GLOBAL
instructions are permitted between the .PROGRAM step and an AUTO, LOCAL, or
GLOBAL instruction.

l The end of a program is marked by a line beginning with .END. The eV+ editors
automatically add this line at the end of a program.1

Program Variables

eV+ uses three classes of variables: GLOBAL, LOCAL, and AUTO. These are described in detail
in Variable Classes on page 47.

1The .PROGRAM and .END lines are automatically entered by the Omron Adept-supplied eV+
program editors. If you use another text editor for transfer to a eV+ system, you MUST enter
these two lines. In general, any editor that produces unformatted ASCII files can be used for
programming.

Format of Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 23



Executing Programs
When eV+ is actively following the instructions in a program, it is said to be executing that
program.

The standard eV+ system provides for simultaneous execution of up to seven different
programs-for example, a robot control program and up to six additional programs. The
optional eV+ extensions software provides for simultaneous execution of up to 28 programs.
Execution of each program is administered as a separate program task by the system.

The way program execution is started depends upon the program task to be used and the
type of program to be executed. The following sections describe program execution in detail.

Selecting a Program Task

Task # 0 has the highest priority in the (standard) task configuration. Thus, this task is
normally used for the primary application program. For example, with a robot system, task
#0 is normally used to execute the robot control program.

NOTE:As a convenience, when execution of task #0 begins, the task always
automatically selects robot #1 and attaches the robot as soon as a motion related
keyword is encountered.

Execution of task #0 is normally started by using the EXECUTE monitor command.

The ABORTmonitor command or program instruction stops task #0 after the current robot
motion completes. The CYCLE.ENDmonitor command or program instruction can be used to
stop the program at the end of its current execution cycle.

If program execution stops because of an error, a PAUSE instruction, an ABORT command or
instruction, or the monitor commands PROCEED or RETRY can be used to resume execution
(see the eV+ Operating System Reference Guide for information on monitor commands).
While execution is stopped, the DOmonitor command can be used to execute a single
program instruction (entered from the keyboard) as though it were the next instruction in
the program that is stopped.

For debugging purposes, the ACE eV+ Debugger tool can be used to execute a program one
step at a time, and to follow the flow of program execution. For details, see the ACE User's
Guide.

Execution of program tasks other than #0 is generally the same as for task #0. The following
points highlight the differences:

l The task number must be explicitly included in all the monitor commands and program
instructions that affect program execution, including EXECUTE, ABORT, PROCEED and
RETRY.

l If the program is going to control the robot, it must explicitly ATTACH the robot before
executing any instructions that control the robot.

See the section Scheduling of Program Execution Tasks for details on task scheduling.

Executing Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 24



Program Stacks
When subroutine calls are made, eV+ uses aeV+n internal storage area called a stack to
save information required by the executing program. This information includes:

l The name and step number of the calling program.

l Data necessary to access subroutine arguments.

l The values of any automatic variables specified in the called program.

The eV+ system allows you to explicitly allocate storage to the stack for each program task.
Thus, the amount of stack space can be tuned for a particular application to optimize the use
of system memory. Stacks can be made arbitrarily large, limited only by the amount of
memory available on your system.

Stack Requirements

When a eV+ program is executed in a given task, each program stack is allocated 32
kilobytes of memory. This value can be adjusted, once the desired stack requirements are
determined, by using the STACKmonitor command (for example, in a start-upmonitor
command program). See the eV+ Operating System Reference Guide for information on
monitor commands.

One method of determining the stack requirements of a program task is simply to execute its
program. If the program runs out of stack space, it stops with the error message:

*Too many subroutine calls*

or

*Not enough stack space*

If this happens, use the STACKmonitor command to increase the stack size and then issue
the RETRYmonitor command to continue program execution. In this case, you do not need
to restart the program from the beginning. (The STATUS commandwill tell you how much
stack space a failed task requested.)

Alternatively, you can start by setting a large stack size before running your program. After
the program has been run, and all the execution paths have been followed, use the STATUS
monitor command to look at the stack statistics for the program task. The stack MAX value
shows how much stack space your program task needs in order to execute. The stack size
can then be set to the maximum shown, with a little extra for safety.

If it is impossible to invoke all the possible execution paths, the theoretical stack limits can be
calculated from the figures provided in the following table. You can calculate the worst-case
stack size by adding up the overhead for all the program calls that can be active at one time.
Divide the total by 1024 to get the size in kilobytes. Use this number in the STACKmonitor
command to set the size.

Program Stacks

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 25



Bytes Required For Notes

20 The actual subroutine call

32 Each subroutine argument (plus
one of the following):

4 Each real subroutine argument
or automatic variable

1

8 Each double-precision real
subroutine argument or
automatic variable

1

48 Each transformation subroutine
argument or automatic variable

1, 2

varies Each precision-point subroutine
argument or automatic variable

1, 2, 3

84 Each belt variable argument or
automatic variable

1, 2

132 Each string variable argument or
automatic variable

1, 2

NOTES:

1. If any subroutine argument or automatic variable is an array, the size
shown must be multiplied by the size of the array. (Remember that array
indexes start at zero.)

2. If a subroutine argument is always called by reference, this value can be
omitted for that argument.

3. Requires four bytes for each joint of the robot (on multiple robot systems,
use the robot with the most joints).

Stack Space Required by a Subroutine

Program Stacks

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 26



Flow of Program Execution
Program instructions are normally executed sequentially from the beginning of a program to
its end. This sequential flow may be changedwhen a GOTO or IF...GOTO instruction, or a
control structure, is encountered. The CALLinstruction causes another program to be
executed, but it does not change the sequential flow through the calling program because
execution of the calling program resumes where it left off when a RETURN instruction is
executed by the CALLed program.

TheWAIT instruction suspends execution of the current program until a condition is
satisfied. The WAIT.EVENT instruction suspends execution of the current program until a
specified event occurs or until a specified time elapses.

The PAUSE and HALT instructions both terminate execution of the current program. After a
PAUSE, program execution can be resumedwith a PROCEEDmonitor command (see the
eV+ Operating System Reference Guide for information on monitor commands). Execution
cannot be resumed after a HALT.

The STOP instruction may or may not terminate program execution. If there are more
program execution cycles to perform, the STOP instruction causes themain program to be
restarted at its first step (even if the STOP instruction occurs in a subroutine). If no
execution loops remain, STOP terminates the current program.

For more details on these instructions, see Program Interrupt Instructions on page 62.

Flow of Program Execution

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 27



Subroutines
There are three methods of exchanging information between programs:

l global variables

l soft-signals

l program argument list

When using global variables, simply use the same variable names in the different programs.
Unless used carefully, this method can make program execution unpredictable and hard to
debug. It also makes it difficult to write generalized subroutines because the variable names
in the main program and subroutine must always be the same.

Soft-signals are internal program signals. These are digital software switches whose state can
be read and set by all tasks and programs (including across CPUs in multiple CPU systems).
See "Soft Signals" for details.

Exchanging information through the program argument list gives you better control over
changesmade to variables. It also eliminates the requirement that the variable names in the
calling program be the same as the names in the subroutine. The following sections describe
exchanging data through the program parameter list.

Argument Passing

There are two important considerations when passing an argument list from a calling
program to a subroutine. The first is making sure the calling program passes arguments in
the way the subroutine expects to receive them (mapping). The second is determining how
you want the subroutine to be able to alter the variables (passing by value or reference).

Mapping the Argument List

An argument list is a list of variables or values separated by commas. The argument list
passed to a calling program must match the subroutine's argument list in number of
arguments and data type of each argument (see Undefined Arguments on page 31). The
variable names do not have tomatch.

When a calling program passes an argument list to a subroutine, the subroutine does not look
at the variable names in the list but the position of the arguments in the list. The argument
list in the CALL statement is mapped item for item to the argument list of the subroutine. It is
this mapping feature that allows you to write generalized subroutines that can be called by
any number of different programs, regardless of the actual values or variable names the
calling program uses.

The following figure shows the mapping of an argument list in a CALL statement to the
argument list in a subroutine. The arrows indicate that each item in the list must match in
position and data type but not necessarily in name. (The CALL statement argument list can
include values and expressions as well as variable names.)

Subroutines

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 28



Argument Mapping

When the main program reaches the CALL instruction shown at the top of the figure, the
subroutine a_routine is called and the argument list is passed as shown.

See the description of the CALL instruction in the eV+ Language Reference Guide for
additional details on passing arrays.

Argument Passing by Value or Reference

An important principle to grasp in using subroutine calls is the way that the passed variables
are affected. Variables can be changed by a subroutine, and the changed value can be passed
back to the calling program. If a calling program passes a variable to a subroutine, and the
subroutine can change the variable and pass the changed variable back to the calling
program, the variable is said to be passed by reference. If a calling program passes a variable
to a subroutine but the subroutine cannot pass the variable back in an altered form, the
variable is said to be passed by value.

Variables you want changed by a subroutine should be passed by reference. In the previous
figure, all the variables passed in the CALL statement are being passed by reference.
Changesmade by the subroutine are reflected in the state of the variables in the calling

Subroutines

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 29



program. Any argument that is to be changed by a subroutine and passed back to the calling
routine must be specified as a variable (not an expression or value).

In addition to passing variables whose value you want changed, you will also pass variables
that are required for the subroutine to perform its task but whose value you do not want
changed after the subroutine completes execution. Pass these variables by value. When a
variable is passed by value, a copy of the variable, rather than the actual variable, is passed to
the subroutine. The subroutine can make changes to the variable, but the changes are not
returned to the calling program (the variable in the calling program has the same value it had
when the subroutine was called).

The following figure shows how to pass the different types of variables by value. Real numbers
and integers are surrounded by parentheses, :NULL is appended to location variables, and
+"" is appended to string variables. 

In the following figure, real_var_b is still being passed by reference, and any changesmade in
the subroutine will be reflected in the calling program. The subroutine cannot change any of
the other variables: it can make changes only to the copies of those variables that have been
passed to it. (It is considered poor programming practice for a subroutine to change any
arguments except those that are being passed back to the calling routine. If an input
argument must be changed, Omron Adept suggests you make an AUTOmatic copy of the
argument andwork with the copy.)

Subroutines

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 30



Call by Value

Values, as well as variables, can be passed by a CALL statement. The instruction:

CALL a_routine(loc_1, 17.5, 121, "some string")

is an acceptable call to a_routine.

Undefined Arguments

If the calling program omits an argument, either by leaving a blank in the argument list
(e.g., arg_1, , arg_3) or by omitting arguments at the end of a list (e.g., arg_1, arg_2), the
argument are passed as undefined. The subroutine receiving the argument list can test for
this value using the DEFINED function and take appropriate action.

Program Files

Since linking and compiling are not required by eV+,main programs and subroutines always
exist as separate programs. The eV+ file structure allows you to keep amain program and all
the subroutines it CALLs or EXECUTEs together in a single file so that when amain program
is loaded, all the subroutines it calls are also loaded. (If a program calls a subroutine that is
not resident in system memory, the error *Undefined program or variable name* will
result.)

See the descriptions of the STORE_ commands and the MODULE command in the eV+
Operating System User's Guide for details. For an example of creating a program file, see
"Sample Editing Session" on page 85.

Reentrant Programs

The eV+ system allows the same program to be executed concurrently by multiple program
tasks. That is, the program can be reentered while it is already executing.

This allows different tasks that are running concurrently to use the same general-purpose
subroutine.

Tomake a program reentrant, you must observe a few general guidelines when writing the
program:

l Global variables can be read but must not be modified.

l Local variables should not be used.

l Only automatic variables and subroutine arguments can be modified.

In special situations, local variables can be used, and global variables can be modified, but
then the program must explicitly provide program logic to interlock access to these variables.
The TAS real-valued function (defined in Table 6-4, "System Control Functions")may be
helpful in these situations. (See the eV+ Language Reference Guide for details.)

Subroutines

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 31



Recursive Programs

Recursive programs are subroutines that call themselves, either directly or indirectly. A direct
call occurs when a program actually calls itself, which is useful for some special programming
situations. Indirect calls are more common. They occur when program A calls program B,
which eventually leads to another call to program A before program B returns. For example,
an output routine may detect an error and call an error-handling routine, which in turn calls
the original output routine to report the error.

If recursive subroutine calls are used, the program must observe the same guidelines as for
reentrant programs (see Reentrant Programs on page 31). In addition, you must guarantee
that the recursive calls do not continue indefinitely. Otherwise, the program task will run out
of stack space.

Asynchronous Processing

A particularly powerful feature of eV+ is the ability to respond to an event (such as an
external signal or error condition) when it occurs, without the programmer's having to
include instructions to test repeatedly for the event. If event handling is properly enabled,
eV+ will react to an event by invoking a specified program just as if a CALL instruction had
been executed. Such a program is said to be called asynchronously, since its execution is not
synchronized with the normal program flow.

Asynchronous processing is enabled by the REACT, REACTE, and REACTI program
instructions. Each program task can use these instructions to prepare for independent
processing of events. In addition, the optional eV+ Extensions software uses the WINDOW
instruction to enable asynchronous processing of window violations when the robot is
tracking a conveyor belt.

Sometimes a reaction must be delayed until a critical program section has completed. Also,
since some events are more important than others, a program should be able to react to
some events but not others. eV+ allows the relative importance of a reaction to be specified
by a program priority value from 1 to 127. The higher the program priority setting, the more
important is the reaction.

A reaction subroutine is called only if the main program priority is less than that of the
reaction program priority. If the main program priority is greater than or equal to the reaction
program priority, execution of the reaction subroutine is deferred until the main program
priority drops. Since the main program (for example, the robot control program) normally
runs at program priority zero and the minimum reaction program priority is one, any reaction
can normally interrupt the main program.

The main program priority can be raised or loweredwith the LOCK program instruction, and
its current value can be determinedwith the PRIORITY real-valued function. When the main
program priority is raised to a certain value, all reactions of equal or lower priority are locked
out.

When a reaction subroutine is called, the main program priority is automatically set to the
reaction program priority, thus preventing any reactions of equal or lower program priority

Subroutines

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 32



from interrupting it. When a RETURN instruction is executed in the reaction program, the
main program priority is automatically reset to the level it had before the reaction subroutine
was called.

For further information on reactions and program priority, see the following keywords: LOCK,
PRIORITY, REACT, and REACTI in the eV+ Language Reference Guide.

Error Trapping

Normally, when an error occurs during execution of a program, the program is terminated
and an error message is displayed on the system terminal. However, if the REACTE
instruction has been used to enable an error-trapping program, the eV+ system invokes that
program as a subroutine instead of terminating the program that encountered the error.
(Each program task can have its own error trap enabled.)

Before invoking the error-trapping subroutine, eV+ locks out all other reactions by raising
the main program priority to 254 (see Asynchronous Processing on page 32). See the
description of the REACTE instruction in the eV+ Language Reference Guide for further
information on error trapping.

Subroutines

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 33





The SEE Editor and Debugger
Beginning with eV+ version v2.x, eV+ programs are created (and debugged) through the
ACE user interface. The eV+ Editor and Debugger tools provide a full-featured environment
for creating, editing and debugging eV+ programs. For more details, see the chapter
Programming ACE in the ACE User's Guide.

The SEE Editor and Debugger

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 35





Data Types and Operators
The following topics are described in this chapter:

Introduction 39
String Data Type 40
Real and Integer Data Types 42
Location Data Types 44
Arrays 45
Variable Classes 47
Operators 51
String Operator 55
Order of Evaluation 56

Data Types andOperators

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 37



Data Types andOperators

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 38



Introduction
This chapter describes the data typeseV+ used by eV+.

Dynamic Data Typing and Allocation

eV+ does not require you to declare variables or their data types. The first use of a variable
determines its data type and allocates spaeV+ce for that variable. You can create variables
and assign them a type as needed. The program instruction:

real_var = 13.65

creates the variable real_var as a real variable and assigns it the value 13.65 (if the real_var
had already been created, the instruction will merely change its value).

Numeric, string, and transformation arrays up to three dimensions can be declared
dynamically.

Variable Name Requirements

The requirements for a valid variable name are:

1. Keywords reserved by Omron Adept cannot be used. The eV+ Language Reference
Guide lists the basic keywords reserved by Omron Adept. If you have ACE Sight, The
ACE Sight Reference Guide lists the additional reservedwords used by the vision
system.

2. The first character of a variable namemust be a letter.

3. Allowable characters after the first character are letters, numbers, periods, and the
underline character.

4. Only the first 15 characters in a variable name are significant.

The following are all valid variable names:

x
count
dist.to.part.33
ref_frame

The following names are invalid for the reasons indicated:

3x (first character not a letter)
one&two (& is an invalid name character)
pi (reserved word)
this_is_a_long_name (too many characters)

All but the last of these invalid names are rejected by eV+ with an error message. The extra-
long name is truncated (without warning) to:

this_is_a_long_.

Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 39



String Data Type
Variable names are precededwith a dollar ($) sign to indicate that they contain string data.1
The program instruction:

$string_name = "Omron Adept eV+"

allocates the string variable string_name (if it had not previously been allocated) and assigns
it the value Omron Adept eV+. Numbers can be used as strings with a program instruction
such as:

$numeric_string = "13.5"

where numeric _string is assigned the value 13.5. The program instruction:

$numeric_string = 13.5

results in an error since you are attempting to assign a real value to a string variable.

The following restrictions apply to string constants (e.g., "a string"):

l ASCII values 32 (space) to 126 (7e) are acceptable

l ASCII 34 (") cannot be used in a string

Strings can contain from 0 to 128 characters. String variables can contain values from 0 to
255. For the interpretation of the full character set, see the section Character Sets on page
223.

The following are all valid names for string variables:

$x $process $prototype.names $part_1

The following names are invalid for strings for the reasons indicated:

$3x (first character not a letter)
$one-two (- is an invalid name character)
factor ($ prefix missing)
$this_is_a_long_name (too many characters)

All but the last of these invalid names are rejected by eV+ with an error message. The extra
long name is truncated (without warning) to $this_is_a_long_.

ASCII Values

An ASCII value is the numeric representation of a single ASCII character. (For a complete list
of the ASCII character set, see the section Character Sets on page 223.) An ASCII value is
specified by prefixing a character with an apostrophe ('). Any ASCII character from the space
character (decimal value 32) to the tilde character (7e, decimal value 126) can be used as an
ASCII constant. Thus, the following are valid ASCII constants:

'A '1 'v '%

String Data Type

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 40



Note that the ASCII value '1 (decimal value 49) is not the same as the integer value 1
(decimal value 1.0). Also, it is not the same as the string value "1".

Functions That Operate on String Data

For a summary of eV+ functions that operate on string data, see the section String-Related
Functions on page 82.

1The dollar sign is not considered in the character count of the variable name.

String Data Type

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 41



Real and Integer Data Types
Numbers that have a whole number and a fractional part (or mantissa and exponent if the
value is expressed in scientific notation) belong to the data type real. Numeric values having
only a whole number belong to the data type integer. In general, eV+ does not require you to
differentiate between these two data types. If an integer is required and you supply a real,
eV+ promotes the real to an integer by rounding (not truncation). Where real values are
required, eV+ considers an integer a special case of a real that does not have a fractional part.
The default real type is a signed, 32-bit IEEE single-precision number. Real values can also be
stored as 64-bit IEEE double-precision numbers if they are specifically typed using the
DOUBLE keyword (for details, see Variable Classes on page 47).

The range of integer values is:

-16,777,216 to 16,777,215

Single-precision real values have 24 bits of precision, and have the approximate range:

-1E+38 to 1E+38

Double-precision real values have 52 bits of precision, and have the approximate range:

-1E+307 to 1E+307

Numeric Representation

Numeric values can be represented in the standard decimal notation or in scientific notation,
as described in the previous section.

Numeric values can also be represented in octal, binary, and hexadecimal form. The following
table shows the required form for each integer representation.

Prefi-
x Example Representatio-

n

none -193 decimal

^B ^B1001 binary
(maximum of 8
bits)

^ ^346 octal

^H ^H23FF hexadecimal

^D ^D2000000-
0

double-precision

Integer Value Representation

Real and Integer Data Types

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 42



Numeric Expressions

In almost all situations where a numeric value of a variable can be used, a numeric
expression can also be used. The following examples all result in x having the same value.

x = 3
x = 6/2
x = SQRT(9)
x = SQR(2) - 1
x = 9 MOD 6

Logical Expressions

eV+ does not have a specific logical (Boolean) data type. Any numeric value, variable, or
expression can be used as a logical data type. eV+ considers 0 to be false and any other value
to be true.

Logical Constants

There are four logical constants, TRUE andON that will resolve to -1, and FALSE andOFF
that will resolve to 0. These constants can be used anywhere that a Boolean expression is
expected.

A logical value, variable, or expression can be used anywhere that a decision is required. In
this example, an input signal is tested. If the signal is on (high) the variable dio.sample is
given the value true, and the IF clause executes. Otherwise, the ELSE clause executes:

dio.sample = SIG(1001)
IF dio.sample THEN

; Steps to take when signal is on (high)
ELSE

; Steps to take when signal is off (low)
END

Since a logical expression can be used in place of a logical variable, the first two lines of this
example could be combined to

IF SIG(1001) THEN

Functions That Operate on Numeric Data

For a summary of eV+ functions that operate on numeric data, see the section Numeric
Value Functions on page 85.

Real and Integer Data Types

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 43



Location Data Types
This section gives a brief explanation of location data. Motion Control Operations on page 99
covers locations and their use in detail.

Transformations

A data type particular to eV+ is the transformation data type. This data type is a collection of
several values that uniquely identify a location in Cartesian space.

The creation andmodification of location variables are discussed in Motion Control Operations
on page 99.

Precision Points

Precision points are a second data type particular to eV+. A precision point is a collection of
joint angles and translational values that uniquely identify the position and orientation of a
robot. The difference between transformation variables and precision-point variables will
becomemore apparent when robot motion instructions are discussed in Motion Control
Operations on page 99.

Location Data Types

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 44



Arrays
eV+ supports arrays of up to three dimensions. Any eV+ data type can be stored in an array.
Like simple variables, array allocation (and typing) is dynamic. Unless they are declared to be
AUTOmatic, array sizes do not have to be declared.

For example:

array.one[2] = 36

allocates space for a one-dimensional array named array.one and places the value 36 in
element two of the array. (The numbers inside the brackets ([ ]) are referred to as indices.
An array index can also be a variable or an expression.)

$array.two[4,5] = "row 4, col 5"

allocates space for a two-dimensional array named array.two and places row 4, col 5 in row
four, column five of the array.

array.three[2,2,4] = 10.5

allocates space for a three-dimensional array named array.three and places the value 10.5 in
row two, column two, range four.

If any of the above instructions were executed and the array had already been declared, the
instruction wouldmerely place the value in the appropriate location. If a data type different
from the one the array was originally created with is specified, an error will result.

Arrays are allocated in blocks of 16. Thus, the instruction:

any_array[2] = 50

results in allocation of array elements 0 - 15. The instructions:

any_array[2] = 50
any_array[20] = 75

results in the allocation of array elements 0 - 31.

Array allocation is most efficient when the highest range index exceeds the highest column
index, and the highest column index exceeds the highest row index. (Row is the first
element, column is the second element, and range is the third element.)

Global Array Access Restriction

eV+ has a feature where global and LOCAL arrays are automatically extended as they are
used. For efficiency, there is no interlocking of the array extension process between multiple
tasks. A crash can occur if one task is extending or deleting an array while another is trying
to access it. The AIM software application has built-in protection to prevent this problem and
the resulting crash. However, custom eV+ programsmust be coded to avoid this problem
using one of the followingmethods:

Arrays

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 45



Method 1

If there is a known reasonable upper-bound on the array dimensions, define (by assigning an
arbitrary value to it) the highest element of the array. For multi-dimensional arrays, assign
the highest element of each possible sub-array. This assignment prevents the arrays from
extending.

Method 2

Use the TAS function to interlock access to the array. In this case, access to the array is
handled exclusively from one or two subroutines that include the TAS to control access to the
array. For details, see the TAS program instruction in the eV+ Language Reference Guide.

Arrays

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 46



Variable Classes
In addition to having a data type, variables belong to one of three classes, GLOBAL, LOCAL,
or AUTOMATIC. These classes determine how a variable can be altered by different calling
instances of a program.

Global Variables

This is the default class. Unless a variable has been specifically declared to be LOCAL or AUTO,
a newly created variable is considered global. Once a global variable has been initialized, it is
available to any executing program1 until the variable is deleted or all programs that
reference it are removed from system memory (with a DELETE or ZERO instruction). Global
variables can be explicitly declared with the GLOBAL program instruction.

GLOBAL DOUBLE dbl_real_var

Global variables are very powerful and should be used carefully and consciously. If you
cannot think of a good reason tomake a variable global, good programming practice dictates
that you declare it to be LOCAL or AUTO.

Local Variables

Local variables are created by a program instruction similar to:

LOCAL the_local_var

where the variable the_local_var is created as a local variable. Local variables can be changed
only by the program in which they are declared.

An important difference between local variables in eV+ and local variables in most other
high-level languages is that eV+ local variables are local to all copies (calling instances) of a
program, not just a particular calling instance of that program. This distinction is critical if
you write recursive programs. In recursive programs you will generally want to use the next
variable class, AUTO.

Automatic Variables

Automatic variables are created by a program instruction similar to:

AUTO the_auto_var

where the_auto_var is created as an automatic variable. Automatic variables can be
changed only by a particular calling instance of a program.

AUTO statements cannot be added or deleted when the program is on the stack. See "Special
Editing Situations."

AUTO DOUBLE dbl_auto_var

Variable Classes

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 47



Automatic variables are more like the local variables of other high-level languages. If you are
writing programs using a recursive algorithm, you will most likely want to use variables in the
automatic class.

Scope of Variables

The scope of a variable refers to the range of programs that can see that variable. The
following figureshows the scope of the different variable classes. A variable can be altered by
the program(s) indicated in the shaded area of the box it is in plus any programs that are in
smaller boxes. When a program declares an AUTO or LOCAL variable, any GLOBAL variables of
the same name created in other programs are not accessible.

Variable Scoping

Variable Scope Example shows an example of using the various variable classes. Notice that:

l prog_1 declares a to be GLOBAL. Thus, it is available to all programs not having an
AUTO or LOCAL a.

l prog_2 creates an undeclared variable b. By default, b is GLOBAL and available to other

Variable Classes

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 48



programs not having a LOCAL or AUTO b.

l prog_3 declares an AUTO a and cannot use GLOBAL a. After prog_3 completes, the
value of AUTO a is deleted.

l prog_4 declares a LOCAL a and, therefore, cannot use GLOBAL a. Unlike the AUTO a in
prog_3, however, the value of LOCAL a is stored and is available for any future CALLs
to prog_4.

Variable Scope Example

Variable Classes

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 49



Variable Initialization

Before a variable can be used it must be initialized. String and numeric variables can be
initialized by placing them on the left side of an assignment statement. The statements:

var_one = 36
$var_two = "two"

initializes the variables var_one and $var_two.

var_one = var_two

initializes var_one if var_two has already been initialized. Otherwise, an undefined value
error is returned. A variable can never be initialized on the right side of an assignment
statement (var_two could never be initialized by the above statement).

The statement:

var_one = var_one + 10

is valid only if var_one has been initialized in a previous statement.

Strings, numeric variables, and location variables can be initialized by being loaded from a disk
file.

Strings and numeric variables can be initialized with the PROMPT instruction.

Transformations and precision points can be initialized with the SET or HERE program
instructions. They can also be initialized with the HERE monitor command or with the T20
pendant. See the eV+ Operating System Reference Guide for information on monitor
commands.

