OMRON

Machine Automation Controller NJ-series

General-purpose Ethernet
Connection Guide
(TCP/IP)

OMRON Corporation

ZW-series Displacement Sensor

Network

Connection

Guide

SYSINAL ———
always in control

About Intellectual Property Right and Trademarks

Microsoft product screen shots reprinted with permission from Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
EtherCATy is registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

ODVA and EtherNet/IP™ are trademarks of ODVA

Company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

Table of Contents

1. Related ManUAIS ...t 1
2. Terms and DefinitiONSueeiiiiiiiiiiiiit e 2
3. REMAIKS e 3
A, OVEIVIBW ittt e ettt e e e e e ettt e e e e e e s st bbb e e e e e e e e s e e bnbbbeeeaaaaeaaaans 5
5. Applicable Devices and Support Software.......cccccceeviiiiiiieeiiee e, 6
5.1. FaY o] o] o= 1o LT B LYo 6
5.2. Device Configuration.........cccccceeeeeiiieecesece s 7
6. Ethernet Communications SettiNngS.....ccccccovviiviiiiiiie e 9
6.1. Ethernet Communications SettingsS.......ccccoevveevrieriiisiireeer e 9
6.2. Example of Checking CONNECLiONuuuviuiiiiiiiiiiiiiiiniiienrninniinann. 10
7. CONNECLION ProCEAUIEuuiiiiiiei ittt 11
7.1. WOTK FIOW ..o 11
7.2. Setting Up the Displacement SeNsor...........ccccceev e, 12
7.3. Setting Up the CONtroller..........oueoviiiiiiiiiieee e 19
7.4. Checking the Ethernet Communications............cccoeevveeiieei e, 27
8. Initialization Methodcooiiiiiiii e 30
8.1. Initializing the Controller.............ccouuiiaees 30
8.2. Initializing the Displacement SENSOrccuvveieiieeeiiiiieee e 30
1S B o o Lo =11 ¢ TP PO PPRPPP 31
9.1. OVBIVIBW ..ttt ettt e e e e e s bbb e e e e e e s e e snab e e e e eeas 31
9.2. Destination Device ComMmMand...........ccccoiiiiiiiiiiiiieeee i ee e 35
9.3. Error Detection ProCeSSINGcccuvvvviiiiieeiiiiiie et 39
9.4. VariabIESsoooii e 42
9.5. Y B (0] | = 1 1 o F SO PUSPPRRP 47
9.6. TIMING CRAS ... e 64
9.7. EFTOr PrOCESSeiiiiiii e 70

O B LAV =Y o T 1K) (0 74

1. Related Manuals

Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all
Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for
each device which is used in the system.

Cat.No. Model Manual name
W500 NJISO0L-[][NJ-series CPU Unit Hardware User's Manual
NJ301-[I[00
w501 NJSO1-[]00 NJ-series CPU Unit Software User's Manual
NJ301-[][00
W506 NJISO0L-[I[NJ-series CPU Unit Built-in EtherNet/IP Port User's Manual
NJ301-[][00
W504 SYSMAC-SE2[][][] | Sysmac Studio Version 1 Operation Manual
W502 NJISOL-[I[NJ-series Instructions Reference Manual
NJ301-[][0
7322 ZW-C1][] Confocal Fiber Type Displacement Sensor User's Manual
2332 ZW-CE1]] ZW Series Displacement Sensor (Confocal Fiber Type)
User's Manual

2. Terms and Definitions

2. Terms and Definitions

Term Explanation and Definition

IP address Ethernet uses an IP address to perform communications.

The IP address (Internet Protocol address) is an address that is used to
identify a node (host computer or controller, etc.) on Ethernet.

IP addresses must be set and managed so that they do not overlap.

Socket A socket is an interface that allows you to directly use TCP or UDP
functions from the user program. The socket services enable data
exchange with destination nodes. The NJ-series Machine Automation
Controller performs socket communications by using the standard socket
service instructions.

Connect processing/ | Open processing is executed on each node to connect the TCP socket.
Accept processing The open method depends on whether the node is opened as a server or
client.

In this document, the processing executed to open a node as a client is
called "connect processing" and the processing executed to open as a
server is called "accept processing".

Keep-alive function | When the keep-alive function is used with TCP/IP socket services, the
keep-alive communications frame is used to check the status of the
connection with the destination node (either a server or client) if there are
no communications during the specified time interval.