1Unless the program has declared a LOCAL or AUTO variable with the same name.

Variable Classes

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 50



Operators
The following sections discuss the valid operators.

Assignment Operator

The equal sign (=) is used to assign a value to a numeric or string variable. The variable being
assigned a value must appear by itself on the left side of the equal sign. The right side of the
equal sign can contain any variable or value of the same data type as the left side, or any
expression that resolves to the same data type as the left side. Any variables used on the
right side of an assignment operator must have been previously initialized.

Location variables require the use of the SET instruction for a valid assignment statement.
The instruction:

loc_var1 = loc_var2

is unacceptable for location and precision-point variables.

Mathematical Operators

eV+ uses the standardmathematical operators shown in the following table.

Symbol Function

+ addition

- subtraction or unary minus

* multiplication

/ division

MOD modular (remainder) division

Mathematical Operators

Relational Operators
Relational operators are used in expressions that yield a Boolean value. The resolution of an
expression containing a relational operator is always -1 (true) or 0 (false) and tells you if the
specific relation stated in the expression is true or false. The most common use of relational
expressions is with the control structures. 

eV+ uses the standard relational operators shown in the following table.

Operators

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 51



Symbol Function

== equal to

< less than

> greater than

<= or =< less than or equal to

>= or => greater than or equal to

<> not equal to

Relational Operators

If x has a value of 6 and y has a value of 10, the following Boolean expressions resolve to -1
(true):

x < y
y >= x
y <> x

and these expressions resolve to 0 (false):

x > y
x <> 6
x == y

Note the difference between the assignment operator = and the relational operator ==:

z = x == y

In this example, z is assigned a value of 0 since the Boolean expression x == y is false and
would therefore resolve to 0. A relational operator never changes the value of the variables
on either side of the relational operator.

Logical Operators

Logical operators affect the resolution of a Boolean variable or expression, and combine
several Boolean expressions so they resolve to a single Boolean value.

eV+ uses the standard logical operators shown in the following table.

Symbol Effect

NOT Complement the expression

Logical Operators

Operators

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 52



or value;makes a true
expression or value false and
vice versa.

AND Both expressions must be
true before the entire
expression is true.

OR Either expression must be
true before the entire
expression is true.

XOR One expression must be true
and one must be false before
the entire expression is true.

If x = 6 and y = 10, the following expressions resolves to -1 (true):

NOT(x == 7)
(x > 2) AND (y =< 10)

And these expressions resolves to 0 (false):

NOT(x == 6)
(x < 2) OR (y > 10)

Bitwise Logical Operators

Bitwise logical operators operate on pairs of integers. The corresponding bits of each integer
are compared and the result is stored in the same bit position in a third binary number.The
following table lists the eV+ bitwise logical operators.

Operator Effect

BAND Each bit is compared using and logic. If both bits are 1, then the
corresponding bit is set to 1. Otherwise, the bit is set to 0.

BOR Each bit is compared using or logic. If either bit is 1, then the
corresponding bit is set to 1. If both bits are 0, the corresponding bit is
set to 0.

BXOR Each bit is compared using exclusive or logic. If both bits are 1 or both
bits are 0, the corresponding bit is set to 0. When one bit is 1 and the
other is 0, the corresponding bit is set to 1.

Bitwise Logical Operators

Operators

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 53



COM This operator works on only one number. Each bit is complemented: 1s
become 0s and 0s become 1s.

Examples:

x = ^B1001001 BAND ^B1110011

results in x having a value of ^B1000001.

x = COM ^B100001

results in x having a value of ^B11110.

Operators

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 54



String Operator
Strings can be concatenated (joined) using the plus sign. For example:

$name = "Omron Adept "
$incorp = ", Inc."
$coname = $name + "Technologies" + $incorp

results in the variable $coname having the value "Omron Adept Technologies, Inc".

String Operator

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 55



Order of Evaluation
Expressions containingmore than one operator are not evaluated in a simple left to right
manner. The following table lists the order in which operators are evaluated. Within an
expression, functions are evaluated first, with expressions within the function evaluated
according to the table.

The order of evaluation can be changed using parentheses. Operators within each pair of
parentheses, starting with the most deeply nested pair, are completely evaluated according
to the rules in the following table before any operators outside the parentheses are
evaluated.

Operators on the same level in the table are evaluated strictly left to right.

Operator

NOT, COM

- (Unary minus)

*, /, MOD, AND, BAND

+, -, OR, BOR, XOR, BXOR

==, <=, >=, <, >, <>

Order of Operator Evaluation

Order of Evaluation

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 56



Program Control
The following topics are described in this chapter:

Introduction 59
Unconditional Branch Instructions 60
Program Interrupt Instructions 62
Logical (Boolean) Expressions 68
Conditional Branching Instructions 69
Looping Structures 72
Summary of Program Control Keywords 76

Program Control

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 57



Program Control

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 58



Introduction
This chapter introduces the structures available in eV+ to control program execution. These
structures include the looping and branching instructions common tomost high-level
languages as well as some instructions specific to eV+.

Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 59



Unconditional Branch Instructions
There are three unconditional branching instructions in eV+:

l GOTO

l CALL

l CALLS

GOTO

The GOTO instruction causes program execution to branch immediately to a program label
instruction somewhere else in the program. The syntax for GOTO is:

GOTO label

label is an integer entered at the beginning of a line of program code. label is
not the same as the program step numbers: Step numbers are assigned
by the system; labels are entered by the programmer as the opening to a
line of code. In the next code example, the numbers in the first column
are program step numbers. The numbers in the second column are
program labels.

61 .
62 GOTO 100
63 .
64 .
65 100 TYPE "The instruction GOTO 100 got me he re."
66 .

A GOTO instruction can branch to a label before or after the GOTO instruction.

GOTO instructions can make program logic difficult to follow and debug, especially in a long,
complicated program with many subroutine calls. Use GOTO instructions with care. A
common use of GOTO is as an exit routine or exit on error instruction.

CALL

The CALL and CALLS instructions are used in eV+ to implement subroutine calls. The CALL
instruction causes program execution to be suspended and execution of a new program to
begin. When the new program has completed execution, execution of the original program
resumes at the instruction after the CALL instruction. The details of subroutine creation,
execution, and parameter passing are covered in Subroutines on page 28. The simplified
syntax for a CALL instruction is:

CALL program(arg_list)

program is the name of the program to be called. The program namemust be
specified exactly, and the program being CALLedmust be resident in
system memory.

Unconditional Branch Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 60



arg_list is the list of arguments being passed to the subroutine. These arguments
can be passed either by value or by reference andmust agree with the
arguments expected by the program being called. Subroutines and
argument lists are described in "Subroutines."

The code:

48 .
49 CALL check_data(locx, locy, length)
50 .

suspends execution of the calling program, passes the arguments locx, locy, and length to
program check_data, executes check_data, and (after check_data has completed execution)
resumes execution of the calling program at step 50.

CALLS

The CALLS instruction is identical to the CALL instruction except for the specification of
program. For a CALLS instruction, program is a string value, variable, or expression. This
allows you to call different subroutines under different conditions using the same line of
code. (These different subroutines must have the same arg_list.) You can use this technique
to create "virtual functions" in object oriented languages like C++, C#, Java or Python.

The code:

47 .
48 $program_name = $program_list[program_select]
49 CALLS $program_name(length, width)
50 .

suspends execution of the calling program, passes the parameters length andwidth to the
program specified by array index program_select from the array $program_list, executes the
specified program, and resume execution of the calling program at step 50.

Unconditional Branch Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 61



Program Interrupt Instructions
eV+ provides several ways of suspending or terminating program execution. A program can
be put on hold until a specific condition becomes TRUE using the WAIT instruction. A program
can be put on hold for a specified time period or until an event is generated in another task by
the WAIT.EVENT instruction. A program can be interrupted based on a state transition of a
digital input signal with the REACT and REACTI instructions. Program errors can be
intercepted and handled with a REACTE instruction. Program execution can be terminated
with the HALT, STOP, and PAUSE commands. These instructions interrupt the program in
which they are contained. Any programs running as other tasks are not affected. Robot
motion can be controlled with the BRAKE, BREAK, and DELAY instructions. (The ABORT and
PROCEEDmonitor commands can also be used to suspend and proceed programs, see the
eV+ Operating System Reference Guide for details.)

WAIT

WAIT suspends program execution until a condition (or conditions) becomes true.

WAIT SIG(1032, -1028)

delays execution until digital input signal 1032 is on and 1028 is off.

WAIT TIMER(1) > 10

suspends execution until timer 1 returns a value greater than 10.

WAIT.EVENT

The instruction:

WAIT.EVENT , 3.7

suspends execution for 3.7 seconds. This wait is more efficient than waiting for a timer (as in
the previous example) because the task does not have to loop continually to check the timer
value.

The instruction:

WAIT.EVENT

suspends execution until another task issues a SET.EVENT instruction to the waiting task. If
the SET.EVENT does not occur, the task waits indefinitely. For more details on SET.EVENT,
see the eV+ Language Reference Guide.

REACT and REACTI

When a REACT or REACTI instruction is encountered, the program begins monitoring a digital
input signal specified in the REACT instruction. This signal is monitored in the background
with program execution continuing normally until the specified signal transitions. When (and

Program Interrupt Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 62



if) a transition is detected, the program suspends execution at the currently executing step.
REACT and REACTI suspend execution of the current program and call a specified subroutine.
Additionally, REACTI issues a BRAKE instruction to immediately stop the current robot
motion.

Both instructions specify a subroutine to be run when the digital transition is detected. After
the specified subroutine has completed, program execution resumes at the step executing
when the digital transition was detected.

Digital signals 1001 - 1012 and 2001 - 2008 can be used for REACT instructions.

The signal monitoring initiated by REACT/REACTI is in effect until another REACT/REACTI or
IGNORE instruction is encountered. If the specified signal transition is not detected before an
IGNORE or second REACT/REACTI instruction is encountered, the REACT/REACTI instruction
has no effect on program execution.

The syntax for a REACT or REACTI instruction is:

REACT signal_number, program, priority

signal_
number

digital input signal in the range 1001 to 1012 or 2001 to 2008.

program the subroutine (and its argument list) that is to be executedwhen a
react is initiated.

priority number from 1 to 127 that indicates the relative importance of the
reaction.

The following code implements a REACT routine:

35 ; Look for a change in signal 1001 from "on" to "off".
36 ; Call subroutine "alarm if a change is detected.
37 ; Set priority of "alarm" to 10 (default would be 1).
38 ; The main program has default priority of 0.
39
40 REACT -1001, alarm, 10
41
42 ; REACT will be in effect for the following code
43
44 MOVE a
45 MOVE b
46 LOCK 20 ;Defer any REACTions to "alarm"
47 MOVE c
48 MOVE d
49 LOCK 0 ;Allow REACTions
50 MOVE e
51
52 ; Disable monitoring of signal 1001
53
54 IGNORE -1001
55 .

Program Interrupt Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 63



If signal 1001 transitions during execution of step 43, step 43 completes, the subroutine
alarm is called, and execution resumes at step 44.

If signal 1001 transitions during execution of step 47, steps 47, 48, and 49 completes (since
the program had been given a higher priority than REACT), the subroutine alarm is called,
and execution resumes at step 50.1

REACTE

REACTE enables a reaction program that is run whenever a system error that causes
program execution to terminate is encountered. This includes all robot errors, hardware
errors, andmost system errors (it does NOT include I/O errors).

Unlike REACT and REACTI, REACTE cannot be deferred based on priority considerations. The
instruction:

REACTE trouble

enables monitoring of system errors and execute the program trouble whenever a system
error is generated.

HALT, STOP, and PAUSE

When a HALT instruction is encountered, program execution is terminated, and any open
serial or disk units are DETACHED and FCLOSEd. PROCEED or RETRYwill not resume
execution.

When a STOP instruction is encountered, execution of the current program cycle is
terminated and the next execution cycle resumes at the first step of the program. If the STOP
instruction is encountered on the last execution cycle, program execution is terminated, and
any open serial or disk units are DETACHED and FCLOSEd. PROCEED or RETRYwill not
resume execution. (See EXECUTE for details on execution cycles.)When a PAUSE instruction
is encountered, execution is suspended. After a PAUSE, the system prompt appears and
Monitor Commands can be executed. This allows you to verify the values of program variables
and set system parameters. This is useful during program debugging. The monitor command
PROCEED resumes execution of a program interruptedwith the PAUSE command.

BRAKE, BREAK, and DELAY

BRAKE aborts the current robot motion. This instruction can be issued from any task.
Program execution is not suspended and the program (executing as task 0) continues to
execute at the next instruction. BREAK suspends program execution (defeats forward
processing) until the current robot motion is completed. This instruction can be executed only
from a robot control program and is usedwhen completion of the current robot motion must
occur before execution of the next instruction. A DELAY instruction specifies the minimum
delay between robot motions (not program instructions).

Program Interrupt Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 64



Additional Program Interrupt Instructions

You can specify a parameter in the instruction line for the I/O instructions ATTACH, READ,
GETC, andWRITE that causes the program to suspend until the I/O request has been
successfully completed.

Program Interrupt Example

The following figure shows how the task and program priority scheme works. It also shows
how the asynchronous and program interrupt instructions work within the priority scheme.
The example makes the following assumptions:

l Task 1 runs in all time slices at priority 30

l Task 2 runs in all time slices at priority 20

l All system tasks are ignored

l All system interrupts are ignored

The illustration shows the time lines of executing programs. A solid line indicates a program
is running, and a dotted line indicates a program is waiting. The Y axis shows the program
priority. The X axis is divided into 16-millisecondmajor cycles. The example shows two tasks
executing concurrently with REACT routines enabled for each task. Note how the LOCK
instructions and triggering of the REACT routines change the program priority.

The sequence of events for the example is:

1. Task 1 is running program prog_a at program priority 0. A reaction program based on
signal 1003 is enabled at priority 5.

2. Signal 1003 is asserted externally. The signal transition is not detected until the next
major cycle.

3. The signal 1003 transition is detected. The task 1 reaction program begins execution,
interrupting prog_a.

4. The task 1 reaction program reenables itself and completes by issuing a RETURN
instruction. prog_a resumes execution in task 1.

5. Task 1 prog_a issues a CLEAR.EVENT instruction followed by aWAIT.EVENT
instruction to wait for its event flag to be set. Task 1 is suspended, and task 2 resumes
execution of prog_b. Task 2 has a reaction program based on signal 1010 enabled at
priority 5.

6. Task 2 prog_b issues a LOCK 10 instruction to raise its program priority to level 10.

7. Signal 1010 is asserted externally. The signal transition is not detected until the next
major cycle.

8. The signal 1010 transition is detected, and the task 2 reaction is triggered. However,

Program Interrupt Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 65



since the reaction is at level 5 and the current program priority is 10, the reaction
execution is deferred.

9. Task 2 prog_b issues a LOCK 0 instruction to lower its program priority to level 0. Since
a level 5 reaction program is pending, it begins execution immediately and sets the
program priority to 5.

10. Signal 1003 is asserted externally. The signal transition is not detected until the next
major cycle.

11. The signal 1003 transition is detected which triggers the task 1 reaction routine and
also sets the task 1 event flag. Since task 1 has a higher priority (30) than task 2 (20),
task 1 begins executing its reaction routine and task 2 is suspended.

12. The task 1 reaction routine completes by issuing a RETURN instruction. Control
returns to prog_a in task 1.

13. Task 1 prog_a issues a CLEAR.EVENT instruction followed by aWAIT.EVENT
instruction to wait for its event flag to be set. Task 1 is suspended and task 2 resumes
execution of its reaction routine.
The task 2 reaction routine completes by issuing a RETURN instruction. Control
returns to prog_b in task 2.

14. Task 2 prog_b issues a SET.EVENT 1 instruction, setting the event flag for task 1. Task
2 now issues a RELEASE program instruction to yield control of the CPU.

15. Since the task 1 event flag is now set, and its priority is higher than task 2, task 1
resumes execution, and task 2 is suspended.

Program Interrupt Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 66



Priority Example 2

1The LOCK instruction can be used to control execution of a program after a REACT or
REACTI subroutine has completed.

Program Interrupt Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 67



Logical (Boolean) Expressions
The next two sections discuss program control structures whose execution depends on an
expression or variable that takes on a Boolean value (a variable that is either true or false, or
an expression that resolves to true or false). An expression can take into account any number
of variables or digital input signals as long as the final resolution of the expression is a Boolean
value. In eV+, any number (real or integer) can satisfy this requirement. Zero is considered
false; any nonzero number is considered true. There are four system constants, TRUE andON
that resolve to -1, and FALSE andOFF, that resolve to 0.

Examples of valid Boolean expressions:

y > 32
NOT(y > 32)
x == 56
x AND y
(x AND y) OR (var1 < var2)
-1

For details on eV+ relational operators, see Relational Operators on page 51.

Logical (Boolean) Expressions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 68



Conditional Branching Instructions
Conditional branching instructions allow you to execute blocks of code based on the current
values of program variables or expressions. eV+ has three conditional branch instructions:

l IF...GOTO

l IF...THEN...ELSE

l CASE value OF

IF...GOTO

IF...GOTO behaves similarly to GOTO, but a condition can be attached to the branch. If the
instruction:

IF logical_expression GOTO 100

is encountered, the branch to label 100 occurs only if logical_expression has a value of true.

IF...THEN...ELSE

The basic conditional instruction is the IF...THEN...ELSE clause. This instruction has two
forms:

IF expression THEN
code block (executed when expression is true)

END

IF expression THEN
code block (executed when expression is true)

ELSE
code block (executed when expression is false)

END

expressionis any well-formed Boolean expression (described above).

In the following example, if program execution reaches step 59 and num_parts is greater
than 75, step 60 is executed. Otherwise, execution resumes at step 62.

56 .
57 ;CALL "check_num" if "num_parts" is greater than 75
58
59 IF num_parts > 75 THEN
60 CALL check_num(num_parts)
61 END
62 .

In the following example, if program execution reaches step 37 with input signal 1033 on
and need_part true, the program executes steps 38 to 40 and resumes at step 44.
Otherwise, it executes step 42 and resumes at step 44.

Conditional Branching Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 69



32 .
33 ; If I/O signal 1033 is on and Boolean "need_part" is
34 ; true, then pick up the part
35 ; else alert the operator.
36
37 IF SIG(1033) AND need_part THEN
38 MOVE loc1
39 CLOSEI
40 DEPART 50
41 ELSE
42 TYPE "Part not picked up."
43 END
44 .

CASE value OF

The IF...THEN...ELSE structure allows a program to take one of two different actions. The
CASE structure will allow a program to take one of many different actions based on the value
of a variable. The variable usedmust be a real or an integer. The form of the CASE structure
is:

CASE target OF
VALUE list_of_values:

code block (executed when target is in list_of_values)
VALUE list_of_values:

code block (executed when target is in list_of_values)
...

ANY
code block (executed when target not in any list_of_values)

END

real value to match.

list_of_valueslist (separated by commas) of real values. If one of the values in the list
equals target, the code following that value statement is executed.

Example
5 ; Create a menu structure using a CASE statement
66
67 50 TYPE "1. Execute the program."
68 TYPE "2. Execute the programmer."
69 TYPE "3. Execute the computer."
70 PROMPT "Enter menu selection.", select
71
72 CASE select OF
73 VALUE 1:
74 CALL exec_program()
75 VALUE 2:
76 CALL exec_programmer()
77 VALUE 3:
78 CALL exec_computer()
79 ANY

Conditional Branching Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 70



80 PROMPT "Entry must be from 1 to 3", select
81 GOTO 50
82 END
83 .

If the above code is rewritten without an ANY statement, and a value other than 1, 2, or 3 is
entered, the program continues to execute at step 83 without executing any program.

Conditional Branching Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 71



Looping Structures
In many cases, you will want the program to execute a block of code more than once. eV+
has three looping structures that allow you to execute blocks of code a variable number of
times. The three instructions are:

l FOR

l DO...UNTIL

l WHILE...DO

FOR

A FOR instruction creates an execution loop that will execute a given block of code a specified
number of times. The basic form of a FOR loop is:

FOR index = start_val TO end_val STEP incr
.
code block
.

END

index is a real variable that keeps track of the number of times the FOR loop has
been executed. This variable is available for use within the loop.

start_val is a real expression for the starting value of the index.

end_val is a real expression for the ending value of the index. Execution of the
loop terminates when index reaches this value.

incr is a real expression indicating the amount index is to be incremented
after each execution of the loop. The default value is 1.

Examples
88 .
89 ; Output even elements of array "$names" (up to index 32)
90
91 FOR i = 2 TO 32 STEP 2
92 TYPE $names[i]
93 END
94 .

.
102 .
103 ; Output the values of the 2 dimensional array "values" in
104 ; column and row form (10 rows by 10 columns)
105 .
106 FOR i = 1 TO 10
107 FOR j = 1 to 10
108 TYPE values[i,j], /S
109 END

Looping Structures

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 72



110 TYPE " ", /C1
111 END
112 .

A FOR loop can be made to count backward by entering a negative value for the step
increment.
13 .
14 ; Count backward from 10 to 1
15
16 FOR i = 10 TO 1 STEP -1
17 TYPE i
18 END
19 .

Changing the value of index inside a FOR loopwill cause the loop to behave improperly. To
avoid problems with the index, make the index variable an auto variable and do not change
the index from inside the FOR loop. Changes to the starting and ending variables do not
affect the FOR loop once it is executing.

DO...UNTIL

DO...UNTIL is a looping structure that executes a given block of code an indeterminate
number of times. Termination of the loop occurs when the Boolean expression or variable
that controls the loop becomes true. The Boolean is tested after each execution of the code
block-if the expression evaluates to true, the loop is not executed again. Since the
expression is not evaluated until after the code block has been executed, the code block will
always execute at least once. The form for this looping structure is:

DO
.
code block
.

UNTIL expression

expressionis any well-formed Boolean expression. This expressionmust eventually
evaluate to true, or the loop executes indefinitely.

20 .
21 ; Output the numbers 1 to 100 to the screen
22
23 x = 1
24 DO
25 TYPE x
26 x = x + 1
27 UNTIL x > 100
28 .

Step 26 ensures that x will reach a high enough value so that the expression x > 100
becomes true.

43 .
44 ; Echo up to 15 characters to the screen. Stop when 15
45 ; characters or the character "#" have been entered.

Looping Structures

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 73



46
47 x = 1
48 DO
49 PROMPT "Enter a character: ", $ans
50 TYPE $ans
51 x = x + 1
52 UNTIL (x > 15) OR ($ans == "#")
53 .

In this code, either x reaching 15 or # being entered at the PROMPT instruction terminates
the loop. As long as the operator enters enough characters, the loop terminates.

WHILE...DO

WHILE...DO is a looping structure similar to DO...UNTIL except the Boolean expression is
evaluated at the beginning of the loop instead of at the end. This means that if the condition
indicated by the expression is true when the WHILE...DO instruction is encountered, the code
within the loopwill be executed.

WHILE...DO loops are susceptible to infinite looping just as DO...UNTIL loops are. The
expression controlling the loopmust eventually evaluate to true for the loop to terminate.
The form of the WHILE...DO looping structure is:

WHILE expression DO
code block

END

expressionis any well-formed Boolean expression as described at the beginning of this
section.

The following code shows aWHILE...DO loop being used to validate input. Since the Boolean
expression is tested before the loop is executed, the code within the loopwill be executed only
when the operator inputs an unacceptable value at step 23.

20 .
21 ; Loop until operator inputs value in the range 32-64
22
23 PROMPT "Enter a number in the range 32 to 64.", ans
24 WHILE (ans < 32) OR (ans > 64) DO
25 PROMPT "Number must be in the range 32-64.", ans
26 END
27 .

In the above code, an operator could enter a nonnumeric value, in which case the program
execution would stop. A more robust strategy would be to use a string variable in the PROMPT
instruction and then use the $DECODE and VAL functions to evaluate the input.

In the following code, if digital signal 1033 is on when step 69 is reached, the loop does not
execute, and the program continues at step 73. If digital signal 1033 is off, the loop executes
continually until the signal comes on.

65 .
66 ; Create a busy loop waiting for signal

Looping Structures

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 74



67 ; 1033 to turn "on"
68 WHILE NOT SIG(1033) DO
69
70 ;Wait for signal
71
72 END
73 .

Looping Structures

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 75



Summary of Program Control Keywords
The following table summarizes the program control instructions. See the eV+ Language
Reference Guide for details on these commands.

Keyword Type Function

ABORT Program
Instruction

Terminate execution of a control program.

CALL Program
Instruction

Suspend execution of the current program and
continue execution with a new program (that is, a
subroutine).

CALLS Program
Instruction

Suspend execution of the current program and
continue execution with a new program (that is, a
subroutine) specified with a string value.

CASE Program
Instruction

Initiate processing of a CASE structure by defining
the value of interest.

CLEAR.EVENT Program
Instruction

Clear an event associated with the specified task.

CYCLE.END Program
Instruction

Terminate the specified control program the next
time it executes a STOP program instruction (or its
equivalent). Suspend processing of an application
program or command program until a program
completes execution.

DO Program
Instruction

Introduce a DO program structure.

EXECUTE Program
Instruction

Begin execution of a control program.

EXIT Program
Instruction

Exit a FOR, DO, or WHILE control structure.

FOR Program
Instruction

Execute a group of program instructions a certain
number of times.

GET.EVENT Real-
Valued

Return events that are set for the specified task.

Program Control Operations

Summary of Program Control Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 76



Keyword Type Function

Function

GOTO Program
Instruction

Perform an unconditional branch to the program step
identified by the given label.

HALT Program
Instruction

Stop program execution and do not allow the
program to be resumed.

IF...GOTO Program
Instruction

Branch to the specified label if the value of a logical
expression is TRUE (nonzero).

IF...THEN Program
Instruction

Conditionally execute a group of instructions (or one
of two groups) depending on the result of a logical
expression.

LOCK Program
Instruction

Set the program reaction lock-out priority to the
value given.

MCS Program
Instruction

Invoke amonitor command from a control program.

NEXT Program
Instruction

Break a FOR, DO, or WHILE structure and start the
next iteration of the control structure.

PAUSE Program
Instruction

Stop program execution but allow the program to be
resumed.

PRIORITY Real-
Valued
Function

Return the current reaction lock-out priority for the
program.

REACT
REACTI

Program
Instruction

Initiate continuousmonitoring of a specified digital
signal and automatically trigger a subroutine call if
the signal transitions properly.

REACTE Program
Instruction

Initiate the monitoring of errors that occur during
execution of the current program task.

RELEASE Program
Instruction

Allow the next available program task to run.

RETURN Program Terminate execution of the current subroutine and

Summary of Program Control Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 77



Keyword Type Function

Instruction resume execution of the last-suspended program at
the step following the CALL or CALLS instruction that
caused the subroutine to be invoked.

RETURNE Program
Instruction

Terminate execution of an error reaction subroutine
and resume execution of the last-suspended
program at the step following the instruction that
caused the subroutine to be invoked.

RUNSIG Program
Instruction

Turn on (or off) the specified digital signal as long as
execution of the invoking program task continues.

SET.EVENT Program
Instruction

Set an event associated with the specified task.

STOP Program
Instruction

Terminate execution of the current program cycle.

WAIT Program
Instruction

Put the program into a wait loop until the condition is
TRUE.

WAIT.EVENT Program
Instruction

Suspend program execution until a specified event
has occurred, or until a specified amount of time has
elapsed.

WHILE Program
Instruction

Initiate processing of a WHILE structure if the
condition is TRUE or skipping of the WHILE structure
if the condition is initially FALSE.

Summary of Program Control Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 78



Functions
The following topics are described in this chapter:

Using Functions 81
String-Related Functions 82
Location, Motion, and External Encoder Functions 84
Numeric Value Functions 85
Logical Functions 87
System Control Functions 88

Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 79



Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 80



Using Functions
eV+ provides you with a wide variety of predefined functions for performing string,
mathematical, and general system parameter manipulation. In most cases, you must
provide the data that is input to a function. The function then returns a value based on a
specific operation on that data. Functions can be used anywhere a value or expression would
be used.

Variable Assignment Using Functions

The instruction:

$curr_time = $TIME()

puts the current system time into the variable $curr_time. This is an example of a function
that does not require any input data. The instruction:

var_root = SQRT(x)

puts the square root of the value x into var_root. X is not changed by the function.

Functions Used in Expressions

A function can be usedwherever an expression can be used (as long as the data type
returned by the function is the correct type). The instruction:

IF LEN($some_string) > 12 THEN

results in the Boolean expression being true if the string $some_string has more than 12
characters. The instruction:

array_var = some_array[VAL($x)]

results in array_var having the same value as the array cell $x. (VAL converts a string to a
real.)

Functions as Arguments to a Function

In most cases, the values passed to a function are not changed. This not only protects the
variables you use as arguments to a function, but also allows you to use a function as an
argument to a function (so long as the data type returned is the type expected by the
function). The following example results in i having the absolute value of x. (i = D(-22) = 2).

i = SQRT(SQR(x))

Using Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 81



String-Related Functions
The value returned from a string function may be another string or a numeric value.

Keyword Function

ASC Return a single character value from within a string.

$CHR Return a one-character string having a given value.

DBLB Return the value of eight bytes of a string interpreted as an IEEE
double-precision floating-point number.

$DBLB Return an 8-byte string containing the binary representation of a real
value in double-precision IEEE floating-point format.

$DECODE Extract part of a string as delimited by given break characters.

$ENCODE Return a string created from output specifications. The string
produced is similar to the output of a TYPE instruction.

FLTB Return the value of four bytes of a string interpreted as an IEEE
single-precision floating-point number.

$FLTB Return a 4-byte string containing the binary representation of a real
value in single-precision IEEE floating-point format.

$INTB Return a 2-byte string containing the binary representation of a 16-
bit integer.

LEN Return the number of characters in the given string.

LNGB Return the value of four bytes of a string interpreted as a signed 32-
bit binary integer.

$LNGB Return a 4-byte string containing the binary representation of a 32-
bit integer.

$MID Return a substring of the specified string.

PACK Replace a substring within an array of (128-character) string
variables or within a (non-array) string variable.

String-Related Functions

String-Related Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 82



Keyword Function

POS Return the starting character position of a substring in a string.

$TRANSB Return a 48-byte string containing the binary representation of a
transformation value.

$TRUNCATE Return all characters in the input string until an ASCII NUL (or the
end of the string) is encountered.

$UNPACK Return a substring from an array of 128-character string variables.

VAL Return the real value represented by the characters in the input
string.

Examples of String Functions

The instruction:

TYPE $ERROR(-504)

outputs the text *Unexpected end of file* to the screen.

The instructions:

$message = "The length of this line is: "
TYPE $ENCODE($message, /I0, LEN($message)+14), "
characters."

output the message:

The length of this line is: 42 characters.

String-Related Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 83



Location, Motion, and External Encoder Functions
eV+ provides numerous functions for manipulating and converting location variables. See
Motion Control Operations for details on motion processing and a table that includes all
location-related functions. For details on the external encoders, see Reading Device Data on
page 220.

Examples of Location Functions

The instruction:

rotation = RZ(HERE)

places the value of the current rotation about the Z axis in the variable rotation.

The instruction:

dist = DISTANCE(HERE, DEST)

places the distance between the motion device's current location and its destination (the
value of the next motion instruction) in the variable dist.

The instructions:

IF INRANGE(loc_1) == 0 THEN
IF SPEED(2) > 50 THEN

SPEED 50
END
MOVE(loc_1)

END

ensures that loc_1 is reachable andmoves the motion device to that location at a program
speed not exceeding 50.

Location, Motion, and External Encoder Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 84



Numeric Value Functions
The functions listed in the following table provide trigonometric, statistical, and data type
conversion operations. For additional details on arithmetic processing, see Data Types and
Operators on page 37.

Keyword Function

ABS Return absolute value.

ATAN2 Return the size of the angle (in degrees) that has its trigonometric
tangent equal to value_1/value_2.

BCD Convert a real value to Binary Coded Decimal (BCD) format.

COS Return the trigonometric cosine of a given angle.

DCB Convert BCD digits into an equivalent integer value.

FRACT Return the fractional part of the argument.

INT Return the integer part of the value.

MAX Return the maximum value contained in the list of values.

MIN Return the minimum value contained in the list of values.

OUTSIDE Test a value to see if it is outside a specified range.

PI Return the value of the mathematical constant pi (3.141593).

RANDOM Return a pseudorandom number.

SIGN Return the value 1 with the sign of the value parameter.

SIN Return the trigonometric sine of a given angle.

SQR Return the square of the parameter.

SQRT Return the square root of the parameter.

Numeric Value Functions

Examples of Arithmetic Functions

The instructions:

Numeric Value Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 85



$a = "16"
x = SQRT(VAL($a))

results in x having a value of 4.

The instruction:

x = INT(RANDOM*10)

creates a pseudorandom number between 0 and 10.

Numeric Value Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 86



Logical Functions
The following table lists the functions that return Boolean values. These functions require no
arguments and essentially operate as system constants.

Keyword Function

FALSE Return the value used by
eV+ to represent a logical
false result.

OFF Return the value used by
eV+ to represent a logical
false result.

ON Return the value used by
eV+ to represent a logical
true result.

TRUE Return the value used by
eV+ to represent a logical
true result.

Logical Functions

Logical Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 87



System Control Functions
The functions listed in the following table return information about the system and system
parameters.

Keyword Function

DEFINED Determine whether a variable has been defined.

ERROR Return the error number of a recent error that caused program
execution to stop or caused a REACTE reaction.

$ERROR Return the error message associated with the given error code.

FREE Return the amount of unused free memory storage space.

GET.EVENT Return events that are set for the specified task.

ID Return values that identify the configuration of the current system.

$ID Return the system creation date and edit/revision information.

INTB Return the value of two bytes of a string interpreted as a signed 16-
bit binary integer.

LAST Return the highest index used for an array (dimension).

PARAMETER Return the current setting of the named system parameter.

PRIORITY Return the current reaction lock-out priority for the program.

SELECT Return the unit number that is currently selected by the current task
for the device named.

STATUS Return status information for an application program.

SWITCH Return an indication of the setting of a system switch.

TAS Return the current value of a real-valued variable and assign it a new
value. The two actions are done indivisibly so no other program task
can modify the variable at the same time.

System Control Functions

System Control Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 88



Keyword Function

TASK Return information about a program execution task.

TIME Return an integer value representing either the date or the time
specified in the given string parameter.

$TIME Return a string value containing either the current system date and
time or the specified date and time.

TIMER Return the current time value of the specified system timer.

TPS Return the number of ticks of the system clock that occur per second
(Ticks Per Second).

Example of System Control Functions

The instruction:

IF (TIMER(2) > 100) AND (DEFINED(loc_1)) THEN
MOVE loc_1

END

executes the MOVE instruction only if timer (2) had a value greater than 100 and the
variable loc_1 had been defined.

System Control Functions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 89





Switches and Parameters
The following topics are described in this chapter:

Introduction 93
Parameters 94
Switches 96

Switches and Parameters

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 91



Switches and Parameters

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 92



Introduction
System parameters determine certain operating characteristics of the eV+ system. These
parameters have numeric values that can be changed from the command line or from within
a program to suit particular system configurations and needs. The various parameters are
described in this chapter alongwith the operations for displaying and changing their values.

System switches are similar to system parameters in that they control the operating
behavior of the eV+ system. Switches differ from parameters, however, in that they do not
have numeric values. Switches can be set to either enabled or disabled, which can be
thought of as on and off, respectively.

All the basic system switches are described in this chapter. The monitor commands and
program instructions that can be used to display and change their settings are also
presented.

Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 93



Parameters
See the eV+ Language Reference Guide for more detailed descriptions of the keywords
discussed here.

Whenever a system parameter name is used, it can be abbreviated to the minimum length
required to identify the parameter. For example, the HAND.TIME parameter can be
abbreviated to H, since no other parameter name begins with H.

Viewing Parameters

To see the state of a single parameter, use the PARAMETERmonitor command:

PARAMETER parameter_name

If parameter_name is omitted, the value of all parameters is displayed.

To retrieve the value of a parameter from within a program, use the PARAMETER function.
The instruction:

TYPE "HAND.TIME parameter =", PARAMETER(HAND.TIME)

will display the current setting of the hand-delay parameter in the monitor window.

The PARAMETER function can be used in any expression to include the value of a parameter.
For example, the following program statement increases the delay for hand actuation:

PARAMETER HAND.TIME = PARAMETER(HAND.TIME) + 0.15

Note that the left-hand occurrence of PARAMETER is the instruction name and the right-hand
occurrence is the function name.

Setting Parameters

To set a parameter from the command line, use the PARAMETERmonitor command. The
command:

PARAMETER HAND.TIME = 0.5

sets the hand operation delay time to 0.5 seconds.

To set a parameter in a program, use the PARAMETER program instruction. The instruction:

PARAMETER NOT.CALIBRATED = 1

asserts the not calibrated state for robot 1.

Some parameters are organized as arrays andmust be accessed by specifying an array index.

Parameters

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 94



Summary of Basic System Parameters

System parameters are set to defaults when the eV+ system is initialized. The default values
are indicated with each parameter description below. The settings of the parameter values
are not affected by the ZERO command.

If your robot system includes optional enhancements (such as vision), you will have other
system parameters available. Consult the documentation for the options for details. The
basic system parameters are shown in the following table.

Parameter Use De-
fault Min Max

BELT.MODE Controls the operation of the conveyor
tracking feature of the eV+ system.

0 0 14

HAND.TIME Determines the duration of the motion
delay that occurs during processing of
OPENI, CLOSEI, and RELAXI
instructions. The value for this
parameter is interpreted as the
number of seconds to delay. Due to
the way in which eV+ generates its
time delays, the HAND.TIME
parameter is internally rounded to the
nearest multiple of 0.016 seconds.

0.05 0 1E18

NOT.CALIBRATED Represents the calibration status of
the robot(s) controlled by the eV+
system.

7 0 7

Basic System Parameters

Parameters

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 95



Switches
System switches govern various features of the eV+ system. The switches are described
below. See the eV+ Language Reference Guide and the eV+ Operating System Reference
Guide for more detailed descriptions of the keywords discussed here.

As with system parameters, the names of system switches can be abbreviated to the
minimum length required to identify the switch.

Viewing Switch Settings

The SWITCHmonitor command displays the setting of one or more system switches:

SWITCH switch_name, ..., switch_name

If no switches are specified, the settings of all switches are displayed.

Within programs, the SWITCH real-valued function returns the status of a switch. The
instruction:

SWITCH(switch_name)

returns TRUE (-1.0) if the switch is enabled, FALSE (0.0) if the switch is disabled.

Some switches are organized as arrays andmay be accessed by specifying the array index.

Setting Switches

The ENABLE and DISABLE monitor commands/program instructions control the setting of
system switches. The instruction:

ENABLE BELT

enables the BELT switch. The instruction:

DISABLE BELT, CP

disables the CP and BELT switches. Multiple switches can be specified for either instruction.

Switches can also be set with the SWITCH program instruction. Its syntax is:

SWITCH switch_name = value

This instruction differs from the ENABLE and DISABLE instructions in that the SWITCH
instruction enables or disables a switch depending on the value on the right-hand side of the
equal sign. This allows you to set switches based on a variable or expression. The switch is
enabled if the value is TRUE (nonzero) and disabled if the value is FALSE (zero). The
instruction:

SWITCH CP = SIG(1001)

enables the continuous path (CP) switch if input signal 1001 is on.

Switches

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 96



Summary of Basic System Switches

The default switch settings at system power-up are given in the following table. (The switch
settings are not affected by the ZERO command.)

Optional enhancements to your eV+ system may include additional system switches. If so,
they are described in the documentation for the options.

Switch Use

AUTO.POWER.OFF When this switch is enabled eV+ will treat software errors as
hard errors and disable HIGH POWER. Normally these errors
stop the robot and signal the eV+ program, but DONOT cause
HIGH POWER to be turned off.

The soft errors are:
(-624) *force protect limit exceeded
(-1003) *Time-out nulling errors* Mtr
(-1006) *Soft envelope error* Mtr

BELT Used to turn on the conveyor tracking features of eV+ (if the
option is installed).This switch must be enabled before any of
the special conveyor tracking instructions can be executed.
When BELT is disabled, the conveyor tracking software has a
minimal impact on the overall performance of the system.

Default is disabled.

CP Enable/disable continuous-path motion processing (see
"Continuous-Path Trajectories"). Default is enabled.

DECEL.100 When DECEL.100 is enabled for a robot, the maximum
deceleration percentage defined by SPEC is ignored and a
maximum deceleration of 100% is used instead. This
maximum deceleration value is used to limit the value
specified by the ACCEL program instruction. For backwards
compatibility, by default, DECEL.100 is disabled for all robots.

DRY.RUN Enable/disable sending of motion commands to the robot.
Enable this switch to test programs for proper logical flow and
correct external communication without having to worry
about the robot running into something. (Also see the TRACE
switch, which is useful during program checkout.) The manual
control pendant can still be used tomove the robot when
DRY.RUN is enabled.

Basic System Switches

Switches

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 97



Switch Use

Default is disabled.

FORCE Controls whether the (optional) stop-on-force feature of the
eV+ system is active. Default is disabled.

MESSAGES Controls whether output from TYPE instructions will be
displayed on the terminal. Default is enabled.

POWER Tracks the status of Robot Power. This switch is automatically
enabled whenever Robot Power is turned on. This switch can
be used to turn Robot Power on or off-enabling the switch
turns on Robot Power and disabling the switch turns off Robot
Power. Default is disabled.

ROBOT This is an array of switches that control whether or not the
system should access robots normally controlled by the
system.Default is disabled.

UPPER Determines whether comparisons of string values will consider
lowercase letters the same as uppercase letters. When this
switch is enabled, all lowercase letters are considered as
though they are uppercase. Default is enabled.

Switches

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 98



Motion Control Operations
The following topics are described in this chapter:

Introduction 101
Location Variables 102
Creating and Altering Location Variables 109
Motion Control Instructions 116
Tool Transformations 124
Summary of Motion Keywords 126

Motion Control Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 99



Motion Control Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 100



Introduction
A primary focus of the eV+ language is to drive motion devices. This chapter discusses the
language elements that generate controller output to move amotion device from one
location to another. Before we introduce the eV+ motion instructions, we should examine
the eV+ location variables and see how they relate to the space in which the motion device
operates.

Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 101



Location Variables
Locations can be specified in two ways in eV+: transformations and precision points.

A transformation is a set of six components that uniquely identifies a location in Cartesian
space and the orientation of the motion device end-of-arm tooling at that location. A
transformation can also represent the location of an arbitrary local reference frame.

A precision point includes an element for each joint in the motion device. Rotational joint
values are measured in degrees; translational joint values are measured in millimeters.
These values are absolute with respect to the motion device's home sensors and cannot be
made relative to other locations or coordinate frames.

Coordinate Systems

The following figure shows the world coordinate system for an Omron Adept SCARA robot and
an Omron Adept Cartesian robot. Ultimately, all transformations are based on a world
coordinate system. The eV+ language contains several instructions for creating local
reference frames, building relative transformations, and changing the origin of the base
(world) coordinate frame. Therefore, an individual transformation may be relative to another
transformation, a local reference frame, or an altered base reference frame.

Different robots andmotion devices designates different locations as the origin of the world
coordinate system. See the user's guide for Omron Adept robots to determine the origin and
orientation of the world coordinate frame.

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 102



Omron Adept Robot Cartesian Space

Transformations

The first three components of a transformation variable are the values for the points on the
X, Y, and Z axes. In an Omron Adept SCARA robot, the origin of this Cartesian space is the
base of the robot. The Z axis points straight up through the middle of the robot column. The
X axis points straight out, and the Y axis runs left to right as you face the robot. The first
robot in the figure Omron Adept Robot Cartesian Space shows the orientation of the
Cartesian space for an Omron Adept SCARA robot. The location of the world coordinate
system for other robots andmotion devices depends on the kinematic model of the motion
device. For example, the second robot in the figure Omron Adept Robot Cartesian Space
shows the world coordinate frame for a robot built on the Cartesian coordinate model. See
the kinematic device module documents for your particular motion device.

When a transformation is defined, a local reference frame is created at the X, Y, Z location
with all three local frame axes parallel to the world coordinate frame. The figure XYZ
Elements of a Transformation shows the first part of a transformation. This transformation
has the value X = 30, Y = 100, Z = 125, yaw = 0, pitch = 0, and roll = 0.

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 103



XYZ Elements of a Transformation

The second three components of a transformation variable specify the orientation of the end-
of-arm tooling. These three components are yaw, pitch, and roll. These elements are figured
as ZYZ' Euler values. The following figures demonstrate how these values are interpreted.

Yaw

Yaw is a rotation about the local reference frame Z axis. This rotation is not about the primary
reference frame Z axis, but is centered at the origin of the local frame of reference. The figure
Yaw shows the yaw axis with a rotation of 30 degrees. Note that it is parallel to the primary
reference frame Z axis but may be centered at any point in that space. In this example, the
yaw value is 30 degrees, resulting in a transformation with the value (X = 30, Y = 100, Z =
125, yaw = 30, pitch = 0, and roll = 0).

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 104



When you are using a robot, the local frame of reference defined by the XYZ components is
located at the end of the robot tool flange. (This local reference frame is referred to as the
tool coordinate system.) In the figure Yaw, the large Cartesian space represents a world
coordinate system. The small Cartesian space represents a local tool coordinate system
(which is centered at the motion device tooling flange).

Yaw

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 105



Pitch

Pitch is defined as a rotation about the local reference frame Y axis, after yaw has been
applied. The figure Pitch shows the local reference frame with a yaw of 30 degrees and a pitch
of 40 degrees.

For example, deflection of a wrist joint is reflected in the pitch component. The movement of
a fifth axis on a SCARA robot is reflected in the pitch component. In this example, the motion
device end-of-arm tooling has a pitch of 40 degrees, resulting in a transformation with the
value (X = 30, Y = 100, Z = 125, yaw = 30, pitch = 40, and roll = 0). This location can be
reached only by amechanism with a fifth axis. Pitch is represented as ±180°, not as 360° of
rotation. Thus, a positive rotation of 190° is shown as -170 degrees.

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 106



Pitch

Roll

Roll is defined as a rotation about the Z axis of the local reference frame after yaw and pitch
have been applied. The figure Roll shows a local reference frame in the primary robot
Cartesian space and the direction roll would take within that space. In this example the
transformation has a value of X = 30, Y = 100, Z = 125, yaw = 30, pitch = 40, and roll = 20.
This location can be reached only by amechanism with fifth and sixth axes.

Roll

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 107



Special Situations

When the Z axes of the local and primary reference frames are parallel, roll and yaw produce
the samemotion in the same plane, although the twomotions may be in different directions.
This is always the case with a four-axis SCARA robot. The system automatically reflects
rotation of the quill in the roll component of a transformation variable, and the yaw
component is forced to 0 degrees. In a SCARA robot equippedwith a fifth axis, rotation of the
quill is reflected in the yaw component andmotion of a rotating end-effector (sixth axis) is
reflected in the roll component.

Notice in the figure XYZ Elements of a Transformation that the local reference frame points
straight up. This corresponds to a situation where the end of arm tooling points straight back
along the third axis. In a mechanism not equippedwith a 360 degree wrist, this is an
impossible position. For a four-axis SCARA, this component must point straight down (pitch =
180 degrees). For a mechanism with a fifth axis, this component must be within the range of
motion of the fifth axis.

NOTE:When thinking about a transformation, remember that the rules of ZYZ' Euler
angles require that the orientation components be applied in order after the local
reference frame has been defined. After calculating the Cartesian components and placing
a local reference frame with x, y, and z axes parallel to the primary reference frame X, Y,
and Z axes, the orientation components are applied in a strict order—yaw is applied first,
then pitch, and, finally, roll.

Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 108



Creating and Altering Location Variables

Creating Location Variables

The most straightforwardmethod of creating a location variable is to place the robot or
motion device at a location and enter the monitor command:

HERE loc_name

Transformations vs. Precision Points

A location can be specified using either the six components described in the previous section,
or by specifying the state the robot joints would be in when a location is reached. The former
method results in a transformation variable. Transformations are the most flexible and
efficient location variables.

Precision points record the joint values of each joint in the motion device. Precision points
may be more accurate, and they are the only way of extracting joint information that will
allow you tomove an individual joint. Precision points are identified by a leading pound sign
(#). The command:

HERE #pick

will create the precision point #pick equal to the current robot joint values.

Modifying Location Variables

A location variable can be duplicated using the SET program instruction. The program
instruction:

SET loc_name = loc_value

results in the variable loc_name being given the value of loc_value.

The following functions return transformation values:

TRANS Create a location by specifying individual components of a transformation. A value
can be specified for each component.
SHIFT Alter the Cartesian components of an existing transformation.

The SET operation can be used in conjunction with the transformation functions SHIFT and
TRANS to create location variables based on specific modifications of existing variables.

SET loc_name = SHIFT(loc_value BY 5, 5, 5)

will create the location variable loc_name. The location of loc_name are shifted 5 mm in the
positive X, Y, and Z directions from loc_value.

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 109



Relative Transformations

Relative transformations allow you tomake one location relative to another and to build local
reference frames to which that transformations can be relative. For example, you may be
building an assembly whose location in the workcell changes periodically. If all the locations
on the assembly are taught relative to the world coordinate frame, each time the assembly is
located differently in the workcell, all the locations must be retaught. If, however, you create
a frame based on identifiable features of the assembly, you will have to reteach only the
points that define the frame.

Examples of Modifying Location Variables

The figure Relative Transformation shows how relative transformations work. The magnitude
and direction elements (x, y, z), but not the orientation elements (y, p, r), of an Omron Adept
transformation can be represented as a 3-D vector, as shown by the dashed lines and arrows
in the figure Relative Transformation. The following code generates the locations shown in
that figure.

; Define a simple transformation
SET loc_a = TRANS(300,50,350,0,180,0)

; Move to the location
MOVE loc_a
BREAK

; Move to a location offset -50mm in X, 20mm in Y,
; and 30mm in Z relative to "loc_a"

MOVE loc_a:TRANS(-50, 20, 30)
BREAK

; Define "loc_b" to be the current location relative
; to "loc_a"

HERE loc_a:loc_b ;loc_b = -50, 20, 30, 0, 0, 0
BREAK

; Define "loc_c" as the vector sum of "loc_a" and "loc_b"
SET loc_c = loc_a:loc_b ;loc_c = 350, 70, 320, 0, 180, 0

Once this code has run, loc_b exists as a transformation that is completely independent of
loc_a. The following instruction moves the robot another -50 mm in the x, 20 mm in the y,
and 30 mm in the z direction (relative to loc_c):

MOVE loc_c:loc_b

Multiple relative transformations can be chained together. If we define loc_d to have the
value 0, 50, 0, 0, 0, 0:

SET loc_d = TRANS(0,50)

and then issue the followingMOVE instruction:

MOVE loc_a:loc_b:loc_d

the robot moves to a position x = -50 mm, y =70 mm, and z = 30 mm relative to loc_a.

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 110



In the figure Relative Transformation, the transformation loc_b defines the transformation
needed to get from the local reference frame defined by loc_a to the local reference frame
defined by loc_c.

The transformation needed to go in the opposite direction (from loc_c to loc_a) can be
calculated by:

INVERSE(loc_b)

Thus, the instruction:

MOVE loc_c:INVERSE(loc_b)

effectively moves the robot back to loc_a.

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 111



Relative Transformation

This figure shows the first three locations from the previous code examples.

Defining a Reference Frame

In the example shown in the figure Relative Locations, a pallet is brought into the workcell on
a conveyor. The program that follows teaches three locations that define the pallet reference
frame (pallet.frame) and then removes the parts from the pallet. The program that follows

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 112



runs regardless of where the pallet is placed in the workcell as long as it is within the robot's
working envelope.

Relative Locations

; Get the locations to define the pallet

DETACH () ;Release robot for use by the MCP
PROMPT "Place robot at pallet origin. ", $ans
HERE loc.origin ;Record the frame origin

PROMPT "Place robot at point on the pallet x-axis. ", $ans
HERE loc.x.axis ;Record point on x-axis

PROMPT "Place robot at point in positive y direction. ", $ans
HERE loc.pos.y ;Record positive y direction

ATTACH () ;Reattach the robot

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 113



; Create the local reference frame "pallet.frame"

SET pallet.frame = FRAME(loc.origin, loc.x.axis,loc.pos.y, loc.origin)

cell.space = 50 ;Spacing of cells on pallet

; Remove the palletized items

FOR i = 0 TO 3
FOR J = 0 TO 2

APPRO pallet.frame:TRANS(i*cell.space, j*cell.space), 25
MOVE pallet.frame:TRANS(i*cell.space, j*cell.space)
BREAK ;Settle robot
CLOSEI ;Grab the part
DEPART 25 ;MOVE to the drop off location

END
END

In the above example, the code that teaches the pallet framemust run only when the pallet
location changes.

If you are building an assembly that does not have regularly spaced locations like the above
example, the following code teaches individual locations relative to the frame:

; Get the locations to define the pallet frame

DETACH () ;Release robot for use by the MCP
PROMPT "Place robot at assembly origin. ", $ans
HERE loc.origin ;Record the frame origin

PROMPT "Place robot at point on the assm. x-axis. ", $ans
HERE loc.x.axis ;Record point on x-axis

PROMPT "Place robot at point in positive y direction. ", $ans
HERE loc.pos.y ;Record positive y direction

; Create the local reference frame "assm.frame"

SET assm.frame = FRAME(loc.origin, loc.x.axis, loc.pos.y, loc.origin)

; Teach the locations on the assembly

PROMPT "Place the robot in the first location. ", $ans
HERE assm.frame:loc.1 ;Record the first location

PROMPT "Place the robot in the second location. ", $ans
HERE assm.frame:loc.2 ;Record the second location

; etc.

; Move to the locations on the assembly

ATTACH () ;Reattach the robot

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 114



APPRO assm.frame:loc.1, 25
MOVE assm.frame:loc.1
;Activate gripper
DEPART 25

APPRO assm.frame:loc.1, 25
MOVE assm.frame:loc.2
;Activate gripper
DEPART 25

; etc.

In the above example, the framemust be taught each time the assembly moves-the
locations on the assembly must be taught only once.

The instruction HERE assm.frame:loc.1 tells the system to record the location loc.1 relative
to assm.frame rather than relative to the world coordinate frame. If a subassembly is being
built relative to loc.1, the instruction:

HERE assm.frame:loc.1:sub.loc.1

creates a compound transformation where sub.loc.1 is relative to the transformation
assm.frame:loc.1.

Miscellaneous Location Operations

The instruction:

DECOMPOSE array_name[] = #loc_name

places the joint values of #loc_name in the array array_name. DECOMPOSE works with
transformations and precision points.