Checks are executed at a certain interval, and if there is no response to
any of them then the connection is terminated.

Linger function This is an option for the TCP socket that enables immediate connect
processing using the same port number without waiting until the port
number opens after RST data is sent when the TCP socket closes.

If the linger option is not specified, FIN data will be sent when a TCP
socket is closed, and then approximately 1 minute will be required to
confirm the transmission and perform other closing management with the
destination node. Therefore, it may not be possible to immediately use
TCP sockets with the same port number.

3. Remarks

3. Remarks

(1) Understand the specifications of devices which are used in the system. Allow some
margin for ratings and performance. Provide safety measures, such as installing safety
circuit in order to ensure safety and minimize risks of abnormal occurrence.

(2) To ensure system safety, always read and heed the information provided in all Safety
Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for
each device used in the system.

(3) The user is encouraged to confirm the standards and regulations that the system must
conform to.

(4) It is prohibited to copy, to reproduce, and to distribute a part of or whole part of this
document without the permission of OMRON Corporation.

(5) The information contained in this document is current as of July 2013. It is subject to
change without notice for improvement.

3. Remarks

The following notation is used in this document.

Indicates a potentially hazardous situation which, if not avoided,
A WARN'NG will result in minor or moderate injury, or may result in serious

injury or death. Additionally there may be significant property
I (2mage.

f C t Indicates a potentially hazardous situation which, if not avoided,
aution may result in minor or moderate injury or in property damage.

@ Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

El Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

% Additional Information

Additional information to read as required.
This information is provided to increase understanding or make operation easier.

Symbol

The filled cincle symbol indicates operaions that you must do.
The specific operation is shown in the circle and explained in et
This exampls shows & genaral precaution lor something that you must do

I

4. Overview

Overview

This document describes the procedure for connecting OMRON Corporation’s Displacement
Sensor (ZW series) (hereinafter referred to as the Displacement Sensor) to the NJ-series
Machine Automation Controller (hereinafter referred to as the Controller) via Ethernet, and
provides the procedure for checking their connection.

Refer to the Ethernet communications settings of the prepared Sysmac Studio project file to
understand the setting procedure and key points to connect the devices via Ethernet.

The user program in this Sysmac Studio project file is used to check the Ethernet connection
by sending/receiving the message of “VR (Version information acquisition)” to/from the
destination device.

Prepare the latest Sysmac Studio project file beforehand. To obtain the file, contact your
OMRON representative.

Name File name Version
Sysmac Studio project file | OMRON_ZW_ETN(TCP)_EV101.smc Ver.1.01
(extension: smc)

*Hereinafter, the Sysmac Studio project file is referred to as the “project file”.
The user program in the project file is referred to as the “program”.

This document aims to explain the wiring method and communications settings

necessary to connect the corresponding devices and provide the setting
procedure. The program used in this document is designed to check if the
connection was properly established, and is not designed to be constantly used
at a site. Therefore, functionality and performances are not sufficiently taken into
consideration. When you construct an actual system, please use the wiring

method, communications settings and setting procedure described in this
document as a reference and design a new program according to your

application needs.

5. Applicable Devices and Support Software

5. Applicable Devices and Support Software

I 5.1. Applicable Devices

The applicable devices are as follows:

Manufacturer Name Model Version

NJ501-[][0[
NJ301-[]{][]

OMRON Confocal Fiber Type ZW-C1[J/CE1[JCE1[JT | Versions listed
in Section 5.2 or
higher versions

OMRON NJ-series CPU Unit

Displacement Sensor
Controller
OMRON Sensor Head ZW-S[](]

’% Additional Information

As applicable devices above, the devices listed in Section 5.2. are actually used in this
document to check the connection. When using devices not listed in Section 5.2, check the
connection by referring to the procedure in this document.

’% Additional Information

This document describes the procedure to establish the network connection. It does not
provide information about operation, installation nor wiring method of each device.

For details on the above products (other than communication connection procedures), refer
to the manuals for the corresponding products or contact your OMRON representative.

’% Additional Information

You can connect devices with the versions listed in Section 5.2 or higher versions.

For devices whose versions are not listed in Section 5.2, the versions are not managed or
there is no version restriction.