The command:

WHERE

displays the current robot location.

Creating and Altering Location Variables

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 115



Motion Control Instructions
eV+ processes robot motion instructions differently from the way you might expect. With
eV+, a motion instruction such as MOVE part is interpreted tomean start moving the robot to
location 'part'. As soon as the robot starts moving to the specified destination, the eV+
program continues without waiting for the robot motion to complete. The instruction
sequence:

MOVE part.1
SIGNAL 1
MOVE part.2
SIGNAL 2

causes external output signal #1 to be turned on immediately after the robot begins moving
to part.1, rather than waiting for it to arrive at the location. When the secondMOVE
instruction is encountered, eV+ waits until the motion to part.1 is completed. External
output signal #2 is turned on just after the motion to part.2 begins. This is known as forward
processing. See Breaking Continuous-Path Operation for details on how to defeat forward
processing.

This parallel operation of program execution and robot motion makes possible the procedural
motions described later in this chapter.

Basic Motion Operations

Joint-Interpolated Motion vs. Straight-Line Motion

The path amotion device takes when moving from one location to another can be either a
joint-interpolatedmotion or a straight-line motion. Joint-interpolatedmotions move each
joint at a constant velocity (except during the acceleration/deceleration phases-see Robot
Speed). Typically, the robot tool tipmoves in a series of arcs that represents the least
processing-intensive path the trajectory generator can formulate. Straight-line motions
ensure that the robot tool tip traces a straight line, useful for cutting a straight line or laying a
bead of sealant. The instruction:

MOVE pick

causes the robot to move to the location pick using joint-interpolatedmotion. The
instruction:

MOVES pick

causes the robot to move the pick using a straight-line motion.

Safe Approaches and Departures

In many cases you will want to approach a location from a distance offset along the tool Z axis
or depart from a location along the tool Z axis before moving to the next location. For
example, if you were inserting components into a crowded circuit board, you would want the

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 116



robot arm to approach a location from directly above the board so nearby parts are not
disturbed. Assuming you were using a four-axis Omron Adept robot, the instructions:

APPRO place, 50
MOVE place
DEPART 50

causes joint-interpolatedmotion to a point 50 mm above place, movement down to place,
andmovement straight up to 50 mm above place.

If the instructions APPROS, DEPARTS, andMOVES had been used, the motions would have
been straight line instead of joint interpolated.

NOTE:Approaches and departs are based on the tool coordinate system, not the world
coordinate system. Thus, if the location specifies a pitch of 135 degrees, the robot will
approach at a 45 degree angle relative to the world coordinate system. For a description
of the tool coordinate system, see Yaw on page 104.

Moving an Individual Joint

You can move an individual joint of a robot using the instruction DRIVE. The instructions:

DRIVE 2,50.0, 100
DRIVE 3,25, 100

moves joint 2 through 50 degrees of motion and then move joint 3 a distance of 25 mm at
SPEED 100%.

End-Effector Operation Instructions

The instructions described in this section depend on the use of two digital signals. They are
used to open, close, or relax a gripper. The utility program SPEC specifies which signals
control the end effector. See the Instructions for Adept Utility Programs.

The instruction OPEN opens the gripper during the ensuingmotion instruction. The
instruction OPENI opens the gripper before any additional motion instructions are executed.
CLOSE and CLOSEI are the complementary instructions.

When an OPEN(I) or CLOSE(I) instruction is issued, one solenoid is activated and the other is
released. To completely relax both solenoids, use the instruction RELAX or RELAXI.

Use the system parameter HAND.TIME to set the duration of the motion delay that occurs
during an OPENI, CLOSEI, or RELAXI instruction.

Use the function HAND to return the current state of the gripper.

Continuous-Path Trajectories

When a single motion instruction is processed, such as the instruction:

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 117



MOVE pick

the robot begins moving toward the location by accelerating smoothly to the commanded
speed. Sometime later, when the robot is close to the destination location pick, the robot
decelerates smoothly to a stop at location pick. This motion is referred to as a single motion
segment, since it is produced by a single motion instruction.

When a sequence of motion instructions is executed, such as:

MOVE loc.1
MOVE loc.2

the robot begins moving toward loc.1 by accelerating smoothly to the commanded speed1
just as before. However, the robot does not decelerate to a stop when it gets close to loc.1.
Instead, it smoothly changes its direction and begins moving toward loc.2. Finally, when the
robot is close to loc.2, it decelerates smoothly to a stop at loc.2. This motion consists of two
motion segments since it is generated by twomotion instructions.

Making smooth transitions between motion segments without stopping the robot motion is
called continuous-path operation. That is the normal method eV+ uses to perform robot
motions. If desired, continuous-path operation can be disabled with the CP switch. When the
CP switch is disabled, the robot decelerates and stops at the end of each motion segment
before beginning tomove to the next location.

NOTE: Disabling continuous-path operation does not affect forward processing (the
parallel operation of robot motion and program execution).

Continuous-path transitions can occur between any combination of straight-line and joint-
interpolatedmotions. For example, a continuousmotion could consist of a straight-line
motion (for example, DEPARTS) followed by a joint-interpolatedmotion (for example, APPRO)
and a final straight-line motion (for example, MOVES). Any number of motion segments can
be combined this way.

Breaking Continuous-Path Operation

Certain eV+ program instructions cause program execution to be suspended until the current
robot motion reaches its destination location and comes to a stop. This is called breaking
continuous path. Such instructions are useful when the robot must be stoppedwhile some
operation is performed (for example, closing the hand). Consider the instruction sequence:

MOVE loc.1
BREAK
SIGNAL 1

The MOVE instruction starts the robot moving to loc.1. Program execution then continues
and the BREAK instruction is processed. BREAK causes the eV+ program to wait until the
motion to loc.1 completes. The external signal is not turned on until the robot stops. (Recall
that without the BREAK instruction the signal would be turned on immediately after the
motion to loc.1 starts.)

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 118



The following instructions always cause eV+ to suspend program execution until the robot
stops (see the eV+ Language Reference Guide for detailed information on these
instructions):

BREAK CLOSEI CPOFF DETACH (0)

HALT OPENI PAUSE RELAXI TOOL

Also, the robot decelerates to a stop when the BRAKE (not to be confusedwith BREAK)
instruction is executed (by any program task), andwhen the reaction associated with a
REACTI instruction is triggered. These events could happen at any point within a motion
segment. (Note that these events can be initiated from a different program task.)

The robot also decelerates and comes to a stop if no new motion instruction is encountered
before the current motion completes. This situation can occur for a variety of reasons:

l AWAIT or WAIT.EVENT instruction is executed and the wait condition is not satisfied
before the robot motion completes.

l A PROMPT instruction is executed and no response is entered before the robot motion
completes.

l The eV+ program instructions between motion instructions take longer to execute
than the robot takes to perform its motion.

Procedural Motion

The ability to move in straight lines and joint-interpolated arcs is built into the basic
operation of eV+. The robot tool can also move along a path that is prerecorded, or described
by amathematical formula. Such motions are performed by programming the robot
trajectory as the robot is moving. Such a program is said to perform a procedural motion.

A procedural motion is a program loop that computes many short motions and issues the
appropriate motion requests. The parallel execution of robot motions and non-motion
instructions allows each successive motion to be definedwithout stopping the robot. The
continuous-path feature of eV+ automatically smoothes the transitions between the
computedmotion segments.

Procedural Motion Examples

Two simple examples of procedural motions are described below. In the first example, the
robot tool is moved along a trajectory described by locations stored in the array path. (The
LAST function is used to determine the size of the array.)

SPEED 0.75 IPS ALWAYS
FOR index = 0 TO LAST(path[])

MOVES path[index]
END

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 119



The robot tool moves at the constant speed of 0.75 inch per second through each location
defined in the array path[].

In the next example, the robot tool is to be moved along a circular arc. However, the path is
not prerecorded-it is describedmathematically, based on the radius and center of the arc to
be followed.

The program segment below assumes that a real variable radius has already been assigned
the radius of the desired arc, and x.center and y.center have been assigned the respective
coordinates of the center of curvature. The variables start and last are assumed to have been
defined to describe the portion of the circle to be traced. Finally, the variable angle.step is
assumed to have been defined to specify the (angular) increment to be traversed in each
incremental motion. (Because the DURATION instruction is used, the program moves the
robot tool angle.step degrees around the arc every 0.5 second.)

When this program segment is executed, the X and Y coordinates of points on the arc are
repeatedly computed. They are then used to create a transformation that defines the
destination for the next robot motion segment.

DURATION 0.5 ALWAYS
FOR angle = start TO last STEP angle.step

x = radius*COS(angle)+x.center
y = radius*SIN(angle)+y.center
MOVE TRANS(x, y, 0, 0, 180, 0)

END

Timing Considerations

Because of the computation time required by eV+ to perform the transitions between motion
segments, there is a limit on how closely spaced commanded locations can be.When
locations are too close together, there is not enough time for eV+ to compute and perform
the transition from onemotion to the next, and there will be a break in the continuous-path
motion. This means that the robot stops momentarily at intermediate locations.

The minimum spacing that can be used between locations before this effect occurs is
determined by the time required to complete the motion from one location to the next.
Straight-line motions can be used if the motion segments take more than about 32
milliseconds each. Joint-interpolatedmotions can be usedwith motion segments as short as
about 16 milliseconds each.

NOTE:The standard trajectory generation frequency is 62.5 Hz. With an optional software
license, trajectory frequencies of 125 Hz, 250 Hz, and 500 Hz are possible.

The minimum motion times for joint and straight-line motions must be greater than or
equal to the configured trajectory cycle time. As a convenience, if they are set to be less
than the configured trajectory cycle time (for example 0), the trajectory cycle time is used
as the minimum motion time.

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 120



Robot Speed

A robot move has three phases: an acceleration phase where the robot accelerates to the
maximum speed specified for the move, a velocity phase where the robot moves at a rate
not exceeding the specifiedmaximum speed, and a deceleration phase where the robot
decelerates to a stop (or transitions to the next motion).

Robot speed can mean two things: how fast the robot moves between the acceleration and
deceleration phases of a motion (referred to in this manual as robot speed), or how fast the
robot gets from one place to another (referred to in this manual as robot performance).

The robot speed between the acceleration and deceleration phases is specified as either a
percentage of normal speed or an absolute rate of travel of the robot tool tip. Speed set as a
percentage of normal speed is the default. The speed of a robot move based on normal speed
is determined by the following factors:

l The program speed (set with the SPEED program instruction). This speed is set to 100
when program execution begins.

l The monitor speed (set with the SPEEDmonitor command or a SPEED program
instruction that specifies MONITOR). This speed is normally set to 50 at system
startup(start-up SPEED can be set with the ACE Controller Config Tools). (The effects
of the two SPEED operations are slightly different. See the SPEED program instruction
for further details.)

Robot speed is the product of these two speeds. With monitor speed and program
speed set to 100, the robot moves at its normal speed.With monitor speed set to 50
and program speed set to 50, the robot moves at 25% of its normal speed.

Tomove the robot tool tip at an absolute rate of speed, a speed rate in inches per second or
millimeters per second is specified in the SPEED program instruction. The instruction:

SPEED 25 MMPS ALWAYS

specifies an absolute tool tip speed of 25 millimeters per second for all robot motions until the
next SPEED instruction. In order for the tool tip to actually move at the specified speed:

l The monitor speedmust be 100.

l The locations must be far enough apart so that the robot can accelerate to the desired
speed and decelerate to a stop at the end of the motion.

Robot performance is a function of the SPEED settings and the following factors:

l The robot acceleration profile and ACCEL settings. The default acceleration profile is
based on a normal maximum rate of acceleration and deceleration. The ACCEL
command can scale down these maximum rates so that the robot acceleration and/or
deceleration takes more time.

You can also define optional acceleration profiles that alter the maximum rate of
change for acceleration and deceleration

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 121



l The location tolerance settings (COARSE/FINE, NULL/NONULL) for the move. The
more accurately a robot must get to the actual location, the more time the move will
take.

l Any DURATION setting. DURATION forces a robot move to take aminimum time to
complete regardless of the SPEED settings.

l The maximum allowable velocity. For Omron Adept robots, maximum velocity is
factory set.

l The inertial loading of the robot and the tuning of the robot.

l Straight-line vs. joint-interpolatedmotions-for complex geometries, straight-line and
joint-interpolated paths produce different dynamic responses and, therefore, different
motion times.

Robot performance for a given application can be greatly enhanced or severely degraded by
these settings. For example:

l A heavily loaded robot may actually show better performance with slower SPEED and
ACCEL settings, which lessens overshoot at the end of a move and allows the robot to
settle more quickly.

l Applications such as picking up bags of product with a vacuum gripper do not require
high accuracy and can generally run faster with a COARSE tolerance.

Motion Modifiers

The following instructions modify the characteristics of individual motions. These instructions
are summarized in Motion Control Operations.

NOTE:The instructions listed below with an asterisk (*) can take ALWAYS as an
argument.

l ABOVE/BELOW
l ACCEL
l BREAK
l COARSE/FINE*
l CPON/CPOFF
l DURATION*
l FLIP/NOFLIP
l LEFTY/RIGHTY
l NOOVERLAP/OVERLAP*
l NULL/NONULL*BRAKE
l SINGLE/MULTIPLE*
l SPEED*

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 122



Customizing the Calibration Routine

The following information is required only if you need to customize the calibration sequence.
Most AdeptMotion users do not need to do this.

When a CALIBRATE command or instruction is processed, the eV+ system loads the file
CAL_UTIL.V2 (see the dictionary page for the CALIBRATE command for details) and executes
a program contained in that file. The main calibration program then examines the SPEC data
for the robot to determine the name of the disk file that contains the specific calibration
program for the current robot, and the name of that program.

The standard routine used for AdeptMotion devices is stored on the system disk in
\CALIB\STANDARD.CAL (and the routine is named .standard.cal). That file is protected and
thus cannot be viewed. However, a read-only copy of the file is provided, in
\CALIB\STANDARD.V2, as a basis for developing a custom calibration routine that can then
be substituted for the standard file. (The name of the robot-specific calibration file and
program can be changed using the ACE Controller Config Tools..)

1See the SPEEDmonitor command and SPEED program instructions.

Motion Control Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 123



Tool Transformations
A tool transformation is a special transformation that is used to account for robot grippers (or
parts held in grippers) that are offset from the center of the robot tool flange. If a location is
taught using a part secured by an offset gripper, the actual location recorded is not the part
location, but the center of the tool flange to which the offset gripper is attached, as shown in
the following figure. If the same location is taught with a tool transformation in place, the
location recorded is the center of the gripper, not the center of the tool flange. This allows you
to change grippers and still have the robot reach the correct location. The following figure
shows the location of the robot when a location is taught and the actual location that is
recordedwhen no tool transformation is in effect. If the proper tool transformation is in effect
when the location is taught, the location recordedwill be the part location and not the center
of the tool flange.

Recording Locations

Tool transformations are most important when:

l Grippers are changed frequently

l The robot is vision guided

l Robot locations are loaded directly from CAD data

Tool Transformations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 124



Defining a Tool Transformation

A tool transformation can be defined using the Tool Offset wizard, which is available in the
Gripper object editor in the ACE software. The Tool Offset wizard will ask you questions about
the application, and then calculate the proper tool offset, based on your responses. For more
details, see the Gripper Editor topic in the ACE User's Guide.

Tool Transformations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 125



Summary of Motion Keywords
The following table summarizes the keywords associated with motion in eV+. For complete
details on any keyword, click on the keyword name in the table, or refer to the keyword
documentation available in the eV+ Language Reference Guide.

Keyword Type Function

ABOVE PI Request a change in the robot configuration during
the next motion so that the elbow is above the line
from the shoulder to the wrist.

ACCEL PI Set acceleration and deceleration for robot motions.

ACCEL RF Return the current robot acceleration or
deceleration setting.

ALIGN PI Align the robot tool Z axis with the nearest world
axis.

ALTER PI Specify the magnitude of the real-time path
modification that is to be applied to the robot path
during the next trajectory computation.

ALTOFF PI Terminate real-time path-modification mode (alter
mode).

ALTON PI Enable real-time path-modification mode (alter
mode), and specify the way in which ALTER
coordinate information will be interpreted.

AMOVE PI Position an extra robot axis during the next joint-
interpolated or straight-line motion.

APPRO PI Start joint-interpolated robot motion toward a
location defined relative to specified location.

APPROS PI Start straight-line robot motion toward a location
defined relative to specified location.

BASE TF Return the transformation value that represents
the translation and rotation set by the last BASE
command or instruction.

Motion Control Operations

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 126



Keyword Type Function

BELOW PI Request a change in the robot configuration during
the next motion so that the elbow is below the line
from the shoulder to the wrist.

BRAKE PI Abort the current robot motion.

BREAK PI Suspend program execution until the current
motion completes.

CALIBRATE PI Initialize the robot positioning system.

CLOSE PI Close the robot gripper immediately.

CLOSEI PI Close the robot gripper.

COARSE PI Enable a low-precision feature of the robot
hardware servo (see FINE).

CONFIG RF Return a value that provides information about the
robot's geometric configuration, or the status of the
motion servo-control features.

CP S Control the continuous-path feature.

CPOFF PI Instruct the eV+ system to stop the robot at the
completion of the next motion instruction (for all
subsequent motion instructions) and null position
errors.

CPON PI Instruct the eV+ system to execute the next
motion instruction (or all subsequent motion
instructions) as part of a continuous path.

DECOMPOSE PI Extract the (real) values of individual components of
a location value.

DELAY PI Cause robot motion to stop for the specified period
of time.

DEPART PI Start a joint-interpolated robot motion away from
the current location.

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 127



Keyword Type Function

DEPARTS PI Start a straight-line robot motion away from the
current location.

DEST TF Return a transformation value representing the
planned destination location for the current robot
motion.

DISTANCE RF Determine the distance between the points defined
by two location values.

DRIVE PI Move an individual joint of the robot.

DRY.RUN S Control whether or not eV+ communicates with the
robot.

DURATION PI Set the minimum execution time for subsequent
robot motions.

DURATION RF Return the current setting of one of the motion
DURATION specifications.

DX RF Return the X displacement component of a given
transformation value.

DY RF Return the Y displacement component of a given
transformation value.

DZ RF Return the Z displacement component of a given
transformation value.

FINE PI Enable a high-precision feature of the robot
hardware servo (see COARSE).

FLIP PI Request a change in the robot configuration during
the next motion so that the pitch angle of the robot
wrist has a negative value (see NOFLIP).

FORCE S Control whether or not the (optional) stop-on-force
feature of the eV+ system is active.

FRAME TF Return a transformation value defined by four
positions.

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 128



Keyword Type Function

HAND RF Return the current hand opening.

HAND.TIME P Establish the duration of the motion delay that
occurs during OPENI, CLOSEI, and RELAXI
instructions.

HERE PI Set the value of a transformation or precision-point
variable equal to the current robot location.

HERE TF Return a transformation value that represents the
current location of the robot tool point.

IDENTICAL RF Determine if two location values are exactly the
same.

INRANGE RF Return a value that indicates if a location can be
reached by the robot, and if not, why not.

INVERSE TF Return the transformation value that is the
mathematical inverse of the given transformation
value.

IPS CF Specify the units for a SPEED instruction as inches
per second.

LATCH TF Return a transformation value representing the
location of the robot at the occurrence of the last
external trigger.

LATCHED RF Return the status of the external trigger and of the
information it causes to be latched.

LEFTY PI Request a change in the robot configuration during
the next motion so that the first two links of a
SCARA robot resemble a human's left arm (see
RIGHTY).

MMPS CF Specify the units for a SPEED instruction as
millimeters per second.

MOVE PI Initiate a joint-interpolated robot motion to the
position and orientation described by the given

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 129



Keyword Type Function

location.

MOVES PI Initiate a straight-line robot motion to the position
and orientation described by the given location.

MOVEF PI Initiate a three-segment pick-and-place joint-
interpolated robot motion to the specified
destination, moving the robot at the fastest
allowable speed.

MOVESF PI Initiate a three-segment pick-and-place straight-
line robot motion to the specified destination,
moving the robot at the fastest allowable speed.

MOVET PI Initiate a joint-interpolated robot motion to the
position and orientation described by the given
location and simultaneously operate the hand.

MOVEST PI Initiate a straight-line robot motion to the position
and orientation described by the given location and
simultaneously operate the hand.

MULTIPLE PI Allow full rotations of the robot wrist joints (see
SINGLE).

NOFLIP PI Request a change in the robot configuration during
the next motion so that the pitch angle of the robot
wrist has a positive value (see FLIP).

NONULL PI Instruct the eV+ system not to wait for position
errors to be nulled at the end of continuous-path
motions (see NULL).

NOOVERLAP PI Disable the NOOVERLAP limit-error checking (see
OVERLAP.)

NORMAL TF Correct a transformation for any mathematical
round-off errors.

NOT.CALIBRATED P Indicate (or assert) the calibration status of the
robots connected to the system.

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 130



Keyword Type Function

NULL TF Return a null transformation value-one with all zero
components.

NULL PI Enable nulling of joint position errors.

OPEN PI Open the robot gripper.

OPENI PI Open the robot gripper immediately.

OVERLAP PI Generate a program error if a subsequent motion is
planned that causes a selectedmulti-turn axis to
move more than ±180 degrees to avoid a limit stop
(see NOOVERLAP).

#PDEST PF Return a precision-point value representing the
planned destination location for the current robot
motion.

#PHERE PF Return a precision-point value representing the
current location of the currently selected robot.

#PLATCH PF Return a precision-point value representing the
location of the robot at the occurrence of the last
external trigger.

POWER S Control or monitor the status of Robot Power.

#PPOINT PF Return a precision-point value composed from the
given components.

REACTI PI Initiate continuousmonitoring of a specified digital
signal. Automatically stop the current robot motion
if the signal properly transitions and optionally
trigger a subroutine call.

READY PI Move the robot to the READY location above the
workspace, which forces the robot into a standard
configuration.

RELAX PI Limp the pneumatic hand.

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 131



Keyword Type Function

RELAXI PI Limp the pneumatic hand immediately.

RIGHTY PI Request a change in the robot configuration during
the next motion so that the first two links of the
robot resemble a human's right arm (see LEFTY).

ROBOT S Enable or disable one robot or all robots.

RX TF Return a transformation describing a rotation about
the x axis.

RY TF Return a transformation describing a rotation about
the y axis.

RZ TF Return a transformation describing a rotation about
the z axis.

SCALE TF Return a transformation value equal to the
transformation parameter with the position scaled
by the scale factor.

SCALE.ACCEL S Enable or disable the scaling of acceleration and
deceleration as a function of program speed.

SCALE.ACCEL.ROT S Specify whether or not the SCALE.ACCEL switch
takes into account the Cartesian rotational speed
during straight-line motions.

SELECT PI Select the unit of the named device for access by
the current task.

SELECT RF Return the number of the currently selected unit of
the named device type.

SET PI Set the value of the location variable on the left
equal to the location value on the right of the equal
sign.

SHIFT TF Return a transformation value resulting from
shifting the position of the transformation
parameter by the given shift amounts.

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 132



Keyword Type Function

SINGLE PI Limit rotations of the robot wrist joint to the range -
180 degrees to +180 degrees (see MULTIPLE).

SOLVE.ANGLES PI Compute the robot joint positions (for the current
robot) that are equivalent to a specified
transformation.

SOLVE.FLAGS RF Return bit flags representing the robot configuration
specified by an array of joint positions.

SOLVE.TRANS PI Compute the transformation equivalent to a given
set of joint positions for the current robot.

SPEED PI Set the nominal speed for subsequent robot
motions.

SPEED RF Return one of the system motion speed factors.

STATE RF Return a value that provides information about the
robot system state.

TOOL PI Set the internal transformation used to represent
the location and orientation of the tool tip relative to
the tool mounting flange of the robot.

TOOL TF Return the value of the transformation specified in
the last TOOL command or instruction.

TRANS TF Return a transformation value computed from the
given X, Y, Z position displacements and y, p, r
orientation rotations.

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, CF: Conversion Factor

Summary of Motion Keywords

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 133





Input/Output Operations
The following topics are described in this chapter:

Digital I/O 137
Serial and Disk I/O Basics 139
Disk I/O 143
Advanced Disk Operations 148
Serial Line I/O 152
DeviceNet 156
Summary of I/O Operations 157

Input/Output Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 135



Input/Output Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 136



Digital I/O
Omron Adept controllers can communicate in a digital fashion with external devices using
the Digital I/O capability. Digital input reads the status of a signal controlled by user-installed
equipment. A typical digital input operation is to wait for a microswitch on a workcell
conveyor to close, indicating that an assembly is in the proper place. The WAIT instruction
and SIG function are used to halt program execution until a digital input channel signal
achieves a specified state. The program line:

WAIT SIG(1001)

halts program execution until a switching device attached to digital input channel 1001 is
closed. If signal 1002 is a sensor indicating a part feeder is empty, the code:

IF SIG(1002) THEN
CALL service.feeder()

END

checks the sensor state and calls a routine to service the feeder if the sensor is on.

The SIGNAL instruction is used for digital output. In the above example, the conveyor belt
may need to be stopped after digital input signal 1001 signals that a part is in place. The
instruction:

SIGNAL(-33)

turns off digital output signal 33, causing the conveyor belt connected to signal 33 to stop.
When processing on the part is finished and the part needs to be moved out of the work area,
the instruction:

SIGNAL(33)

turns the conveyor belt back on. The digital I/O channels must be installed before they can
be accessed by the SIG function or SIGNAL instruction. The SIG.INS function returns an
indication of whether a given signal number is available. The code line:

IF SIG.INS(33) THEN

can be used to ensure that a digital signal is available before you attempt to access it. The
monitor command IO displays the status of all digital I/O channels. For details on installing
digital I/O hardware, see the SmartController EX User's Guide.

Digital output channels are numbered from 1 to 512. Input channels are in the range 1001
to 1512. Multiple signals can be turned ON or OFF with a single instruction.

SIGNAL(33),(-34),(35)
or

SIGNAL(-33),(34),(-35)

Digital I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 137



High-Speed Interrupts

Normally, the digital I/O system is checked once every eV+ major cycle (every 16 ms). In
some cases, the delay or uncertainty resultingmay be unacceptable. Digital signals 1001 -
1004 can be configured as high-speed interrupts. When a signal configured as a high-speed
interrupt transitions, its state is read at system interrupt level, resulting in a maximum delay
of 1 ms. The ACE software Controller Configuration Tools are used to configure high-speed
interrupts.

Soft Signals

Soft signals are used primarily as global flags. The soft signals are in the range 2001 - 2512
and can be usedwith SIG and SIGNAL. A typical use of soft signals is for intertask
communication. See "REACT and REACTI" and the REACT_ instructions in the eV+ Language
Reference Guide.

Digital I/O and Third Party Boards

When eV+ starts, default blocks of system memory are assigned to the digital I/O system.
eV+ expects to find the digital I/O image at these locations. If you are using a third party
digital I/O board, you must remap these memory locations to correspond to the actual
memory location of the digital I/O image on your board. See the description of DEF.DIO in the
eV+ Language Reference Guide for details.

Digital I/O and DeviceNet

When eV+ starts, default blocks of system memory are assigned to the DeviceNet system.
eV+ expects to find the DeviceNet image at these locations. For additional information, see
DeviceNet on page 156.

Digital I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 138



Serial and Disk I/O Basics
The following sections describe the basic procedures that are common to both serial and disk
I/O operations. Disk I/O on page 143 covers disk I/O in detail. Serial Line I/O on page 152
covers serial I/O in detail.

Logical Units

All eV+ serial and disk I/O operations reference an integer value called a Logical Unit Number
or LUN. The LUN provides a shorthandmethod of identifying which device or file is being
referenced by an I/O operation. See the ATTACH command in the eV+ Language Reference
Guide for the default device LUN numbers.

Disk devices are different from all the other devices in that they allow files to be opened. Each
program task can have one file open on each disk LUN. That is, each program task can have
multiple files open simultaneously (on the same or different disk units).

NOTE: Nomore than 60 disk files can be open by the entire system at any time. That
includes files opened by programs and by the system monitor (for example, for the FCOPY
command). The error *Device not ready* results if an attempt is made to open a 61st file.

For details on accessing the graphics window LUNs, see Graphics Programming on page 161.

Error Status

Unlike most other eV+ instructions, I/O operations are expected to fail under certain
circumstances. For example, when reading a file, an error status is returned to the program
to indicate when the end of the file is reached. The program is expected to handle this error
and continue execution. Similarly, a serial line may return an indication of a parity error,
which should cause the program to retry a data transmission sequence.

For these reasons, eV+ I/O instructions normally do not stop program execution when an
error occurs. Instead, the success or failure of the operation is saved internally for access by
the IOSTAT real-valued function. For example, a reference to IOSTAT(5) returns a value
indicating the status of the last I/O operation performed on LUN 5. The values returned by
IOSTAT fall into one of following three categories:

Value Explanation

1 The I/O operation completed successfully.

0 The I/O operation has not yet completed. This value appears only if a
pre-read or no-wait I/O is being performed.

<0 The I/O operation completed with an error. The error code indicates

IOSTAT Return Values

Serial and Disk I/O Basics

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 139



Value Explanation

what type of error occurred.

The error message associated with a negative value from IOSTAT can be found in the eV+
Language Reference Guide. The $ERROR string function can be used in a program (or with
the LISTSmonitor command) to generate the text associated with most I/O errors.

It is good practice to use IOSTAT to check each I/O operation performed, even if you think it
cannot fail (hardware problems can cause unexpected errors).

NOTE:It is not necessary to use IOSTAT after use of a GETC function, since errors are
returned directly by the GETC function.

Attaching/Detaching Logical Units

In general, an I/O device must be attached using the ATTACH instruction before it can be
accessed by a program. Once a specific device (such as the manual control pendant) is
attached by one program task, it cannot be used by another program task. Most I/O requests
fail if the device associated with the referenced LUN is not attached.

Each program task has its own sets of disk and graphics logical units. Thus, more than one
program task can attach the same logical unit number in those groups at the same time
without interference.

A physical device type can be specified when the logical unit is attached. If a device type is
specified, it supersedes the default, but only for the logical unit attached. The specified device
type remains selected until the logical unit is detached.

An attach request can optionally specify immediate mode. Normally, an attach request is
queued, and the calling program is suspended if another control program task is attached to
the device. When the device is detached, the next attachment in the queue will be processed.
In immediate mode, the ATTACH instruction completes immediately-with an error if the
requested device is already attached by another control program task.

With eV+ systems, attach requests can also specify no-wait mode. This mode allows an
attach request to be queuedwithout forcing the program to wait for it to complete. The
IOSTAT function must then be used to determine when the attach has completed.

If a task is already attached to a logical unit, it will get an error immediately if it attempts to
attach again without detaching, regardless of the type of wait mode specified.

When a program is finishedwith a device, it detaches the device with the DETACH program
instruction. This allows other programs to process any pending I/O operations.

When a control program completes execution normally, all I/O devices attached by it are
automatically detached. If a program stops abnormally, however, most device attachments
are preserved. If the control program task is resumed and attempts to reattach these logical

Serial and Disk I/O Basics

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 140



units, it may fail because of the attachments still in effect. The KILL monitor command
forces a program to detach all the devices it has attached.

If attached by a program, the terminal andmanual control pendant are detachedwhenever
the program halts or pauses for any reason, including error conditions and single-stepmode.
If the program is resumed, the terminal and the manual control pendant are automatically
reattached if they were attached before the termination.

NOTE: It is possible that another program task could have attached the terminal or
manual control pendant. That would result in an error message when the stopped task is
restarted.

Reading

The READ instruction processes input from all devices. The basic READ instruction issues a
request to the device attached on the indicated LUN andwaits until a complete data record is
received before program execution continues. (The length of the last record read can be
obtainedwith the IOSTAT function with its second argument set to 2.)

The GETC real-valued function returns the next data byte from an I/O device without waiting
for a complete data record. It is commonly used to read data from the serial lines or the
system terminal. It also can be used to read disk files in a byte-by-byte manner.

Special mode bits to allow reading with no echo are supported for terminal read operations.
Terminal input also can be performed using the PROMPT instruction.

The GETEVENT instruction can be used to read input from the system terminal. This may be
useful in writing programs that operate on both graphics and nongraphics-based systems.

To read data from a disk device, a file must be open on the corresponding logical unit. The
FOPEN_ instructions open disk files.

Writing

TheWRITE instruction processes output to serial and disk devices and to the terminal. The
basic WRITE instruction issues a request to the device attached on the indicated LUN, and
waits until the complete data record is output before program execution continues.

WRITE instructions accept format control specifiers that determine how output data is
formatted, andwhether or not an end of recordmark should be written at the end of the
record.

Terminal output also can be performed using the PROMPT or TYPE instructions.

A file must be open using the FOPENW or FOPENA instructions before data can be written to
a disk device. FOPENW opens a new file. FOPENA opens an existing file and appends data to
that file.

Serial and Disk I/O Basics

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 141



Input Wait Modes

Normally, eV+ waits until the data from an input instruction is available before continuing
with program execution. However, the READ instruction and GETC function accept an
optional argument that specifies no-wait mode. In no-wait mode, these instructions return
immediately with the error status -526 (No data received) if there is no data available. A
program can loop and use these operations repeatedly until a successful read is completed or
until some other error is received.

The disk devices do not recognize no-wait mode on input and treat such requests as normal
input-with-wait requests.

Output Wait Modes

Normally, eV+ waits for each I/O operation to be completed before continuing to the next
program instruction. For example, the instruction:

TYPE /X50

causes eV+ to wait for the entire record of 50 spaces to be transmitted (about 50 milliseconds
with the terminal set to 9600 baud) before continuing to the next program instruction.

Similarly, WRITE instructions to serial lines or disk files will wait for any required physical
output to complete before continuing.

This waiting is not performed if the /N (no wait) format control is specified in an output
instruction. Instead, eV+ immediately executes the next instruction. The IOSTAT function
checks whether or not the output has completed. It returns a value of zero if the previous I/O
is not complete.

If a second output instruction for a particular LUN is encountered before the first no-wait
operation has completed, the second instruction automatically waits until the first is done.
This schememeans the no-wait output is effectively double-buffered. If an error occurs in the
first operation, the second operation is canceled, and the IOSTAT value is correct for the first
operation.

With eV+, the IOSTAT function can be usedwith a second argument of 3 to explicitly check
for the completion of a no-wait write.

Serial and Disk I/O Basics

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 142



Disk I/O

NOTE: The ACE software provides the following functionality through its graphical user
interface. Therefore, Omron Adept strongly recommends that you use the ACE software.

The following sections discuss disk I/O.

Attaching Disk Devices

A disk LUN refers to a local disk device, such as the SDI card in a SmartController EX system.
Also, a remote disk may be accessed via a network.

The type of device to be accessed is determined by the DEFAULT command or the ATTACH
instruction. If the default device type set by the DEFAULT command is not appropriate at a
particular time, the ATTACH instruction can be used to override the default. The syntax of
the ATTACH instruction is:

ATTACH (lun, mode) $device

See the documentation for the ATTACH program instruction for the mode options and
possible device names. The instruction:

ATTACH (dlun, 4) "DISK"

attaches to an available disk logical unit and returns the number of the logical unit in the
variable dlun, which can then be used in other disk I/O instructions.

If the device name is omitted from the instruction, the default device for the specified LUN is
used. Omron Adept recommends that you always specify a device name with the ATTACH
instruction. (The device SYSTEM refers to the device specified with the DEFAULTmonitor
command.)

Once the attachment is made, the device cannot be changed until the logical unit is
detached. However, any of the units available on the device can be specified when opening a
file. For example, the eV+ DISK units are A, C and D. After attaching a DISK device LUN, a
program can open and close files on either of these disk units before detaching the LUN.

Disk I/O and the Network File System (NFS)

In addition to local disk devices, an Omron Adept system equippedwith Ethernet hardware
and the TCP/IP license can access remote disk drives in the same fashion as local disks.

The following sections describe accessing a disk drive regardless of whether it is a local drive
or a remotely-accessed drive.

Disk Directories

The FOPEN_ instructions, which open disk files for reading andwriting, use directory paths in
the same fashion as the monitor commands LOAD, STORE, etc. Files on a disk are grouped in

Disk I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 143



directories. If a disk is thought of as a file cabinet, then a directory can be thought of as a
drawer in that cabinet. Directories allow files (the file folders in our file cabinet analogy) that
have some relationship to each other to be grouped together and separated from other files.
See the chapter Using Files in the eV+ Operating System User's Guide for more details on the
directory structure.

Disk File Operations

All I/O requests to a disk device are made to a file on that device. A disk file is a logical
collection of data records1 on a disk. Each disk file has a name, and all the names on a disk are
stored in a directory on the disk. The FDIRECTORYmonitor command displays the names of
the files on a disk.

A disk file can be accessed either sequentially, where data records are accessed from the
beginning of the file to its end, or randomly, where data records are accessed in any order.
Sequential access is simplest and is assumed in this section. Random access is described later
in this chapter.

Opening a Disk File

Before a disk file can be opened, the disk the file is on must be ATTACHed.

The FOPEN_ instructions open disk files (and file directories). These instructions associate a
LUN with a disk file. Once a file is open, the READ, GETC, andWRITE instructions access the
file. These instructions use the assigned LUN to access the file so that multiple files may be
open on the same disk and the I/O operations for the different disk files will not affect each
other.2

The simplified syntax for FOPEN_ is:

FOPEN_ (lun)file_spec

where:

lun logical unit number used in the ATTACH instruction

file_spec file specification in the form, unit:path\filename.ext

unit is an optional disk unit name. The standard local disk
units are A, C, and D. If no unit is specified, the colon
also must be omitted. Then the default unit (as
determined by the DEFAULT command) is assumed.

path\ is an optional directory path string. The directory path
is defined by one or more directory names, each
followed by a \ character. The actual directory path is
determined by combining any specified path with the
path set by the DEFAULT command. If path is

Disk I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 144



precededwith a \, the path is absolute. Otherwise, the
path is relative and is added to the current DEFAULT
path specification. (If unit is specified and is different
from the default unit, the path is always absolute.)

filename is a name with 1 to 8 characters, which is used as the
name of the file on the disk.

ext is the filename extension-a string with 0 to 3
characters, which is used to identify the file type.

The four open commands are:

1. Open for read only (FOPENR). If the disk file does not exist, an error is returned. No
write operations are allowed, so data in the file cannot be modified.

2. Open for write (FOPENW). If the disk file already exists, an error is returned.
Otherwise, a new file is created. Both read andwrite operations are allowed.

3. Open for append (FOPENA). If the disk file does not exist, a new file is created.
Otherwise, an existing file is opened. No error is returned in either case. A sequential
write or a random write with a zero record number appends data to the end of the file.

4. Open for directory read (FOPEND). The last directory in the specified directory path is
opened. Only read operations are allowed. Each record read returns an ASCII string
containing directory information. Directories should be opened using variable-length
sequential-access mode.

While a file is open for write or append access, another control program task cannot access
that file. However, multiple control program tasks can access a file simultaneously in read-
only mode.

Writing to a Disk

The instruction:

WRITE (dlun) $in.string

writes the string stored in $in.string to the disk file open on dlun. The instruction:

error = IOSTAT(dlun)

returns any errors generated during the write operation.

Reading From a Disk

The instruction:

READ (dlun) $in.string

Disk I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 145



reads (from the open file on dlun) up to the first CR/LF (or end of file if it is encountered) and
store the result in $in.string. When the end of file is reached, eV+ error number -504
Unexpected end of file is generated. The IOSTAT() function must be used to recognize this
error and halt reading of the file:

DO
READ (dlun) $in.string
TYPE $in.string

UNTIL IOSTAT(dlun) == -504

The GETC function reads the file byte by byte if you want to examine individual bytes from
the file (or if the file is not delimited by CR/LFs).

Detaching

When a disk logical unit is detached, any disk file that was open on that unit is automatically
closed. However, error conditions detected by the close operation may not be reported.
Therefore, it is good practice to use the FCLOSE instruction to close files and to check the
error status afterwards. FCLOSE ensures that all buffered data for the file is written to the
disk, and updates the disk directory to reflect any changesmade to the file. The DETACH
instruction frees up the logical unit. The following instructions close a file and detach a disk
LUN:

FCLOSE (dlun)
IF IOSTAT(dlun) THEN

TYPE $ERROR(IOSTAT(dlun))
END

DETACH (dlun)

When a program completes normally, any open disk files are automatically closed. If a
program stops abnormally and execution does not proceed, the KILL monitor command
closes any files left open by the program.

CAUTION: While a file is open on a floppy disk, do not replace the
floppy disk with another disk: Data may be lost and the new disk may
be corrupted.

Disk I/O Example

The following example creates a disk file, writes to the file, closes the file, reopens the file, and
reads back its contents.

AUTO dlun, i
AUTO $file.name
$file.name = "data.tst"

; Attach to a disk logical unit
ATTACH (dlun, 4) "DISK"

Disk I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 146



IF IOSTAT(dlun) < 0 GOTO 100

; Open a new file and check status
FOPENW (dlun) $file.name
IF IOSTAT(dlun) < 0 GOTO 100

; Write the text
FOR i = 1 TO 10

WRITE (dlun) "Line "+$ENCODE(i)
IF IOSTAT(dlun) < 0 GOTO 100

END

; Close the file
FCLOSE (dlun)
IF IOSTAT(dlun) < 0 GOTO 100

; Reopen the file and read its contents
FOPENR (dlun) $file.name
IF IOSTAT(dlun) < 0 GOTO 100
READ (dlun) $txt
WHILE IOSTAT(dlun) > 0 DO

TYPE $txt
READ (dlun) $txt

END ;End of file or error
IF (IOSTAT(dlun) < 0) AND (IOSTAT(dlun) <> -504) THEN

100 TYPE $ERROR(IOSTAT(dlun)) ;Report any errors
END
FCLOSE (dlun) ;Close the file
IF IOSTAT(dlun) < 0 THEN

TYPE $ERROR(IOSTAT(dlun))
END
DETACH (dlun) ;Detach the LUN

1A variable-length record is a text string terminated by a CR/LF (ASCII 13/ASCII 10).

2When accessing files on a remote system, the unit can be any name string, and the file
name and extension can be any arbitrary string of characters.

Disk I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 147



Advanced Disk Operations
This section introduces additional parameters to the FOPEN and FOPENR program
instructions. For details, see the FOPEN and FOPENR documentation in the eV+ Language
Reference Guide for details.

Variable-Length Records

The default disk file access mode is variable-length recordmode. In this mode, records can
have any length (up to a maximum of 512 bytes) and can cross the boundaries of 512-byte
sectors. The end of a record is indicated by a Line-Feed character (ASCII 10). Also, the end of
the file is indicated by the presence of a Ctrl+Z character (26 decimal) in the file. Variable-
length records should not contain any internal Line-Feed or Ctrl+Z characters as data. This
format is used for loading and storing eV+ programs, and is compatible with the IBM PC
standard ASCII file format.

Variable-length recordmode is selected by setting the record length parameter in the
FOPEN_ instruction to zero, or by omitting the parameter completely. In this mode,WRITE
instructions automatically append Return (ASCII 13) and Line-Feed characters to the output
data-which makes it a complete record. If the /S format control is specified in an output
specification, no Return/Line-Feed is appended. Then any subsequent WRITE will have its
data concatenated to the current data as part of the same record. If the /Cn format control is
specified, n Return/Line-Feeds are written, creatingmultiple records with a single WRITE.

When a variable-length record is read using a READ instruction, the Return/Line-Feed
sequence at the end is removed before returning the data to the eV+ program. If the GETC
function is used to read from a disk file, all characters are returned as they appear in the file-
including Return, Line-Feed, and Ctrl+Z characters.

Fixed-Length Records

In fixed-length recordmode, all records in the disk file have the same specific length. Then
there are no special characters embedded in the file to indicate where records begin or end.
Records are contiguous andmay freely cross the boundaries of 512-byte sectors.

Fixed-length recordmode is selected by setting the record length parameter in the FOPEN_
instruction to the size of the record, in bytes. WRITE instructions then pad data records with
zero bytes or truncate records as necessary to make the record length the size specified. No
other data bytes are appended, and the /S format control has no effect.

In fixed-length mode, READ instructions always return records of the specified length. If the
length of the file is such that it cannot be divided into an even number of records, a READ of
the last record will be paddedwith zero bytes to make it the correct length.

Sequential-Access Files

Normally, the records within a disk file are accessed in order from the beginning to the end
without skipping any records. Such files are called sequential files. Sequential-access files

Advanced Disk Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 148



may contain either variable-length or fixed-length records.

Random-Access Files

In some applications, disk files need to be read or written in a nonsequential or random
order. eV+ supports random access only for files with fixed-length records. Records are
numbered starting with 1. The position of the first byte in a random-access record can be
computed by:

byte_position = 1 + (record_number -1) * record_length

Random access is selected by setting the random-access bit in the mode parameter of the
FOPEN_ instruction. A nonzero record length must also be specified.

A specific record is accessed by specifying the record number in a READ or WRITE instruction.
If the record number is omitted, or is zero, the record following the one last accessed is used.
(See the FOPEN  documentation.)

Buffering and I/O Overlapping

All physical disk I/O occurs as 512-byte sector reads andwrites. Records are unpacked from
the sector buffer on input, and additional sectors are read as needed to complete a record. To
speed up read operations, eV+ automatically issues a read request for the next sector while
it is processing the current sector. This request is called a preread. Preread is selected by
default for both sequential-access and random-access modes. It can be disabled by setting a
bit in the mode parameter of the FOPEN_ instruction. If prereads are enabled, opening a file
for read access immediately issues a read for the first sector in the file.

Preread operations may actually degrade system performance if records are accessed in truly
random order, since sectors would be read that would never be used. In this case, prereads
should be disabled and the FSEEK instruction should be used to initiate a preread of the next
record to be used.

The function IOSTAT(lun, 1) returns the completion status for a pending preread or FSEEK
operation.

On output, records are packed into sector buffers andwritten after the buffers are filled. If
no-wait mode is selected for a write operation by using the /N format control, the WRITE
instruction does not wait for a sector to be written before allowing program execution to
continue.

In random-access mode, a sector buffer is not normally written to disk until a record not
contained in that buffer is accessed. The FEMPTY instruction empties the current sector
buffer by immediately writing it to the disk.

A file may be opened in nonbufferedmode, which ismuch slower than normal buffered
mode, but it guarantees that information that is written will not be lost due to a system
crash or power failure. This mode was intended primarily for use with log files that are left

Advanced Disk Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 149



opened over an extended period of time and intermittently updated. For these types of files,
the additional (significant) overhead of this mode is not as important as the benefit.

When a file is being created, information about the file size is not stored in the disk directory
until the file is closed. Closing a file also forces any partial sector buffers to be written to the
disk. Note that aborting a program does not force files associated with it to be closed. The files
are not closed (and the directory is not updated) until a KILL command is executed or until
the aborted program is executed again.

Disk Commands

There are several disk-orientedmonitor commands that do not have a corresponding
program instruction. The FCMND instruction must be used to perform the following actions
from within a program:

l Rename a file

l Format a disk

l Create a subdirectory

l Delete a subdirectory

The MCS instruction can be used to issue an FCOPY command from within a program.

FCMND is similar to other disk I/O instructions in that a logical unit must be attached and the
success or failure of the command is returned via the IOSTAT real-valued function. For
details, see the documentation for the FCMND program instruction.

The FCMND instruction is described in detail in the eV+ Language Reference Guide. See the
MV Controller User's Guide

Accessing the Disk Directories

The eV+ directory structure is identical to that used by the IBM PC DOS operating system
(version 2.0 and later). For each file, the directory structure contains the file name,
attributes, creation time and date, and file size. Directory entries may be read after
successfully executing an FOPEND instruction.

Each directory record returned by a READ instruction contains an ASCII string with the
information shown in the following table.

Byte Size Description

1-7 7 Attribute codes, paddedwith blanks on
right

Disk Directory Format

Advanced Disk Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 150



Byte Size Description

9 1 ASCII tab character (9 decimal)

10-19 10 ASCII file size, in sectors, right justified

20 1 ASCII tab character (9 decimal)

20-28 9 File revision date in the format dd-mm-
yy

29 1 ASCII tab character (9 decimal)

30-38 8 File revision time in the format
hh:mm:ss

39 1 ASCII tab character (9 decimal)

40- 8 ASCII file name and extension (size
depends on file name size)

The following characters are possible in the file attribute code field of directory entries:

Character Meaning

D Entry is a subdirectory

L Entry is the volume label (not supported by eV+)

P File is protected and cannot be read or modified

R File is read-only and cannot be modified

S File is a system file

File Attribute Codes

The attribute field is blank if no special attributes are indicated.

The file revision date and time fields are blank if the system date and time had not been set
when the file was created or last modified. (The system date and time are set with the TIME
monitor command or program instruction.)

Advanced Disk Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 151



Serial Line I/O
The eV+ controller has several serial lines that are available for general use. This section
describes how these lines are used for simple serial communications.

I/O Configuration

In addition to selecting the protocol to be used, the controller configuration program allows
the baud rate and byte format for each serial line to be defined. Once the serial line
configuration is defined on the eV+ system boot disk, the serial lines are set up automatically
when the eV+ system is loaded and initialized. The following byte formats are available:

l Byte data length of 7 or 8 bits, not including parity

l One or two stop bits

l Parity disabled or enabled

l Odd or even parity (adds 1 bit to byte length)

The following baud rates are available:

110, 300, 600, 1200, 2400, 4800, 7200, 9600, 19200, 38400

In addition, eV+ provides automatic buffering with optional flow control for each serial line.
The I/O configuration program can be used to enable output flow control with which eV+
recognizes Ctrl+S (19 decimal) and Ctrl+Q (17 decimal) and uses them to suspend and
resume, respectively, serial line output. The configuration program can also enable input flow
control, with which eV+ generates Ctrl+S and Ctrl+Q to suspend and resume, respectively,
input from an external source. With Ctrl+S and Ctrl+Q flow control disabled, all input and
output is totally transparent, and all 8-bit data bytes can be sent and received.

Serial lines may also be configured to use hardware modem control lines for flow control. (The
RTS/CTS lines must be installed in the modem cable-standardmodem cables often leave
these lines out.) For pin assignments, see the documentation on serial I/O connectors in the
SmartController EX User's Guide.

Attaching/Detaching Serial I/O Lines

Serial lines must be attached before any I/O operations can take place. Note that only one
control program task can be attached to a single serial line at any one time. All other
attachment requests will queue or fail, depending on the setting of the mode parameter in
the ATTACH program instructions.

Attaching or detaching a serial line automatically stops any output in progress and clears all
input buffers. Serial lines are not automatically detached from a program unless it completes
with success, so it is possible to single-step through a program or proceed from a PAUSE
instruction without loss of data.

Serial Line I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 152



Input Processing

Input data is received by eV+ according to the byte format specified by the I/O configuration
program. The size of the buffer can be set with the ACE software Controller Configuration
Tools. Data errors such as parity or framing errors are also buffered and are returned in the
proper order.

The possible data errors from the serial input lines are:

-522 *Data error on device*

A data byte was receivedwith incorrect parity, or the byte generated a
framing error.

-524 *Communications overrun*

Data bytes were received after the input buffer was full, or faster than
eV+ could process them.

-526 *No data received*

If data is expected, continue polling the serial line.

-504 *Unexpected end of file*

A BREAK was received from the remote device.

Serial line input data is normally read using the GETC function, since it allows the most
flexible response to communications errors. The READ instruction also can be used provided
that input data is terminated by a Line-Feed character (10 decimal).

eV+ does not support input echoing or input line editing for the serial lines.

Output Processing

All serial line output is performed using the WRITE instruction. All binary data (including
NULL characters) is output without conversion. If the serial line is configured to support
parity, a parity bit is automatically appended to each data byte.

By default, the WRITE instruction appends a Return character (13 decimal) and a Line-Feed
character (10 decimal) to each data record unless the /S format control is specified in the
instruction parameter list.

If output flow control is enabled and output has been suspended by a Ctrl+S character from
the remote device, a WRITE request may wait indefinitely before completing.

Serial I/O Examples

The first example attaches to a serial line and performs simple WRITEs and READs on the
line:

Serial Line I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 153



.PROGRAM serial.io()
; ABSTRACT: Example program to write and read lines of
; text to and from serial port 1 on the SIO module.

AUTO slun ;Logical unit to communicate to serial port
AUTO $text

; Attach to a logical unit(open communications path
; to serial port)

ATTACH (slun, 4) "SERIAL:1"
IF IOSTAT(slun) < 0 GOTO 100

; Write text out to the serial port

WRITE (slun) "Hello there! "
IF IOSTAT(slun) < 0 GOTO 100

; Read a line of text from the serial port. The incoming
; line of text must be terminated by a carriage return and
; line feed. The READ instruction will wait until a line of
; text is received.

READ (slun) $text
IF IOSTAT(slun) < 0 GOTO 100

; Display any errors

100 IF (IOSTAT(slun) < 0) THEN
TYPE IOSTAT(slun), " ", $ERROR(IOSTAT(slun))

END

DETACH (slun) ;Detach from logical unit
.END

The next example reads data from a serial line using the GETC function with no-wait mode.
Records that are received are displayed on the terminal. In this program, data records on the
serial line are assumed to be terminated by an ETX character, which is not displayed. An
empty record terminates the program.

.PROGRAM display()
; ABSTRACT: Monitor a serial line and read data when
; available

AUTO $buffer, c, done, etx, ienod, line
etx = 3 ;ASCII code for ETX character
ienod = -526 ;Error code for no data
ATTACH (line, 4) "SERIAL:1"
IF IOSTAT(line) < 0 GOTO 90 ;Check for errors
$buffer = "" ;Initialize buffer to empty
done = FALSE ;Assert not done
DO

CLEAR.EVENT
c = GETC(line,1) ;Read byte from the ser. line

Serial Line I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 154



WHILE c == ienod DO ;While there is no data...
WAIT.EVENT 1 ;Wait for an event
CLEAR.EVENT
c = GETC(line,1) ;Read byte from the ser. line

END
IF c < 0 GOTO 90 ;Check for errors
IF c == etx THEN ;If ETX seen...

TYPE $buffer, /N ;Type buffer
done = (LEN($buffer) == 0) ;Done if buffer length is 0
$buffer = "" ;Set buffer to empty

ELSE
$buffer = $buffer+$CHR(c) ;Append next byte

;to buffer

END
UNTIL done ;Loop until empty buffer seen

GOTO 100 ;Exit
90 TYPE "SERIAL LINE I/O ERROR: ", $ERROR(IOSTAT(line))

PAUSE
100 DETACH (line)

RETURN
.END

Serial Line I/O

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 155



DeviceNet
Omron Adept supports DeviceNet and DeviceNet protocols on the SmartController. For more
information on the DeviceNet environment, hardware and software configuration and eV+
programming for DeviceNet components, select a topic from the table below.