To connect a device whose model number is not listed in Section 5.2, use the same version
of the device that is listed.

5. Applicable Devices and Support Software

I 5.2. Device Configuration

The hardware components to reproduce the connection procedure of this document are as

follows:

Personal computer
(Sysmac Studio installed,
OS: Windows 7)

. USB cable

NJ501-1500

(Built-in EtherNet/IP port)

Switching hub

= W4S1-05C
Manufacturer Name Model Version
OMRON NJ-series CPU Units NJ501-1500 Ver.1.03
(Built-in EtherNet/IP port)
OMRON Power Supply Unit NJ-PA3001
OMRON Switching Hub WA4S1-05C Ver.1.0
OMRON Sysmac Studio SYSMAC-SE2[]I] Ver.1.04
OMRON Sysmac Studio project file OMRON_ZW_ETN(TCP)_ | Ver.1.01
EV101.smc
- Personal computer -
(OS:Windows7)
- USB cable -
(USB 2.0 type B connector)
- LAN cable (STP (shielded, | -
twisted-pair) cable of Ethernet
category 5 or higher)
OMRON Displacement Sensor ZW-C15 Ver.1.000
Controller
OMRON Displacement Sensor ZW-S20
Sensor Head
OMRON Calibration ROM (Included with Sensor

Head.)

El Precautions for Correct Use

Prepare the latest project file in advance.
To obtain the file, contact your OMRON representative.

El Precautions for Correct Use

Update the Sysmac Studio to the version specified in this section or higher version using the
auto update function. If a version not specified in this section is used, the procedures
described in Section 7 and subsequent sections may not be applicable. In that case, use the
equivalent procedures described in the Sysmac Studio Version 1 Operation Manual (Cat.No.

W504).

~

5. Applicable Devices and Support Software

’% Additional Information

It may not be possible to reproduce the same operation with different devices or versions.
Check the configuration, model and version. If they are different from your configuration,
contact your OMRON representative.

’g Additional Information

The system configuration in this document uses USB for the connection between the
personal computer and the Controller. For information on how to install the USB driver, refer
to A-1 Driver Installation for Direct USB Cable Connection of the Sysmac Studio Version 1
Operation Manual (Cat.No. W504).

6. Ethernet Communications Settings

6. Ethernet Communications Settings

This section describes the specifications of the communication parameters that are set in this
document and outlines the operation.

’% Additional Information
To perform communications without using the settings described in this section, you need to
modify the program. For information on the program, refer to Section 9. Program.

I 6.1. Ethernet Communications Settings
The settings required for Ethernet communications are shown below.

6.1.1. Communications Settings between the Controller and the Displacement

Sensor
The setting example below is used to explain the procedure for connecting the Controller to

the Displacement Sensor.

Setting item Controller Displacement Sensor
IP address 192.168.250.1 192.168.250.2
Subnet mask 255.255.255.0 255.255.255.0 (Default)
Gateway 192.168.0.1 (Default)
Port number Automatic allocation 9600 (Default)
(Set by the program.)
Terminator - [CR] (Default)

*In this document, the gateway setting is unnecessary because the connection is made in
the same segment.

*This project file uses the default settings of the keep-alive and linger option functions for
the TCP socket communications (keep-alive: use, linger option: Do not use). Use these
functions according to the system when necessary.

6. Ethernet Communications Settings

I 6.2. Example of Checking Connection

This document shows an example of a Structured Text (ST) program in which the Controller
executes the connect processing, send/receive processing, and close processing on the
Displacement Sensor.

The Controller and Displacement Sensor send and receive the message of “VR (Version
information acquisition). The following figure outlines the operation.

Controller (CPU Unit)

Built-in EtherNet/IP port Ethernet Displacement Sensor

ng

PrOJeCt flle gS..(.:;.C..l.(..e.i :%
ST Program i communications
o function ..
IF THEN
ELSE
__/_ Connect processi

>

Executing Ethernet Sending/Receiving Ethernet

communications command command
VR (Version information
acquisition)
! !
: Send data
Local_SrcData EEREE 2
> >

Send data
setting area

: Receive data
Local_RecvData RERERE 2

Receive data
storage area

Close processing
> >

10

Connection Procedure

7. Connection Procedure

This section describes the procedure for connecting the Displacement Sensor to the

Controller via Ethernet.