To... Refer to...

Learn about the DeviceNet
Environment

Adept SmartController EX User's Guide

Configure DeviceNet hardware Adept SmartController EX User's Guide

Configure DeviceNet software Configuring the Controller as a DeviceNet Slave

Change DeviceNet Configuration

Managing DeviceNet
components from the eV+
operating system and program
environment

DEVICENET  Used for reading DeviceNet
status.

DN.THROTTLE On SmartController
systems, allows you to
specify the number of nodes
to be polled by the DeviceNet
drivers to increase CPU
availability.

ATTACH Makes a device available for
use by an application
program.

FCMND Generates a device-specific
command to the
input/output device specified
by the logical unit. The
FCMND documentation
provides the DeviceNet
command codes and the
format of DeviceNet status
information that is available
to programs.

DeviceNet

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 156



Summary of I/O Operations
The following table summarizes the eV+ I/O instructions:

Keyword Type Function

ATTACH PI Make a device available for use by the application program.

BITS PI Set or clear a group of digital signals based on a value.

BITS RF Readmultiple digital signals and return the value
corresponding to the binary bit pattern present on the
signals.

$DEFAULT SF Return a string containing the current system default
device, unit, and directory path for disk file access.

DEF.DIO PI Assign third-party digital I/O boards to standard eV+ signal
numbers, for use by standard eV+ instructions, functions,
andmonitor commands.This instruction requires the Third-
Party Board Support license.

DETACH PI Release a specified device from the control of the application
program.

DEVICE PI Send a command or data to an external device and,
optionally, return data back to the program. (The actual
operation performed depends on the device referenced.)

DEVICE RF Return a real value from a specified device. The value may
be data or status information, depending upon the device
and the parameters.

DEVICES PI Send commands or data to an external device and
optionally return data. The actual operation performed
depends on the device referenced.

FCLOSE PI Close the disk file, graphics window, or graphics icon
currently open on the specified logical unit.

FCMND PI Generate a device-specific command to the input/output
device specified by the logical unit.

System Input/Output Operations

Summary of I/O Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 157



Keyword Type Function

FEMPTY PI Empty any internal buffers in use for a disk file or a graphics
window by writing the buffers to the file or window if
necessary.

FOPENR PI Open a disk file for read-only.

FOPENW PI Open a disk file for read-write.

FOPENA PI Open a disk file for read-write-append.

FOPEND PI Open a disk directory for read.

FSEEK PI Position a file open for random access and initiate a read
operation on the specified record.

GETC RF Return the next character (byte) from a device or input
record on the specified logical unit.

IOSTAT RF Return status information for the last input/output
operation for a device associated with a logical unit.

PROMPT PI Display a string on the system terminal andwait for
operator input.

READ PI Read a record from an open file or from an attached device
that is not file oriented.

RESET PI Turn off all the external output signals.

SETDEVICE PI Initialize a device or set device parameters. (The actual
operation performed depends on the device referenced.)

SIG RF Return the logical AND of the states of the indicated digital
signals.

SIG.INS RF Return an indication of whether or not a digital I/O signal is
configured for use by the system, or whether or not a
software signal is available in the system.

SIGNAL PI Turn on or off external digital output signals or internal
software signals.

Summary of I/O Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 158



Keyword Type Function

TYPE PI Display the information described by the output
specifications on the system terminal. A blank line is output
if no argument is provided.

WRITE PI Write a record to an open file or to an attached device that
is not file oriented.

PI: Program Instruction, RF: Real-Valued Function, P: Parameter, SF: String
Function

Summary of I/O Operations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 159





Graphics Programming

NOTE: This feature is not supported in eV+ version v2.x.

The ACE software provides a graphical interface for programming your motion (and vision)
system. Further, the User Interface Designer, which is includedwith the ACE software,
provides a complete tool set for building custom interfaces for your applications. Therefore,
Omron Adept strongly recommends that you use the ACE software for this functionality. For
more details, see the chapter User Interface Designer in the ACE User's Guide.

Graphics Programming

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 161



Creating Windows
eV+ communicates to windows through logical units, with logical unit numbers (LUNs) 20 to
23 reserved for window use. (Each task has access to its own set of four LUNs.) The basic
strategy for using a window (or any of the graphics instructions) is:

1. ATTACH to a logical unit

2. FOPEN a window on the logical unit

3. Perform the window's tasks (or graphics operations)

4. FCLOSE the window

5. FDELETE the window

6. DETACH from the logical unit

ATTACH Instruction

The ATTACH instruction sets up a communications path so a window can be written to and
read from. The syntax for the ATTACH instruction is:

ATTACH (glun, 4) "GRAPHICS"

glun variable that receives the number of the attached graphics logical unit.
(All menus and graphics commands that take place within a window will
also use glun.)

FOPEN Instruction

FOPEN creates a new window or reselects an existing window for input and output. When a
window is created, its name is placed in the list of available windows displayedwhen the
adept logo is clicked on. The simplified syntax for FOPEN is:

FOPEN (glun) "window_name /MAXSIZE width height"

glun The logical unit already ATTACHed to.

window_
name

The title that appears at the top of the window. Also used to close and
select the window.

width/height Specify the largest size the window can be opened to.

This instruction will give you a window with all the default attributes. See the description of
FOPEN and FSET in the eV+ Language Reference Guide for details on how to control the
attributes of a window e6 for example, background color, size, and scrolling.

CreatingWindows

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 162



FCLOSE Instruction

FCLOSE closes a window to input and output (but does not erase it or remove it from
memory). The syntax for FCLOSE is:

FCLOSE (glun)

glun The logical unit number specified in the FOPEN instruction that opened
the window.

FDELETE Instruction

FDELETE removes a closed, attachedwindow from the screen and from graphics memory.
The syntax for FDELETE is

FDELETE (glun) "window_name"

glun The same values as specified in the FOPEN instruction that created the
window.

DETACH Instruction

DETACH frees up a LUN for use by a subsequent ATTACH instruction. The syntax for DETACH
is:

DETACH (glun)

glun The LUN specified in a previous ATTACH instruction.

Custom Window Example

This section of code will create and delete a window:

AUTO glun ; Graphics window LUN

ATTACH (glun, 4) "GRAPHICS" ; Attach to a window LUN

; Open the window "Test" with a maximum size of
; 400 x 300 pixels

FOPEN(glun) "Test","/MAXSIZE 400 300"

; Your code for processing within the window
; goes here; e.g:

GTYPE (glun) 10, 10, "Hello!"

; When the window is no longer needed, close and delete the
; window and detach from the logical unit

FCLOSE (glun)

CreatingWindows

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 163



FDELETE (glun) "Test"
DETACH (glun)

CreatingWindows

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 164



Monitoring Events
The key to pointing-device-driven programming is an event loop. In an event loop, you wait
for an event (from the keyboard or pointer device) andwhen the correct event occurs in the
proper place, your program initiates some appropriate action. eV+ can monitor many
different events including button up, button down, double click, open window, andmenu
select. The example code in the following sections will use event 2, button up, and event 14,
menu select. For details on the different events that can be monitored, see the
documentation for the GETEVENT program instruction in the eV+ Language Reference
Guide.

The basic strategy for an event loop is:

1. Wait for an event to occur.

2. When an event is detected:

a. If it is the desired event, go to step 3

b. Otherwise, return to step 1.

3. Check the data from the event array (not necessary for event 14, menu select):

a. If it is appropriate, go to step 4.

b. Otherwise, return to step 1.

4. Initiate appropriate action.

5. Return to step 1.

GETEVENT Instruction

The instruction that initiates monitoring of pointer device and keyboard events is GETEVENT.
Its simplified syntax is:

GETEVENT (lun) event[]

lun Logical unit number of the window to be monitored.

event[] Array into which the results of the detected event are stored. The
value stored in event[0] indicates which event was detected.

If event[0] is 2, a button-up event was detected, in which case:

event[1] indicates the number of the button pressed. (For two-button
devices, 2 = left button, 4 = right button. For three-button
devices, 1 = left button, 2 = middle button, 4 = right button.)

event[2] is the X value of the pointer location of the click.

event[3] is the Y value of the pointer location of the click.

Monitoring Events

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 165



If event[0] is 14, a click on amenu bar selection was detected, in which case:

If event[1] is 0, a click has been made to the top-level menu bar. In this case,
an FSET instruction must be executed to display the pull-down
options under the menu bar selection and event[2] is the number
(from left to right) of the menu bar option selected.

If event[1] is 1, then a selection from a pull-down menu has been made and
event[2] is the number of the pull-down option selected.

You cannot use the GETEVENT instruction to specify which events to monitor. It monitors all
the events that are enabled for the window. For details on using the /EVENT argument for
enabling and disabling the monitoring of various events, see the documentation for the
FOPEN and FSET program instructions in the eV+ Language Reference Guide.

FSET Instruction

FSET is used to alter the characteristics of a window openedwith an FOPEN instruction, and
to display pull-down menus. We are going to describe only the use of FSET to create the top-
level menu bar, create the pull-down menu selections below the top-level menu, and initiate
monitoring of events. The instruction for displaying a top-level menu is:

FSET (glun) " /MENU 'item1' 'item2' ... 'item10' "

glun is the logical unit of the window the menu is displayed in.

item1-item10 are the menu titles for a top-level bar menu. The items appear
from left to right.

The instruction to display a pull-down menu (called when event[0] = 14 and event[1] = 0) is:

FSET (glun) "/PULLDOWN", top_level#," 'item1' ... ' itemn '"

top_level# is the number of the top-level selection the pull-down menu is to appear
under.

item1-
itemn

are the menu items in the pull-down menu. The items appear from top
to bottom.

The relationship between these two uses of FSET will become clear when we actually build a
menu structure.

The basic FSET instruction for monitoringmenu andmouse events is:

FSET (glun) "/EVENT BUTTON MENU"

Monitoring Events

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 166



Building a Menu Structure
The strategy for implementing amenu is:

1. Declare the top-level bar menu.

2. Start a loopmonitoring event 14 (menu selection).

3. When event 14 is detected, check to see if the mouse event was on the top-level bar
menu or on a pull-down option.

4. If the event was a top-level menu selection, then display the proper pull-down
options.

5. If the event was a pull-down selection, use nested CASE structures to take
appropriate action based on the selections made to the top-level menu and its
corresponding pull-down menu.

Menu Example

This code segment will implement a menu structure for a window open on glun:

; Set the top-level menu bar and enable monitoring of events
FSET (glun) "/menu 'Menu 1' 'Menu 2' 'Menu 3'"
FSET (glun) "/event button menu"

; Define the strings for the pull-down menus
$menu[1] = "'Item 1-1' 'Item 1-2'"
$menu[2] = "'Item 2-1' 'Item 2-2' 'Item 2-3'"
$menu[3] = "'Quit'"

; Set variable for event to be monitored
wn.e.menu = 14

; Start the processing loop
quit = FALSE
DO

GETEVENT (glun) event[]
IF event[0] == wn.e.menu THEN

;The menu event (14) has two components; a button-down component
; corresponding to a click on a menu bar selection, and a
; button-up component corresponding to the pull-down selection
; made when the button is released.
; After the first component (pointer down on the menu bar),
; event[1] will be 0 and event[2] will have the number of the
; menu bar selection.

; Check to see if event[1] is 0, indicating a top-level menu select
IF event[1] == 0 THEN

; Use the value in event[2] to select a pull-down menu
FSET (glun) "/pulldown", event[2], $menu[event[2]]

; Else, execute the appropriate code for each menu selection
ELSE

; If event[1] is not 0, then the button has been released on a

Building a Menu Structure

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 167



; pull-down selection and:
; event[1] will have the value of the top-level selection (menu)
; event[2] will have the value of the pull-down selection (item)

menu = event[1]
item = event[2]

; The outer CASE structure checks the top-level menu selection
; The inner CASE structure checks the item selected from the pull-down

CASE menu OF
VALUE 1: ;Menu 1

CASE item OF
VALUE 1:

;code for Item 1-1
VALUE 2:

;code for Item 1-2
END

VALUE 2: ;Menu 2
CASE item OF

VALUE 1:
;code for Item 2-1

VALUE 2:
;code for Item 2-2

VALUE 3:
;code for Item 2-3

END
VALUE 3: ;Menu 3

CASE item OF
VALUE 1:

quit = TRUE ;time to quit
END

END ; case menu of
END ; if event[1]

END ; if event[0]
UNTIL quit

.END

Implementing the above code and then clicking on Menu 2 would result in the window shown
in the following figure.

Building a Menu Structure

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 168



Sample Menu

Defining Keyboard Shortcuts

If you are using AdeptWindows, you can create keyboard shortcuts on menu and pull-down
items by placing an ampersand (&) before the desired letter. For example:

FSET(lun) "/menu '&File' '&Edit'"

In this example, the letters F and E are used as shortcuts when pressedwith the ALT key.
Thus, pressing ALT+F displays the File menu and ALT+E displays the Edit menu. The letters
F and E are underlined on the menu or pull-down item to indicate the keyboard shortcut.

Building a Menu Structure

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 169



Creating Buttons
Creating a button in a window is a simple matter of placing a graphic representing your
button on the screen, and then looking to see if a mouse event occurred within the confines
of that graphic.

GPANEL Instruction

The GPANEL instruction is useful for creating standard button graphics. The syntax for
GPANEL is:

GPANEL (glun, mode) x, y, dx, dy

glun The logical unit of the window the button is in.

mode is replacedwith:

0 indicating a raised, ungrooved panel

2 indicating a sunken, ungrooved panel

4 indicating a raised, grooved panel

6 indicating a sunken, grooved panel

(Adding 1 to any of the mode values fills the panel with foreground
color.)

x y Coordinates of the upper left corner of the button.

dx dy Width and height of the button.

Button Example

This code segment places a button on the screen and then monitor a button-up event at that
button (the logical unit the button is accessingmust be ATTACHed and FOPENed):

; Initialize monitoring of button events for a button
FSET (glun) "/event button"

; Draw a 45x45 pixel panel at window coordinates 100,100
GPANEL (glun, 0) 100, 100, 45, 45

; Put a label in the button
GTYPE (glun) 102, 122, "Label"

; Declare a variable for pointer event 2 (button up)
btn.up = 2

; Set a variable that will stop the monitoring of button
; events

hit = FALSE
; Start a loop waiting for a button-up event

DO
GETEVENT (glun) event[]

Creating Buttons

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 170



; The status of a button event will be stored in event[0].; Look to see if
that event was a button-up event.

IF event[0] == btn.up THEN
; Check if the button-up event was within the button area
; The x location is in event[1], the y location in event[2]

hit = (event[2] > 99) AND (event[2] < 146)
hit = hit AND (event[3] > 99) AND (event[3] < 146)

END
UNTIL hit

; The code for reacting to a button press is placed here.

This code will work for a single button but will become very unwieldy if several buttons are
used. In the case of several buttons, you should place the button locations in arrays (or a
two-dimensional array) and then pass these locations to a subroutine that checks whether
the mouse event was within the array parameters passed to it.

Creating Buttons

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 171



Creating a Slide Bar
eV+ allows you to create a eV+feature similar to the window scroll bars called slide bars. The
syntax for a slide bar is:

GSLIDE (glun, mode) slide_id = x, y, len, max_pos, arrow.inc, handle

glun The logical unit of the window the slide bar is created in.

mode is replacedwith:

0 indicating a horizontal slide bar is to be created or updated.
1 indicating a slide bar is to be deleted.
2 indicating a vertical slide bar is to be created or updated.

slide_id A number that identifies the slide bar. This number is returned to the
event queue so you can distinguish which slide wasmoved.

x y The coordinates of the top left corner of the slide bar.

len The width or height of the bar.

max_pos Specifies the maximum value the slide bar returns.

arrow_inc Specifies the increment the slide bar registers when the arrows are
clicked. (The slide bar is created with a scroll handle and scroll arrows.)

handle Specifies position the scroll handle is in when the slide bar is created.

GSLIDE Example

Wewill be interested in two events when monitoring a slide bar, event 8 (slide bar pointer
move) and event 9 (slide bar button up). Additional event monitoringmust be enabled with
the FSET instruction. Object must be specified to monitor slide bars andmove_b2 must be
specified to monitor the dragging of the middle button.

The values returned in the GETEVENT array will be:

l event[0] the pointer device event code

l event[1] the ID of the slide bar (as specified by slide_id)

l event[2] the slide bar value

l event[3] the maximum slide bar value

The following code will display andmonitor a slide bar:

; The slide bar will be in the window open on glun

; The slide bar will use events 8 and 9. A double-click event ; will halt
; monitoring of the slide bar

Creating a Slide Bar

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 172



btn.smov = 8
btn.sup = 9
btn.dclk = 3

; Slide bar position and start-up values

x = 20
y = 60
length = 200
max.pos = 100
arrow_inc = 10
handle_pos = 50

; Enable monitoring of slide bars and pointer drags

FSET (glun) "/event object move_b2"

; Display the slide bar

GSLIDE (glun, 0) 1 = x, y, length, max_pos, arrow_inc, handle_pos
; Begin monitoring events and take action when the slide bar ; is moved.
Monitor
; events until a double click is detected, then delete the
; slide bar

DO
GETEVENT (glun) event[]
IF (event[0] == btn.smov) OR (event[0] == btn.sup THEN
; Your code to monitor the slide bar value (event[2]) goes
; here

END
UNTIL event[0] == btn.dclk

; Delete the slide bar

GSLIDE (glun, 1) 1

Creating a Slide Bar

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 173



Graphics Programming Considerations
Buttons andmenus can be monitored in the same window. However, the code will get
complicated, and you might consider using different windows when the button andmenu
structure becomes complex.

Only one pull-down menu can be active at any time.

Design your windows with the followingmechanical and aesthetic considerations:

l Keep your windows as simple and uncluttered as possible. Use color carefully and
purposefully.

l If you are usingmultiple windows, use similar graphic elements so the screen
elements become familiar and intuitive.

l Let the operator know what is going on. Never leave the operator in the dark as to the
status of a button push or menu selection.

l Whenever possible, have your windowsmimic the real work world of the operator.

In the interest of clarity, the examples in this chapter have not been generalized. When you
actually program an application, use generalized subroutine calls for commonly used code, or
your code will quickly become unmanageable.

Using IOSTAT( )

The example code in this chapter leaves out critical error detection and recovery procedures.
Effective application code requires these procedures. The IOSTAT function should be used to
build error-handling routines for use with every ATTACH, FOPEN, FCLOSE, and FSET
instruction. The syntax for using IOSTAT to check the status of I/O requests is:

IOSTAT(lun)

lun The LUN specified in the previous I/O request.

The IOSTAT function returns the following values:

1 if the last operation was successful

0 if the last operation is not yet complete

< 0 if the last operation failed, a negative number corresponding to a standard
Omron Adept error code will be returned.

The following code checks for I/O errors:

; Issue I/O instruction (ATTACH, FOPEN, etc.)
IF IOSTAT(lun) < 0 THEN

;your code to handle the error
END

; The ERROR function can be used to return the text

Graphics Programming Considerations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 174



; of an error number. The code line is:
TYPE $ERROR(IOSTAT(lun))

Managing Windows

Windows can be:

l Hidden (but not deleted)

A hidden window is removed from the screen but not from graphics memory, and it
can be retrieved at any time:

FSET(glun) "/NODISPLAY" ;Hide a window
FSET(glun) "/DISPLAY" ;Redisplay a window

l Sent behind the parent's window stack:

FSET(glun) "/STACK -1"

l Brought to the front of the window stack:

FSET(glun) "STACK 1"

If you will not be reading events from a window, open it in write-only mode to save memory
and processing time.

Only the task that opened a window in read/write mode can read from it (monitor events).

Multiple tasks can write to an open window. A second task can write to an already open
window by executing its own ATTACHandOPEN for the window. The logical units' numbers
need not match, but the window namemust be the same. If a task has the window Test
open, other tasks can write to the window by:

ATTACH(lun_1, 4) "GRAPHICS"
FOPEN(lun_1) "Test /MAXSIZE 200 200 /WRITEONLY"

Graphics Programming Considerations

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 175



Communicating With the System Windows
The system has three operating system level windows: the main window, the monitor
window, and the vision window (on systems with the AdeptVision option).

The Main Window

You can place menu options on the top-level menu bar by opening the window \Screen_1.
For example:

ATTACH (glun, 2) "GRAPHICS"
FOPEN(glun)"\Screen_1"
FSET (glun)"/event menu"
FSET (glun)"/menu 'item1' 'item2' 'item3'"

opens the main window and place three items on the top-level menu bar. Pull-downs and
event monitoring can proceed as described earlier. The instruction:

FSET (glun) "/menu "

deletes the menu items.

The Monitor Window

The monitor window can be opened in write-only mode to change the characteristics of the
monitor window. For example, the following instruction opens the monitor window, disables
scrolling, and disallowsmoving of the window:

FOPEN (glun) "Monitor /WRITEONLY /SPECIAL NOPOSITION NOSIZE"

To prevent a user from accessing the monitor window, use the instruction:

FOPEN (glun) "Monitor /WRITEONLY /NOSELECTABLE"

To allow access:

FSET (glun) "/SELECTABLE"

The Vision Window

For systems equippedwith the Adept Vision option, text or graphics can be output to the
vision window, and events can be monitored in the vision window. To communicate with the
vision window, you open it just as you would any other window. For the window name you
must use Vision. For example:

FOPEN (glun) "Vision"

Remember, graphics output to the vision window is displayed only when a graphics display
mode or overlay is selected. When you are finished communicating with the vision window,
close and detach from it just as you would any other window. This will free up the logical unit,

CommunicatingWith the System Windows

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 176



but will not delete the vision window. You can close and detach from the vision window, but
you cannot delete it.

To preserve the vision system pull-down menus, open the window in write-only mode:

FOPEN (glun) "Vision /WRITEONLY"

The following example opens the vision window, writes to the vision window, and detaches
the vision window:

.PROGRAM label.blob()

; ABSTRACT: This program demonstrates how to attach to the
; vision window and how to use the millimeter scaling mode of
; the GTRANS instruction to label a "blob" in the vision
; window.
;

AUTO vlun
cam = 1
; Attach the vision window and get a logical unit number
ATTACH (vlun, 4) "GRAPHICS"
IF IOSTAT(vlun) < 0 GOTO 100
FOPEN (vlun) "Vision" ;Open the vision window
IF IOSTAT(vlun) < 0 GOTO 100
; Select display mode and graphics mode
VDISPLAY (cam) 1, 1 ;Display grayscale frame and graphics
; Take a picture and locate an object
VPICTURE (cam) ;Take a processed picture
VLOCATE (cam, 2) "?" ;Attempt to locate an object
IF VFEATURE(1) THEN ;If an object was found...

GCOLOR (vlun) 1 ;Select the color black
GTRANS (vlun, 2) ;Select millimeter scaling
GTYPE (vlun) DX(vis.loc), DY(vis.loc), "Blob", 3

ELSE ;Else if object was NOT found...
GCOLOR (vlun) 3 ;Select the color red
GTRANS (vlun, 0) ;Select pixel scaling
GTYPE (vlun) 100, 100, "No object found!", 3

END
; Detach (frees up the communications path)
DETACH (vlun)

100 IF (IOSTAT(vlun) < 0) THEN ; Check for errors
TYPE $ERROR(IOSTAT(vlun))

END

.END

CommunicatingWith the System Windows

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 177



Additional Graphics Instructions
The following table lists the graphics instructions available in the eV+ programming language.
For complete details on any instruction, click on the command name in the table, or refer to
the keyword documentation available in the eV+ Language Reference Guide.

Command Action

GARC Draw an arc or circle in a graphics window.

GCHAIN Draw a chain of points.

GCLEAR Clear an entire window to the background color.

GCLIP Constrain the area of a window within which graphics are displayed.

GCOLOR Set the foreground and background colors for subsequent graphics
instructions.

GCOPY Copy one area of a graphics window to another area in the window.

GFLOOD Flood an area with foreground color.

GICON Allows you to display icons on the screen. You can access the
predefined Omron Adept icons or use your own icons.

GLINE Draw a line.

GLINES Draw multiple lines.

GLOGICAL Set the drawingmode for the next graphics instruction. (Useful for
erasing existing graphics and simulating the dragging of a graphic
across the screen.)

GPOINT Draw a single point.

GRECTANGLE Draw a rectangle.

GSCAN Draw a series of horizontal lines.

GSLIDE Create a slide bar.

GTEXTURE Develop a texture for subsequent graphics. Set subsequent graphics

List of Graphics Instructions

Additional Graphics Instructions

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 178



Command Action

to transparent or opaque.

GTRANS Define a transformation to apply to all subsequent G instructions.

GTYPE Display a text string.

Programming the Omron Adept T20 Pendant
This version of eV+ uses the Omron Adept T20 pendant. For more information, see
Programming the T20 Pendant and the Adept T20 Pendant User's Guide.

The following topics are described in this chapter:

Introduction 179
Writing to the Pendant Display 180
Detecting User Input 181
Programming Example: Pendant Menu 183

Introduction
This section provides an overview of how to program the Omron Adept T20 pendant. You can
refer to the Adept T20 Pendant User’s Guide for information on installing and operating the
pendant.

ATTACHing and DETACHing the Pendant

Before an application program can communicate with the pendant, the pendant must first
be ATTACHed using the ATTACH instruction. The logical unit number (lun) for the pendant is
1. The following code readies the pendant for communication:

t20_lun = 1
ATTACH (t20_lun)

As with all other devices that are ATTACHed by a program, the pendant should be DETACHed
when the program is finishedwith the pendant. The following instruction frees up the
pendant:

DETACH (t20_lun)

When the pendant has been ATTACHed by an application program, the user can interact with
the pendant without selectingmanual mode.

As with all I/O devices, the IOSTAT function should be used to check for errors after each I/O
operation.

Programming the Omron Adept T20 Pendant

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 179



Writing to the Pendant Display

Pendant Display

The pendant allows users to display a title and amessage body, and tomodify the labels for
function keys F1 through F4. Any fieldmay be an empty string (“”). The message body can
process HTML-tagged code.

Using PDNT.WRITE with the Pendant

The following instructions:

$p.title = "Operator Control"
$p.msg[0] = "Select Options from buttons below"
$p.f[1] = "Apps"
$p.f[2] = "Status"
$p.f[3] = ""
$p.f[4] = ""
PDNT.WRITE $p.title, $p.msg[], $p.f[1], $p.f[2], $p.f[3], $p.f[4]

Create the following user dialog :

Using PDNT.NOTIFY with the Pendant

The following instruction:

PDNT.NOTIFY "Waiting on Parts", "Please add parts to Feeder"

Creates the following user dialog :

Writing to the Pendant Display

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 180



Using PDNT.CLEAR

The PDNT.CLEAR instructions clears the pendant display, and returns to the Home 1 screen.

Detecting User Input
Input from the pendant can be received from a single key press from any of the keys that
can be detected. Single-key presses can be monitored in three different modes:

l The keys can be monitored like keys on a normal keyboard.

l The keys can be monitored in toggle mode (on or off). The state of the
key is changed each time the key is pressed.

l The keys can be monitored in level mode. The state of the key is
considered ON only when the key is held down.

The PENDANT( ) function is used to detect key presses. The KEYMODE instruction is used to
set the key behavior.

Detecting Pendant Key Presses

Individual pendant key presses are detected with the PENDANT( ) real-valued function. (The
following figure provides a reference  for the numbers of the keys on the T20 pendant.) This
function returns the number of the first acceptable key press. The interpretation of a key
press is determined by previous execution of the KEYMODE instruction. See the eV+
Language Reference Guide for complete details. The basic use of these two operations is
described below.

T20 Pendant Key Map

Detecting User Input

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 181



Keyboard Mode

The default mode is Keyboard. If a PENDANT( ) function requests any keyboard input, the key
number of the first Keyboardmode key pressed is returned. The following code detects the
first function key pressed:

; Set the function keys to keyboard mode
KEYMODE 1,4 = 0

; Wait for a key press from keys 1 - 4
DO

key = PENDANT(0)
UNTIL key < 5

The arguments to the KEYMODE instruction indicate that pendant keys 1 through 4 are to be
configured in Keyboardmode. The 0 argument to the PENDANT( ) function indicates that the
key number of the first key pressed is to be returned.

Toggle Mode

To detect the state of a key in Toggle mode, the PENDANT( ) function must specify the key to
be monitored.

When a key is configured as a toggle key, its state is maintained as ON (-1) or OFF (0). The
state is toggled each time the key is pressed. The following code sets the F1 key to Toggle
mode andwaits until F1 is pressed:

; Set the F1 key to toggle
KEYMODE 1 = 1

; Wait until the F1 key is pressed
WHILE NOT PENDANT(1) DO

RELEASE -1
END

Level Mode

To detect the state of a key in Level mode, the PENDANT( ) function must specify the key to
be monitored.

When a key has been configured as a level key, the state of the key is ON as long as the key is
pressed. When the key is not pressed, its state is OFF. The following code will poll the OK
button's state until it has been held down for an amount of time. If it is released prematurely,
the counter is reset.

ATTACH(1) "PENDANT"
counter = 0
KEYMODE 18, 18 = 2

WHILE counter < 20 DO
IF PENDANT(18) THEN

counter = counter+1
ELSE

counter = 0
END

Detecting User Input

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 182



WAIT.EVENT , 0.1
END
DETACH (1)

Notes on Key Behaviors

On the T20 pendant, all Green keys and Select Robot will still have their normal functionality
when in a Custom Window (through PDNT.WRITE). All other keys will have their primary
functionality disabled. These keys are intended to be read by the eV+ program through the
PENDANT instruction.

Monitoring the Pendant Speed Signal

The speed that is sent from the pendant has a value from 1 to 100 depending on the
currently displayed speed on the Pendant. An argument of -2 to the PENDANT( ) function
returns this value to eV+. The following example shows how to print the currently displayed
Pendant speed to the monitor.

; Set the OK key to toggle
KEYMODE 18 = 1

; Display speed value until the OK key is pressed
DO

TYPE PENDANT(-2)
WAIT

UNTIL PENDANT(18)

Reading the State of the Pendant

It is good programming practice to check the state of the pendant before ATTACHing to it.
The instruction:

cur.state = PENDANT(-3)

returns a value to be interpreted as follows:

1. Indicates that the pendant is in the Background state (not ATTACHed to an
application program).

2. Indicates that an error is being displayed.

3. Indicates that the pendant is in the USER state (ATTACHed to an application
program).

See the section Programming Example: Pendant Menu for a program example that checks
the pendant state.

Programming Example: Pendant Menu
The following code implements a menu structure on the Omron Adept T20 pendant. The
resulting screens are shown after the code sample.

Programming Example: Pendant Menu

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 183



.PROGRAM operatorcontrol()
; ABSTRACT: This program creates and monitors a menu structure on the T20.
;
; INPUT PARAMS: None
;
; OUTPUT PARAMS: None
;
; GLOBAL VARS: None

AUTO $p.title, $p.msg[15], $p.f[15], key, app.sel
AUTO pendant.lun

pendant.lun = 1

; Attach to the Pendant

ATTACH (pendant.lun)

; Verify ATTACH was successful

IF IOSTAT(pendant.lun) <> 1 THEN
TYPE "Pendant is either busy or not connected"
GOTO 100 ;ERROR

END

; Menu elements

$prog.list[0] = "Cookie1"
$prog.list[1] = "Cookie2"
$prog.list[2] = "Cookie3"
$prog.list[3] = "Cookie4"
$prog.list[4] = "Cookie5"
prog.len = 5

; Initialize variables

key = -1
app.sel = 0
$p.title = ""
FOR i = 0 TO 10

$p.msg[i] = ""
END
FOR i = 0 TO 4

$p.f[i] = ""
END

; Screen 1 - Operator Control

$p.title = "Operator Control"
$p.msg[0] = "Select Option from buttons below"
$p.f[1] = "Apps"
$p.f[2] = "Status"
$p.f[3] = ""
$p.f[4] = ""

Programming Example: Pendant Menu

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 184



; Display Custom Message

PDNT.WRITE $p.title, $p.msg[], $p.f[1], $p.f[2], $p.f[3], $p.f[4]

WHILE TRUE DO
KEYMODE 1, 4 = 0 ;Set Keymode of F keys detect next keypress
key = PENDANT(0) ;Obtain Pressed key
CASE key OF

VALUE 1: ;Apps pressed, continue to Screen 2
GOTO 10

VALUE 2: ;Display Filler Notification
; This will be cleared on Pendant by pressing OK or Cancel
PDNT.NOTIFY "Status", "No Program Running" ;Obtain info of

task 1 here
END

END

; Setup Screen 2

10 $p.title = "List of Applications"
$p.f[1] = "Run"
$p.f[2] = "Up"
$p.f[3] = "Down"
$p.f[4] = "Done"
FOR i = 0 TO 10

$p.msg[i] = ""
END
FOR i = 0 TO prog.len-1

IF i == app.sel THEN
; Underline the currently selected Application
$p.msg[i] = $p.msg[i]+"<center><u>"+$prog.list[i]+"

</u></center>"
ELSE

$p.msg[i] = $p.msg[i]+"<center>"+$prog.list[i]+"</center>"
END

END

; Display Screen 2 - List of Applications

PDNT.WRITE (prog.len) $p.title, $p.msg[], $p.f[1], $p.f[2], $p.f[3],
$p.f[4]

KEYMODE 1, 28 = 0
WHILE TRUE DO

key = PENDANT(0)
CASE key OF

VALUE 1, 18: ;F1 or OK
CALLS $prog.list[app.sel]()
GOTO 10 ;

VALUE 2, 17: ;F2 or Up arrow
app.sel = (app.sel-1) MOD prog.len
GOTO 10

VALUE 3, 21: ;F3 or Down arrow
app.sel = (app.sel+1) MOD prog.len

Programming Example: Pendant Menu

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 185



GOTO 10
VALUE 4: ;F4

GOTO 90
END

END

; Finished normally, clear screen and detach

90 PDNT.CLEAR
DETACH (1)

100 RETURN

.END

Screen 1

Screen 2

Programming Example: Pendant Menu

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 186



Conveyor Tracking
This chapter describes the Conveyor Tracking (moving-line) feature.

The ACE software provides a graphical interface for programming your Omron Adept motion
(and vision) system. Further, the ACE Process Manager, which is includedwith the ACE
software, allows you to build conveyor-tracking applications through a point-and-click
interface. Therefore, Omron Adept strongly recommends that you use the ACE software for
this functionality. For more details, see the chapter Process Control in the ACE User's Guide.
Optionally, you can use eV+ tomanually program a conveyor-tracking application, as
described in this chapter.

The following sections contain installation and application instructions for using the
conveyor-tracking feature in eV+. Before using this chapter, you should be familiar with eV+
and the basic operation of the robot.

Introduction to Conveyor Tracking 189
Installation 190
Calibration 191
Basic Programming Concepts 192
Conveyor-Tracking Programming 199
Sample Programs 201

Conveyor Tracking

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 187



Conveyor Tracking

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 188



Introduction to Conveyor Tracking

NOTE: The ACE software provides the following functionality through its graphical user
interface. Therefore, Omron Adept strongly recommends that you use the ACE software.

This chapter describes the Conveyor Tracking (moving-line) feature. The moving-line feature
allows the programs to specify locations that are automatically modified to compensate for
the instantaneous position of a conveyor belt. Motion locations that are defined relative to a
belt can be taught and played back while the belt is stationary or moving at arbitrarily
varying speeds. Conveyor tracking is available only for systems that have the optional eV+
Extensions software.

For eV+ to determine the instantaneous position and speed of a belt, the belt must be
equippedwith a device to measure its position and speed. As part of the moving-line
hardware option, Omron Adept provides an interface for coordinating two separate conveyor
belts. Robot motions and locations can be specified relative to either belt.

There are no restrictions concerning the placement or orientation of a conveyor belt relative
to the robot. In fact, belts that move uphill or downhill (or at an angle to the reference frame
of the robot) can be treated as easily as those that move parallel to an axis of the robot
reference frame. The only restriction regarding a belt is that its motion must follow a
straight-line path in the region where the robot is to work.

The following sections contain installation and application instructions for using the moving-
line feature. Before using this chapter, you should be familiar with eV+ and the basic
operation of the robot.

Introduction to Conveyor Tracking

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 189



Installation
To set up a conveyor belt for use with a robot controlled by the eV+ system:

1. Install all the hardware components and securely fasten them in place. The conveyor
frame and robot base must be mounted rigidly so that nomotion can occur between
them.

2. Install the encoder on the conveyor.

3. Since any jitter of the encoder will be reflected as jitter in motions of the robot while
tracking the belt, make sure the mechanical connection between the belt and the
encoder operates smoothly. In particular, eliminate any backlash in gear-driven
systems.

4. Wire the encoder to the robot controller. (See the Adept MV Controller User's Guide for
location of the encoder ports.)

5. Start up the robot system controller in the normal manner.

6. Use the Belt Calibration group in the ACE Process Manager to calibrate the location of
the conveyor belt relative to the robot. For details, see the section Belt Calibrations in
the ACE User's Guide.

When these steps have been completed, the system is ready for use. The next section
describes loading belt calibration.

Installation

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 190



Calibration
The position and orientation of the conveyor belt must be precisely known in order for the
robot to track motion of the belt. Use the Belt Calibration group in the ACE Process Manager
to calibrate the location of the conveyor belt relative to the robot. For details, see the section
Belt Calibrations in the ACE User's Guide.

The DEFBELT andWINDOW program instructions must be executed before the associated
belt is referenced in a eV+ program. For details, see Belt Variable Definitions on page 199.
We suggest you include these instructions in an initialization section of your application
program. Although these instructions need be executed only once, no harm is done if they
are executed subsequently.

While the robot is moving relative to a belt (includingmotions to and from the belt), all
motions must be of the straight-line type. Thus APPROS, DEPARTS, MOVES, andMOVEST
can be used, but APPRO, DEPART, DRIVE, MOVE, andMOVET cannot. Motion relative to a belt
is terminatedwhen the robot moves to a location that is not defined relative to the belt
variable or when a belt-window violation occurs.

Calibration

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 191



Basic Programming Concepts
This section describes the basic concepts of the conveyor-tracking feature. First, the data
used to describe the relationship of the conveyor belt to the robot is presented. Then a
description is given of how belt-relative motion instructions are specified. Finally, a description
is presented of how belt-relative locations are taught.

The eV+ operations associated with belt tracking are disabled when the BELT system switch
is disabled. Thus, application programs that use those operations must be sure the BELT
switch is enabled.

Belt Variables

The primary mechanism for specifyingmotions relative to a belt is a eV+ data type called a
belt variable. By defining a belt variable, the program specifies the relationship between a
specific belt encoder and the location and speed of a reference frame that maintains a fixed
position and orientation relative to the belt. Alternatively, a belt variable can be thought of as
a transformation (with a time-varying component) that defines the location of a reference
frame fixed to a moving conveyor. As a convenience, more than one belt variable can be
associated with the same physical belt and belt encoder. In this way, several work stations
can be easily referenced on the same belt.

Like other variable names in eV+, the names of belt variables are assigned by the
programmer. Each namemust start with a letter and can contain only letters, numbers,
periods, and underline characters. (Letters used in variable names can be entered in either
lowercase or uppercase. eV+ always displays variable names in lowercase.)

To differentiate belt variables from other data types, the name of a belt variable must be
preceded by a percent sign (%). As with all other eV+ data types, arrays of belt variables are
permitted. Hence the following are all valid belt-variable names:

%pallet.on.belt %base.plate %belt[1]

The DEFBELT instruction must be used to define belt variables (see Conveyor-Tracking
Programming on page 199). Thus, the following are not valid operations:

SET %new_belt = %old_belt or HERE %belt[1]

Compared to other eV+ data types, the belt variable is rather complex in that it contains
several different types of information. Briefly, a belt variable contains the following
information:

1. The nominal transformation for the belt. This defines the position and direction of
travel of the belt and its approximate center.

2. The number of the encoder used for reading the instantaneous location of the belt
(from 1 to 6).

3. The belt encoder scaling factor, which is used for converting encoder counts to

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 192



millimeters of belt travel.

4. An encoder offset, which is used to adjust the origin of the belt frame of reference.

5. Window parameters, which define the working range of the robot along the belt.

These components of belt variables are described in detail in the following sections.

Unlike other eV+ data types, belt variables cannot be stored in a disk file for later loading.
However, the location and real-valued data used to define a belt variable can be stored and
loaded in the normal ways. After the data is loaded from disk, DEFBELT andWINDOW
instructions must be executed to define the belt variable. For details, see Belt Variable
Definitions on page 199. (The file LOADBELT.V2 on the Utility Disk contains a subroutine
that will read belt data from a disk file and execute the appropriate DEFBELT andWINDOW
instructions.)

Nominal Belt Transformation

The position, orientation, and direction of motion of a belt are defined by a transformation
called the nominal belt transformation. This transformation defines a reference frame
alignedwith the belt as follows: its X-Y plane coincides with the plane of the belt, its X axis is
parallel to the direction of belt motion, and its origin is located at a point (fixed in space)
chosen by the user.

Since the direction of the X axis of the nominal belt transformation is taken to be the
direction alongwhich the belt moves, this component of the transformation must be
determinedwith great care. Furthermore, while the point defined by this transformation
(the origin of the frame) can be selected arbitrarily, it normally should be approximately at
the middle of the robot's working range on the belt. This transformation is usually defined
using the FRAME location-valued function with recorded robot locations on the belt. (The
easiest way to define the nominal belt transformation is with the conveyor belt calibration
program provided by Omron Adept.)

The instantaneous location described by the belt variable will almost always be different from
that specified by the nominal transformation. However, since the belt is constrained tomove
in a straight line in the working area, the instantaneous orientation of a belt variable is
constant and equal to that defined by the nominal belt transformation.

To determine the instantaneous location defined by a belt variable, the eV+ system performs
a computation that is equivalent to multiplying a unit vector in the X direction of the nominal
transformation by a distance (which is a function of the belt encoder reading) and adding the
result to the position vector of the nominal belt transformation. Symbolically, this can be
represented as

instantaneous_XYZ =
nominal_XYZ + (belt_distance * X_direction_of_nominal_transform)

where

belt_distance =
(encoder_count - encoder_offset) * encoder_scaling_factor

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 193



The encoder variables contained in this final equation are described in later sections.

The Belt Encoder

Six belt encoders are supported by the conveyor tracking feature.

Each belt encoder generates pulses that indicate both the distance that the belt has moved
and the direction of travel. The pulses are counted by the belt interface, and the count is
stored as a signed 24-bit number. Therefore, the value of an encoder counter can range from
223 -1 (8,388,607) to -2 23 (-8,388,608). For example, if a single count of the encoder
corresponds to 0.02 millimeters (0.00008 inch) of belt motion, then the full range of the
counter would represent motion of the belt from approximately -167 meters (-550 feet) to
+167 meters (+550 feet).

After a counter reaches its maximum positive or negative value, its value will roll over to the
maximum negative or positive value, respectively. This means that if the encoder value is
increasing and a rollover occurs, the sequence of encoder counter values will be ... ;
8,388,606; 8,388,607; -8,388,608; -8,388,607; ... As long as the distance between the
workspace of the robot and the nominal transformation of the belt is within the distance that
can be represented by the maximum encoder value, eV+ application programs normally do
not have to take into account the fact that the counter will periodically roll over. The belt_
distance equation described above is based upon a relative encoder value:

encoder_count - encoder_offset

and eV+ automatically adjusts this calculation for any belt rollover that may occur.

Care must be exercised, however, if an application processes encoder values in any way. For
example, a program may save encoder values associated with individual parts on the
conveyor, and then later use the values to determine which parts should be processed by the
robot. In such situations the application program may need to consider the possibility of
rollover of the encoder value.

The Encoder Scaling Factor

For any given conveyor/encoder installation, the encoder scaling factor is a constant number
that represents the amount the encoder counter changes during a change in belt position.
The units of the scaling factor are millimeters/count.

This factor can be determined either directly from the details of the mechanical coupling of
the encoder to the belt or experimentally by reading the encoder as the belt is moved. The
belt calibration program supports either method of determining the encoder scaling factor.

If the encoder counter decreases as the belt moves in its normal direction of travel, the
scaling factor will have a negative value.

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 194



The Encoder Offset

The last encoder value needed for proper operation of the conveyor-tracking system is the
belt encoder offset. The belt encoder offset is used by eV+ to establish the instantaneous
location of the belt reference frame relative to its nominal location.

In particular, if the belt offset is set equal to the current belt encoder reading, the
instantaneous belt transformation will be equal to the nominal transformation. The belt
encoder offset can be used, in effect, to zero the encoder reading, or to set it to a particular
value whenever necessary. Unlike the encoder scaling factor, which is constant for any given
conveyor/encoder setup, the value of the belt encoder offset is variable andwill usually be
changed often.

Normally, the instantaneous location of the reference frame will be established using
external input from a sensory device such as a photocell. The DEVICE real-valued function
also returns latched or unlatched encoder values for use with SETBELT.

The encoder offset is set with the SETBELT program instruction, described in Belt Variable
Definitions on page 199.

The Belt Window

The belt window controls the region of the belt in which the robot is to work. The figure
Conveyor Terms illustrates the terms used here. A window is a segment of the belt bounded
by two planes that are perpendicular to the direction of travel of the belt. When defining the
window, ensure that the robot can reach all conveyor locations within the belt window. This
is especially important for revolute (i.e., non-Cartesian) robots.

NOTE: The window has limits only in the direction along the belt.

Within eV+, a belt window is defined by two transformations with aWINDOW program
instruction. The window boundaries are computed by eV+ as planes that are perpendicular
to the direction of travel of the belt and that pass through the positions defined by the
transformations.

If the robot attempts to move to a belt-relative location that has not yet come within the
window (is upstream of the window), the robot can be instructed either to pause until it can
accomplish the motion or immediately generate a program error. If a destination moves out
of the window (is downstream of the window), it is flagged as an error condition and the
application program can specify what action is to be taken. (See the description of the
BELT.MODE system parameter in eV+ Language Reference Guide.)

If the normal error testing options are selected, whenever the eV+ system is planning a
robot motion to a belt-relative location and the destination is outside the belt window but
upstream, the system automatically delays motion planning until the destination is within
the window. However, if an application program attempts to perform amotion to a belt-
relative destination that is out of the window at planning time (or is predicted to be out by
the time the destination would be reached) and this destination is downstream, a window-

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 195



violation condition exists. Also, if during the execution of a belt-relative motion or while the
robot is tracking the belt, the destination moves outside the belt window for any reason, a
window violation occurs. Depending upon the details of the application program, the program
either prints an error message and halts execution or branches to a specified subroutine
when a window violation occurs.

In order to provide flexibility with regard to the operation of the window-testingmechanism,
several modifications to the normal algorithms can be selected by modifying the value of the
BELT.MODE system parameter.

To assist in teaching the belt window, the conveyor belt calibration program contains routines
that lead the operator through definition of the required bounding transformations.

Conveyor Terms

Belt-Relative Motion Instructions

To define a robot motion relative to a conveyor belt, or to define a relative transformation
with respect to the instantaneous location of a moving frame of reference, a belt variable can
be used in place of a regular transformation in a compound transformation. For example, the
instruction

MOVES %belt:loc_1

directs the robot to perform a straight-line motion to location loc_1, which is specified relative
to the location defined by the belt variable %belt. If a belt variable is specified, it must be the
first (that is, leftmost) element in a compound transformation. Only one belt variable can
appear in any compound transformation.

Motions relative to a belt can be only of the straight-line type. Attempting a joint-interpolated
motion relative to a belt causes an error and halts execution of the application program.
Except for these restrictions, motion statements that are defined relative to a belt are treated
just like any other motion statement. In particular, continuous-path motions relative to belts
are permitted.

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 196



Once the robot has been moved to a destination that is defined relative to a belt, the robot
tool will continue to track the belt until it is directed to a location that is not relative to the
belt. For example, the following series of instructions wouldmove the tool to a location
relative to a belt, open the hand, track the belt for two seconds, close the hand, and finally
move off the belt to a fixed location.

MOVES %belt[1]:location3
OPENI
DELAY 2.00
CLOSEI
MOVES fixed.location

If this example did not have the secondMOVES statement, the robot would continue to track
the belt until a belt window violation occurred.

As with motions defined relative to a belt, motions that move the tool off a belt (that is, to a
fixed location)must be of the straight-line type.

Motion Termination

When moving the robot relative to a belt, special attention must be paid to the conditions
used to determine when amotion is completed. At the conclusion of a continuous-path
motion eV+ normally waits until all the joints of the manipulator have achieved their final
destinations to within a tight error tolerance before proceeding to the next instruction. In
the case of motions relative to a belt, the destination is constantly changing and, depending
upon the magnitude and variability of the belt speed, the robot may not always be able to
achieve final positions with the default error tolerance.

Therefore, if a motion does not successfully complete (that is, it is aborted due to a Time-out
nulling error), or if it takes an excessive amount of time to complete, the error tolerance for
the motion should be increased by preceding the motion instruction with a COARSE
instruction. In extreme situations it may even be necessary to entirely disable checking of
the final error tolerance. This can be done by specifying NONULL before the start of the
motion.

Defining Belt-Relative Locations

In order to define locations relative to a belt, belt-relative compound transformations can be
used as parameters to all the standard eV+ teaching aids. For example, all the following
commands define a location loc_1 relative to the current belt location:1

HERE %belt:loc_1

In each of these cases, the instantaneous location corresponding to%belt would be
determined (based upon the reading of the belt encoder associated with %belt); loc_1 would
be set equal to the difference between the current tool location and the instantaneous
location defined by%belt.

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 197



While a belt variable can be used as the first (leftmost) element of a compound
transformation to define a transformation value, a belt variable cannot appear by itself. For
example, LISTL will not display a belt variable directly. To view the value of a belt variable,
enter the command:

LISTL %belt_variable:NULL

1Before defining a location relative to a belt, you must make sure the belt encoder offset is set
properly. That usually involves issuing amonitor command in the form:

DO SETBELT %belt = BELT(%belt)

Basic Programming Concepts

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 198



Conveyor-Tracking Programming
This section describes how to access the conveyor-tracking capabilities within eV+. A
functional overview is presented that summarizes the extensions to eV+ for Conveyor
Tracking. All the eV+ conveyor-tracking keywords are described in detail in the eV+
Language Reference Guide.

The conveyor-tracking extensions to eV+ include:

l Instructions and functions (there are nomonitor commands)

l System switch

l System parameters

Instructions and Functions

This section summarizes the eV+ instructions and functions dedicated to conveyor-tracking
processing. The belt-related functions return real values.

Belt Variable Definitions

The following keywords are used to define the parameters of belt variables. Some
parameters are typically set once, based upon information derived from the belt calibration
procedure. Other parameters are changed dynamically as the application program is
executing.

DEFBELT Program instruction that creates a belt variable and defines its static
characteristics: nominal transformation, encoder number, and encoder
scaling factor.

SETBELT Program instruction to set the encoder offset of a belt variable. This
defines the instantaneous belt location relative to that of the nominal
belt transformation.

WINDOW Program instruction for establishing the belt window boundaries and
specifying a window-violation error subroutine.

Encoder Position and Velocity Information

The following function is used to read information concerning the encoder associated with a
belt variable.

BELT Real-valued function that returns the instantaneous encoder counter
value or the rate of change of the encoder counter value.

Conveyor-Tracking Programming

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 199



Window Testing

The following function allows an application program to incorporate its own specialized
working-region strategy, independent of the strategy provided as an integral part of the eV+
conveyor tracking system.

WINDOW Real-valued function that indicates where a belt-relative location is
(or will be at some future time) relative to a belt window.

Status Information

The following function indicates the current operating status of the conveyor-tracking
software.

BSTATUS Real-valued function that returns bit flags indicating the status of the
conveyor-tracking software.

System Switch

The switch BELT enables/disables the operation of the conveyor-tracking software. (See the
description of ENABLE, DISABLE, and SWITCH for details on setting and displaying the value
of BELT.)

BELT This switch must be enabled before any conveyor tracking processing
begins.

System Parameters

The following parameter selects alternative modes of operation of the belt window testing
routines. See the description of PARAMETER for details on setting and displaying the
parameter values.

BELT.MODE Bit flags for selecting special belt window testingmodes of operation.

Conveyor-Tracking Programming

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 200



Sample Programs
The following program is an example of a robot task working from amoving conveyor belt.
The task consists of the following steps:

1. Wait for a signal that a part is present.

2. Pick up the part.

3. Place the part at a new location on the belt.

4. Return to a rest location to wait for the next part.

CAUTION: These programs are meant only to illustrate programming
techniques useful in typical applications. Moving-line programs are
hardware dependent because of the belt parameters, so care must be
exercised if you attempt to use these programs.

; *** PROGRAM TO RELOCATE PART ON CONVEYOR ***
; Set up belt parameters

ENABLE BELT
PARAMETER BELT.MODE = 0
belt.scale = 0.03067 ;Encoder scale factor

; Define belt twice, for two stations

DEFBELT %b1 = belt, 1, 32, belt.scale
WINDOW %b1 = window.1, window.2, window.error
DEFBELT %b2 = belt, 2, 32, belt.scale
WINDOW %b2 = window.1, window.2, window.error

WHILE TRUE DO ;Loop indefinitely
WAIT part.ready ;Wait for signal that part present
bx = BELT(%b1) ;Read present belt position
SETBELT %b1 = bx ;Set encoder offset for pick-up...
SETBELT %b2 = bx ;... and drop-off stations
APPROS %b1:p1, 50 ;Move to the part and pick it up
MOVES %b1:p1
CLOSEI
DEPARTS 50
APPROS %b2:p2, 50 ;Carry part to drop-off location
MOVES %b2:p2
OPENI
DEPARTS 50
MOVES wait.location ;Return to rest location

END ;Wait for the next part
; *** End of program ***

Sample Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 201



TheWINDOW instruction in the above program indicates that whenever a window violation
occurs, a subroutine namedwindow.error is to be executed. The following is an example of
what such a routine might contain.

; *** WINDOW VIOLATION ROUTINE ***
TYPE /B, /C1, "** WINDOW ERROR OCCURRED **", /C1

; Find out which end of window was violated

IF DISTANCE(HERE,window.1) < DISTANCE(HERE,window.2) THEN

; Error occurred at window.2

TYPE "Part moved downstream out of reach"

;...(Respond to downstream window error) .

ELSE ; Error occurred at window.1
TYPE "Part moved upstream out of reach"

;...(Respond to upstream window error) .
END

MOVES wait.location ;Move robot to rest location

; Use digital output signals to sound alarm and stop belt

SIGNAL alarm, stop.belt
HALT ;Halt program execution

Sample Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 202



Multiprocessor Systems

NOTE: This feature is no longer supported.