This document explains the procedures for setting up the Controller and Displacement Sensor
from the factory default setting. For the initialization, refer to Section 8 Initialization Method.

I 7.1. Work Flow

Take the following steps to connect the Displacement Sensor to the Controller via Ethernet.

7.2. Setting Up the Displacement
Sensor

!

7.2.1. Parameter Setting

!

7.3. Setting Up the Controller

!

7.3.1. Starting the Sysmac Studio and
Importing the Project File

!
7.3.2. Checking the Parameters and
Building
1

7.3.3. Connecting Online and
Transferring the Project Data

!

7.4. Checking the Ethernet
Communications

!

7.4.1. Executing the Program and
Checking the Receive Data

Set up the Displacement Sensor.

Set the parameters for the Displacement Sensor.

Set up the Controller.

Start the Sysmac Studio and import the project file.

Check the set parameters, execute the program
check on the project data and build the Controller.

Connect online with the Sysmac Studio and transfer
the project data to the Controller.

Execute the program and confirm that Ethernet
communications are normally performed.

Execute the program and confirm that the correct
data are written to the variables of the Controller.

11

7. Connection Procedure

I 7.2. Setting Up the Displacement Sensor

Set up the Displacement Sensor.

7.2.1. Parameter Setting

Set the parameters for the Displacement Sensor.

Check the keys and display

1 used to set parameters for the Main display(red)
Displacement Sensor. Sub-display(green)
Run indicat
Connect the Sensor Head. un indicator(green)
ZERORST/EST key
Insert the Calibration ROM.
—(LEFT) key T (UP) key
Connect the LAN cable. —(RIGHT) key | (DOWN) key
Turn ON the power supply to the Control panel | ZERO/SET key
Displacement Sensor.
| N Mode switching key
| & K)
8 L ¥ Connectors/ Sensor Head
heomm ": terminals
_} Calibration ROM
| :w - @°J 24V power supply
M N N AN \=Ac7 H | LAN cable
2 After the startup screen is
displayed, the RUN mode
screen is displayed.
The RUN indicator is lit as
shown on the right.
Hold down the Mode switching oo
Key for two seconds. -v Hold down the Mode switching Key
for two seconds.
3 A confirmation screen for mode
switching is displayed. & E_ ¥ 1§

i/

Press the ZERO/SET Key.
Press the ZERO/SET Key once.

12

7. Connection Procedure

4

The FUN mode screen is
displayed.

The RUN indicator is not lit as
shown on the right.

Press — (RIGHT) or < (LEFT)
Key to change the main display
content from SENS to SYSTEM.

Press the ZERO/SET Key.

SAVE is displayed on the main
display.

Press — (RIGHT) or < (LEFT)
key to change the main display
content from SAVE to COM.

-v Press the — (RIGHT) or «— (LEFT) Key.

Press the ZERO/SET Key.
Press the ZERO/SET Key once.

RS232C is displayed on the
main display.

Press the — (RIGHT) Key and
change the main display content
from RS232C to ETN.

-v Press the — (RIGHT) Key once.

Press the ZERO/SET Key.

-v Press the ZERO/SET Key once.

13

7. Connection Procedure

v

IPADDR is displayed on the
main display.

Press the ZERO/SET Key.
~.v Press the ZERO/SET Key once.

IP1 is displayed on the main ==
display. J) _l [
Press the ZERO/SET Key. ' ‘ ‘
Confirm that 192 is displayed on
the sub-display.

*If the setting value is different,
change the value by referring to I press the ZERO/SET Key.
steps 11 and 12.

*In this step, you set 192 that is
the first octet of IP address
192.168.250.2.

Press the ZERORST/ESC Key

once. The first screen in this
step s displayed again. L Press the ZERORST/ESC Key.

Press the — (RIGHT) Key once. [|P1is displayed.
‘., Press the — (RIGHT) Key once.

IP2 is displayed on the main
display.

Press the ZERO/SET Key.

Confirm that 168 is displayed on

the sub-display.

*If the setting value is different,
change the value by referring to T press the ZERO/SET Key once.
steps 11 and 12.

*In this step, you set 168 that is
the second octet of IP address
192.168.250.2.

Press the ZERORST/ESC Key

gpecpeisT:izgig[es;fgeaﬂr:n this i.r Press the ZERORST/ESC