The ACE software allows you to control multiple instances of eV+ (each instance runs on a
separate controller) and communicate information between each instance. For more details,
see the ACE User's Guide.

Multiprocessor Systems

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 203





Example eV+ Programs
The following topics are described in this chapter:

Introduction 207
Pick and Place 208
Menu Program 212

Example eV+ Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 205



Example eV+ Programs

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 206



Introduction
This chapter contains a sampling of eV+ programs. This chapter contains a sample eV+
program. The first program is presented twice: once in its entirety exactly as it is displayed by
eV+ and a second time with a line-by-line explanation.

The program keywords are detailed in the eV+ Language Reference Guide.

NOTE:The programs in this manual are not necessarily complete. In most cases further
refinements could be added to improve the programs. For example, the programs could
be mademore tolerant of unusual events such as error conditions.

Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 207



Pick and Place
This program demonstrates a simple pick-and-place application. The robot picks up parts at
one location and places them at another.

Features Introduced

l Program initialization

l Variable assignment

l System parameter modification

l FOR loop

l Motion instructions

l Hand control

l Terminal output

Program Listing
.PROGRAM move.parts()

; ABSTRACT: Pick up parts at location pick and put them down at place

parts = 100 ;Number of parts to be processed

height1 = 25.4 ;Approach/depart height at "pick"

height2 = 50.8 ;Approach/depart height at "place"

PARAMETER HAND.TIME = 0.16 ;Set up for slow hand

OPEN ;Make sure the hand is open
RIGHTY ;Make sure configuration is correct
MOVE start ;Move to safe starting location

FOR i = 1 TO parts ;Process the parts

APPRO pick, height1 ;Go toward the pick-up
MOVES pick ;Move to the part
CLOSEI ;Close the hand
DEPARTS height1 ;Back away

APPRO place, height2 ;Go toward the put-down
MOVES place ;Move to the destination
OPENI ;Release the part
DEPARTS height2 ;Back away

END ;Loop for next part

TYPE "All done. ", /I0, parts, " parts processed"

Pick and Place

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 208



RETURN
;End of the program

.END

Detailed Description

This program has five sections: formal introduction, initialization of variables, initialization of
the robot location, performance of the desiredmotion sequence, and notice to the operator
of completion of the task. Each of these sections is described in detail below.

The first line of every program must have the form of the line below. It is a good practice to
follow that line with a brief description of the purpose of the program. If there are any special
requirements for use of the program, they should be included as well.

.PROGRAM move.parts()

This line identifies the program to the eV+ system. In this case we see that the name of the
program is move.parts.

; ABSTRACT: Pick up parts at location "pick" and put them down at
"place"

This is a very brief description of the operation performed by the program. (Most programs
requires a more extensive summary.)

Use variables to represent constants for two reasons: Using a variable name throughout a
program makes the program easier to understand, and only one program line must be
modified if the value of the constant is changed.

parts = 100

Tell the program how many parts to process during a production run. In this case, 100 parts
are processed.

height1 = 25.4

Height1 controls the height of the robot path when approaching and departing from the
location where the parts are to be picked up. Here it is set to 25.4 millimeters (that is, 1
inch).

height2 = 50.8

Similar to height1, height2 sets the height of the robot path when approaching and
departing from the put-down location. It is set to 50.8 millimeters (2 inches).

PARAMETER HAND.TIME 0.16

Set the system parameter HAND.TIME so that sufficient time is allowed to actuate the robot
hand.

This setting causes OPENI and CLOSEI instructions to delay program execution for 160
milliseconds while the hand is actuated.

Pick and Place

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 209



Initially, you should also make sure that the robot has the desired hand opening, is at a safe
starting location, and that SCARA robots have the desired configuration.

RIGHTY

Make sure the robot has a right-handed configuration (with the elbow of the robot to the right
side of the workspace). This is important if there are obstructions in the workspace that must
be avoided.

This instruction causes the robot to assume the requested configuration during its next
motion.

OPEN

Make sure the hand is initially open. This instruction is executed during the next robot
motion, rather than immediately as is done by the OPENI instruction.

MOVE start

Move to a safe starting location. Because of the preceding two instructions, the robot
assumes a right-handed configuration with the hand open.

The location startmust be defined before the program is executed. That can be done, for
example, with the HERE command. The location must be chosen such that the robot can
move from it to the pick-up location for the parts without hitting anything.

After initialization, the following program section performs the application tasks.

FOR i = 1 TO parts

Start a program loop. The following instructions (down to the END) will be executed parts
times. After the last time the loop is executed, program execution continues with the TYPE
instruction following the END below.

APPRO pick, height1

Move the robot to a location that is height1millimeters above the location pick.

The APPROS instruction is not used here because its straight-line motion would be slower
than the motion commanded by APPRO.

MOVES pick

Move the robot to the pick-up location pick, which must have been defined previously.

The straight-line motion commanded by MOVES assures that the hand does not hit the part
during the motion. A MOVE instruction could be used here if there is sufficient clearance
between the hand and the part to allow for a nonstraight-line path.

CLOSEI

Close the hand. To assure that the part is grasped before the robot moves away, the I form of
the CLOSE instruction is used-program execution will be suspendedwhile the hand is closing.

Pick and Place

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 210



DEPARTS height1

Now that the robot is grasping the part, we can back away from the part holder. This
instruction moves the hand back height1millimeters, following a straight-line path tomake
sure the part does not hit its holder.

APPRO place, height2
MOVES place
OPENI
DEPARTS height2

Similar to the above motion sequence, these instructions cause the part to be moved to the
put-down location and released.

END

This marks the end of the FOR loop.When this instruction is executed, control is transferred
back to the FOR instruction for the next cycle through the loop (unless the loop count
specified by parts is exceeded).

The final section of the program simply displays a message on the system terminal and
terminates execution.

TYPE "All done. ", /I0, parts, " pieces processed."

The above instruction outputs the message:

All done. 100 pieces processed.

(The /I0 format specification in the instruction causes the value of parts to be output as an
integer value without a decimal point.)

RETURN

Although not absolutely necessary for proper execution of the program, it is good
programming practice to include a RETURN (or STOP) instruction at the end of every
program.

.END

This line is automatically included by the eV+ editor to mark the program's end.

Pick and Place

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 211



Menu Program
This program displays a menu of operations from which an operator can choose.

Features Introduced

l Subroutines

l Local variables

l Terminal interaction with operator

l String variables

l WHILE and CASE structures

Program Listing
.PROGRAM sub.menu()

; ABSTRACT: This program provides the operator with a menu of
; operation selections on the system terminal. After accepting
; input from the keyboard, the program executes the desired
; operation. In this case, the menu items include execution of
; the pick and place program, teaching locations for the pick
; and place program, and returning to a main menu.
;
; SIDE EFFECTS: The pick and place program may be executed, and
; locations may be defined.

AUTO choice, quit, $answer

quit = FALSE

DO

TYPE /C2, "PICK AND PLACE OPERATIONAL MENU"
TYPE /C1, " 1 => Initiate pick and place"
TYPE /C1, " 2 => Teach locations"
TYPE /C1, " 3 => Return to previous menu", /C1

PROMPT "Enter selection and press RETURN: ", $answer

choice = VAL($answer) ;Convert string to number

CASE choice OF ;Process menu request...
VALUE 1: ;...selection 1

TYPE /C2, "Initiating Operation..."
CALL move.parts()

VALUE 2: ;...selection 2
CALL teach()

VALUE 3: ;...selection 3
quit = TRUE

ANY ;...any other selection

Menu Program

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 212



TYPE /B, /C1, "** Invalid input **"
END ;End of CASE structure
UNTIL quit ;End of DO structure

.END

Menu Program

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 213





External Encoder Device
The following topics are described in this chapter:

Introduction 217
Parameters 218
Device Setup 219
Reading Device Data 220

External Encoder Device

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 215



External Encoder Device

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 216



Introduction
The external-encoder inputs on the system controller are normally used for conveyor belt
tracking with a robot. However, these inputs can also be used for other sensing applications.
In such applications, the DEVICE real-valued function and SETDEVICE program instruction
allow the external encoders to be accessed in a more flexible manner than the belt-oriented
instructions and functions.

This appendix describes the use of the DEVICE real-valued function and the
SETDEVICEprogram instruction to access the external encoder device.

In general, SETDEVICE allows a scale factor, offset, and limits to be specified for a specified
external encoder unit. The DEVICE real-valued function returns error status, position, or
velocity information for the specified encoder.

Accessing the external encoders via DEVICE and SETDEVICE is independent of any belt-
tracking commands or instructions. Setting belt parameters with SETBELT and setting
encoder parameters with SETDEVICE have no effect on each other. The only exceptions are
the SETDEVICE initialize command and reset command, which reset all errors for the
specified external encoder, including any belt-related errors.

NOTE: See the eV+ Language Reference Guide. for complete information on the DEVICE
real-valued function and the SETDEVICE program instruction.

Introduction

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 217



Parameters
The external encoder device type is 0. This means that the type parameter in all DEVICE or
SETDEVICE instructions that reference the external encoders must have a value of zero.

The standard controller allows two external encoder units. These units are numbered 0 and
1. All DEVICE functions and SETDEVICE instructions that reference the external encoders
must specify one of these unit numbers for the unit parameter.

Parameters

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 218



Device Setup
The SETDEVICE program instruction allows the external encoders to be initialized and
various parameters to be set up. The action taken by the SETDEVICE instruction depends
upon the value of the command parameter.

The syntax of the SETDEVICE instruction is

SETDEVICE (0, unit, error, command) p1, p2

The following table describes the valid commands.

Command Description

0 Initialize Device
This command sets all scale factors, offsets, and limits to their default
values, as follows: offset = 0; scale factor = 1; no limit checking. This
command also resets any errors for the specified device.This
command should be issued before any other commands for a
particular unit and before using the DEVICE real-valued function for
the unit.

1 Reset Device
This command clears any errors associated with this encoder unit. It
does not affect the scale factor, offset, or limits.

8 Set Scale Factor
This command sets the position and velocity scale factor for this
encoder unit to the value of parameter p1. The units are millimeters
per encoder count. The scale factor must be set before setting the
offset or limits. If the scale factor is changed, the offset and limit
values will need to be updated.

9 Set Position Offset
This command sets the position offset for this encoder unit to the
value of parameter p1. The units are millimeters. The scale factor
must be set before setting the offset.

10 Set Position Limits
This command sets the position limits for the encoder unit to the
values of optional parameters p1 and p2, which are the lower and
upper limits, respectively. If a parameter is omitted, no checking is
performed for that limit. The units are millimeters. The scale factor
must be set before setting the limits.

Command Parameter Values

Device Setup

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 219



Reading Device Data
The DEVICE real-valued function returns information about the encoder error status,
position, and velocity. The scale factor, offset, and limits defined by the SETDEVICE
instruction affect the velocity and position values returned.

The syntax for this function is

DEVICE(0, unit, error, select)

The value returned depends upon the value of the select parameter, as described in the
following table.

select Description

0 Read Hardware Status

The error status of the encoder unit is returned as a 24-bit value. The
valid error bits for this device are listed below. The corresponding error
listed is the one eV+ would report if the error occurred while tracking a
belt encoder.

Bit # Bit Mask Corresponding Error Message and Code
19 ^H040000 *Lost encoder sync* (-1012)
20 ^H080000 *Encoder quadrature error* (-1013)
21 ^H100000 *No zero index* (-1011)

Only bit #20, for encoder quadrature error, is detected by the error
parameter of the DEVICE function to generate an error.

1 Read Position

The current position of the encoder (in millimeters) is returned, subject
to the scale factor, offset, and limits defined by the SETDEVICE
instruction. The value returned is computed by:

position = scale*(encoder-offset)
position = MAX(position, lower_limit)
position = MIN(position, upper_limit)

2 Read Velocity

The current value of the encoder velocity (in millimeters per second) is
returned, subject to the scale factor defined by the SETDEVICE
instruction. The value returned is computed by:

velocity = scale*encoder_velocity

Select Parameter Values

Reading Device Data

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 220



select Description

3 Read Predicted Position

The predicted position of the encoder (in millimeters) is returned. The
position is predicted 32 milliseconds in the future, based upon the
current position and velocity. The value is scaled the same as the
current position described above.

4 Read Latched Position

The position or the encoder (in millimeters) when the last external
trigger occurred is returned. The LATCHED real-valued function may be
used to determinedwhen an external trigger has occurred and a valid
position has been recorded.

Reading Device Data

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 221





Character Sets
The tables ASCII Control Values and Omron Adept Character Set list the standard Omron
Adept character set. Values 0 to 127 (decimal) are the standard ASCII character set.
Characters 1 to 31 are the common set of special and line-drawing characters. Characters 0
and 127 to 141 are Omron Adept additions to the standard sets. Characters 32 to 255
(excluding 127 through 141) are the ISO standard 8859-1 character set. Characters 145 to
159 are overstrike characters (see the OVERSTRIKE attribute to the /TERMINAL argument
for the FSET instruction in the eV+ Language Reference Guide). Values 1 to 31 are also
given special meaning in the extended Omron Adept character set when they are output to a
graphics window with the GTYPE instruction.

NOTE:The full character set is defined for font #1 only. Fonts #2 (medium font), #3
(large font), and#4 (small font) have defined characters for ASCII values 0 and 32 - 127.
Fonts #5 and#6 have standard English characters for ASCII values 0 and 32 - 135 while
ASCII 136 - 235 are Katakana and Hiragana characters. Font #5 is standard size and font
#6 contains large characters. The last column in Omron Adept Character Set shows the
Katakana and Hiragana characters. The Katakana characters are at ASCII 161 - 223. The
Hiragana characters are at ASCII 136 - 159 and 224 - 255.

The character sets listed in ASCII Control Values and Omron Adept Character The sets are
for use with graphics-based systems only.

Characters with values 0 to 31 and 127 (decimal) have the control meanings listed in the
following table when output to a serial line, an ASCII terminal, or the monitor window (with
TYPE, PROMPT, or WRITE instructions). In files exported to other text editors or transmitted
across serial lines, characters 0 to 31 are generally interpreted as having the specified control
meaning. The symbols shown for characters 0 to 31 and 127 in the table Omron Adept
Character Set can be displayed only with the GTYPE instruction.

Characters in the extended Omron Adept character set can be output using the $CHR
function. For example:

TYPE $CHR(229)

outputs the character å to the monitor window. The instruction:

GTYPE (glun) 50, 50, $CHR(229)

outputs the same character to the window open on logical unit glun.

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 223



Charac-
ter

Deci-
mal
Value

He-
x.
Val-
ue

Meaning of
Control
Character

NUL 000 00 Null

SOH 001 01 Start of
heading

STX 002 02 Start of text

ETX 003 03 End of text

EOT 004 04 End of
transmission

ENQ 005 05 Enquiry

ACK 006 06 Acknowledg-
ment

BEL 007 07 Bell

BS 008 08 Backspace

HT 009 09 Horizontal
tab

LF 010 0A Line feed

VT 011 0B Vertical tab

FF 012 0C Form feed

CR 013 0D Carriage
return

SO 014 0E Shift out

SI 015 0F Shift in

ASCII Control Values

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 224



Charac-
ter

Deci-
mal
Value

He-
x.
Val-
ue

Meaning of
Control
Character

DLE 016 10 Data link
escape

DC1 017 11 Direct control
1

DC2 018 12 Direct control
2

DC3 019 13 Direct control
3

DC4 020 14 Direct control
4

NAK 021 15 Negative
acknowledge

SYN 022 16 Synchronous
idle

ETB 023 17 End of
transmission
block

CAN 024 18 Cancel

EM 025 19 End of
medium

SUB 026 1A Substitute

ESC 027 1B Escape

FS 028 1C File separator

GS 029 1D Group
separator

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 225



Charac-
ter

Deci-
mal
Value

He-
x.
Val-
ue

Meaning of
Control
Character

RS 030 1E Record
separator

US 031 1F Unit
separator

DEL 127 7F Delete

De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

000 00 cell
outline

001 01 diamond u not
defined

002 02 checkerbo-
ard

not
defined

003 03 HT
(Horizont-
al Tab)

H
T not

defined

004 04 FF (Form
Feed)

F
F not

defined

005 05 CR
(Carriage
Return)

C
R not

defined

006 06 LF (Line
Feed)

L
F not

defined

Omron Adept Character Set

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 226



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

007 07 degree
symbol

o not
defined

008 08 plus/minu-
s

± not
defined

009 09 NL (New
line)

N
L not

defined

010 0A VT
(Vertical
Tab)

V
T not

defined

011 0B lower
right
corner

not
defined

012 0C upper
right
corner

not
defined

013 0D upper left
corner

not
defined

014 0E lower left
corner

not
defined

015 0F intersecti-
on

not
defined

016 10 scan line
3

- not
defined

017 11 scan line
6

- not
defined

018 12 scan line
9

- not
defined

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 227



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

019 13 scan line
12

- not
defined

020 14 scan line
15

- not
defined

021 15 left T-bar not
defined

022 16 right T-
bar

not
defined

023 17 bottom T-
bar

not
defined

024 18 top T-bar not
defined

025 19 vertical
bar

| not
defined

026 1A less than
or equal
to

≤ not
defined

027 1B greater
than or
equal to

≥ not
defined

028 1C pi
(lowercas-
e)

π not
defined

029 1D not equal
to

≠ not
defined

030 1E sterling £ not
defined

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 228



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

031 1F centered
dot

· not
defined

032 20 space not
defined

033 21 exclamati-
on

! !

034 22 double
quote

" "

035 23 pound # #

036 24 dollar sign $ $

037 25 percent % %

038 26 ampersan-
d

& &

039 27 single
quote

' '

040 28 open
paren

( (

041 29 close
paren

) )

042 2A asterisk * *

043 2B plus + +

044 2C comma , ,

045 2D hyphen - -

046 2E period . .

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 229



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

047 2F slash / /

048 30 zero 0 0

049 31 one 1 1

050 32 two 2 2

051 33 three 3 3

052 34 four 4 4

053 35 five 5 5

054 36 six 6 6

055 37 seven 7 7

056 38 eight 8 8

057 39 nine 9 9

058 3A colon : :

059 3B semicolon ; ;

060 3C less than < <

061 3D equal to = =

062 3E greater
than

> >

063 3F question ? ?

064 40 at @ @

065 41 A A A

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 230



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

066 42 B B B

067 43 C C C

068 44 D D D

069 45 E E E

070 46 F F F

071 47 G G G

072 48 H H H

073 49 I I I

074 4A J J J

075 4B K K K

076 4C L L L

077 4D M M M

078 4E N N N

079 4F O O O

080 50 P P P

081 51 Q Q Q

082 52 R R R

083 53 S S S

084 54 T T T

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 231



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

085 55 U U U

086 56 V V V

087 57 W W W

088 58 X X X

089 59 Y Y Y

090 5A Z Z Z

091 5B left
bracket

[ [

092 5C back slash \ \

093 5D right
bracket

] ]

094 5E circumflex
(caret)

^ ^

095 5F underscor-
e

_ _

096 60 grave
accent

097 61 a a a

098 62 b b b

099 63 c c c

100 64 d d d

101 65 e e e

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 232



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

102 66 f f f

103 67 g g g

104 68 h h h

105 69 i i i

106 6A j j j

107 6B k k k

108 6C l l l

109 6D m m m

110 6E n n n

111 6F o o o

112 70 p p p

113 71 q q q

114 72 r r r

115 73 s s s

116 74 t t t

117 75 u v u

118 76 v v v

119 77 w w w

120 78 x x x

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 233



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

121 79 y y y

122 7A z z z

123 7B right
brace

} {

124 7C bar | |

125 7D left brace } }

126 7E tilde ~ ~

127 7F solid

128 80 copyright © ©

129 81 registered
trademar-
k

® ®

130 82 trademar-
k

TM TM

131 83 bullet ·

132 84 superscrip-
t +

+

133 85 double
quote
(modified)

"

134 86 checkmar-
k

135 87 right-
pointing

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 234



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

triangle

136 88 approxim-
ately
equal
symbol

≈ ≈

137 89 OE
ligature

a

138 8A oe
ligature

i

139 8B beta ß u

140 8C Sigma Σ e

141 8D Omega Ω o

142 8E blank ya

143 8F blank yu

144 90 dotless i ı yo

145 91 grave
accent

Dbl
next
conson-
ant

146 92 acute
accent

-

147 93 circumflex A

148 94 tilde I

149 95 macron ¯ U

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 235



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

150 96 breve ˘ E

151 97 dot accent ˙ O

152 98 dieresis ¨ KA

153 99 blank KI

154 9A ring ˚ KU

155 9B cedilla ¸ KE

156 9C blank KO

157 9D hungaru-
mlaut

˝ SA

158 9E ogonek ˛ SHI

159 9F caron ˇ SU

160 A0 blank Yen
symbol

161 A1 inverted
exclamati-
on point

¡ Closed
circle

162 A2 cent ¢ Start
quote

163 A3 sterling £  End
quote

164 A4 currency ¤ Comma

165 A5 yen ¥  End
sentenc-

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 236



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

e

166 A6 broken
bar

¦ o

167 A7 section § a

168 A8 dieresis ¨ i

169 A9 copyright © u

170 AA feminine
ordinal

ª e

171 AB left
guillemot

«  o

172 AC logical not ¬ ¬ya

173 AD en dash - yu

174 AE registered ® yo

175 AF macron ¯ Dbl
next
conson-
ant

176 B0 degree ° -

177 B1 plus/minu-
s

± A

178 B2 superscrip-
t 2

² I

179 B3 superscrip-
t 3

³ U

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 237



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

180 B4 acute
accent

´ E

181 B5 mu µ O

182 B6 paragraph ¶ KA

183 B7 centered
dot

· KI

184 B8 cedilla ¸ KU

185 B9 ¹ 1 KE

186 BA masculine
ordinal

º KO

187 BB right
guillemot

» SA

188 BC 1/4 ¼ SHI

189 BD 1/2 ½ SU

190 BE 3/4 ¾ SE

191 BF inverted
question
mark

¿ SO

192 C0 A grave À TA

193 C1 A acute Á CHI

194 C2 A
circumflex

Â TSU

195 C3 A tilde Ã TE

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 238



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

196 C4 A dieresis Ä TO

197 C5 A ring Å NA

198 C6 AE
ligature

Æ NI

199 C7 C cedilla Ç NU

200 C8 E grave È NE

201 C9 E acute É NO

202 CA E
circumflex

Ê HA

203 CB E dieresis Ë HI

204 CC I grave Ì FU

205 CD I acute Í HE

206 CE I
circumflex

Î HO

207 CF I dieresis Ï MA

208 D0 Eth Ð MI

209 D1 N tilde Ñ MU

210 D2 O grave Ò ME

211 D3 O acute Ó MO

212 D4 O
circumflex

Ô YA

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 239



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

213 D5 O tilde Õ YU

214 D6 O dieresis Ö YO

215 D7 multiply × RA

216 D8 O slash Ø RI

217 D9 U grave Ù RU

218 DA U acute Ú RE

219 DB U
circumflex

Û RO

220 DC U dieresis Ü WA

221 DD Y acute Ý N

222 DE Thorn Þ Voiced
conson-
ant

223 DF German
double s

ß Voiced
conson-
ant-P

224 E0 a grave à SE

225 E1 a acute á SO

226 E2 a
circumflex

â TA

227 E3 a tilde ã CHI

228 E4 a dieresis ä TSU

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 240



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

229 E5 a ring å TE

230 E6 ae
ligature

æ TO

231 E7 c cedilla ç NA

232 E8 e grave è NI

233 E9 e acute é NU

234 EA e
circumflex

ê NE

235 EB e dieresis ë NO

236 EC i grave ì HA

237 ED i acute í HI

238 EE i
circumflex

î FU

239 EF i dieresis ï HE

240 F0 eth ð HO

241 F1 n tilde ñ MA

242 F2 o grave ò MI

243 F3 o acute ó MU

244 F4 o
circumflex

ô ME

245 F5 o tilde õ MO

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 241



De-
c.
Val-
ue

He-
x.
Val-
ue

Descripti-
on

Fo-
nt
1

Fonts
2, 3, 4,
5, & 6

246 F6 o dieresis ö YA

247 F7 divide ÷ YU

248 F8 o slash ø YO

249 F9 u grave ù RA

250 FA u acute ú RI

251 FB u
circumflex

û RU

252 FC u dieresis ü RE

253 FD y acute ý RO

254 FE thorn þ WA

255 FF y dieresis ÿ N

Character Sets

eV+Language User's Guide, v2.x, 18318-000 Rev A

Page 242





Authorized Distributor:

In the interest of product improvement, 
specifications are subject to change without notice.

Cat. No. I604-E-01

Printed in USA
0316

 © OMRON Corporation 2016  All Rights Reserved.

OMRON Corporation      Industrial Automation Company

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200 Hoffman Estates, 
IL 60169 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON ADEPT TECHNOLOGIES, INC. 
4550 Norris Canyon Road, Suite 150, San Ramon, CA 94583 U.S.A.
Tel: (1) 925-245-3400/Fax: (1) 925-960-0590

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact:  www.ia.omron.com
Kyoto, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2), 
Alexandra Technopark, 
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711 OMRON (CHINA) CO., LTD.

Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road, 
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200


	eV+ Language User's Guide
	Table Of Contents
	eV+ Language User's Guide Introduction
	Introduction to the eV+ Language User's Guide
	Compatibility
	Manual Overview
	eV+ Release Notes
	Related Publications
	Dangers, Warnings, Cautions, and Notes
	Safety
	Notations and Conventions

	Programming eV+
	Creating a Program
	eV+ Program Types
	Format of Programs
	Executing Programs
	Program Stacks
	Flow of Program Execution
	Subroutines

	The SEE Editor and Debugger
	Data Types and Operators
	Introduction
	String Data Type
	Real and Integer Data Types
	Location Data Types
	Arrays
	Variable Classes
	Operators
	String Operator
	Order of Evaluation

	Program Control
	Introduction
	Unconditional Branch Instructions
	Program Interrupt Instructions
	Logical (Boolean) Expressions
	Conditional Branching Instructions
	Looping Structures
	Summary of Program Control Keywords

	Functions
	Using Functions
	String-Related Functions
	Location, Motion, and External Encoder Functions
	Numeric Value Functions
	Logical Functions
	System Control Functions

	Switches and Parameters
	Introduction
	Parameters
	Switches

	Motion Control Operations
	Introduction
	Location Variables
	Creating and Altering Location Variables
	Motion Control Instructions
	Tool Transformations
	Summary of Motion Keywords

	Input/Output Operations
	Digital I/O
	Serial and Disk I/O Basics
	Disk I/O
	Advanced Disk Operations
	Serial Line I/O
	DeviceNet
	Summary of I/O Operations

	Graphics Programming
	Creating Windows
	Monitoring Events
	Building a Menu Structure
	Creating Buttons
	Creating a Slide Bar
	Graphics Programming Considerations
	Communicating With the System Windows
	Additional Graphics Instructions

	Programming the Omron Adept T20 Pendant
	Introduction
	Writing to the Pendant Display
	Detecting User Input
	Programming Example: Pendant Menu

	Conveyor Tracking
	Introduction to Conveyor Tracking
	Installation
	Calibration
	Basic Programming Concepts
	Conveyor-Tracking Programming
	Sample Programs

	Multiprocessor Systems
	Example eV+ Programs
	Introduction
	Pick and Place
	Menu Program

	External Encoder Device
	Introduction
	Parameters
	Device Setup
	Reading Device Data

	Character Sets



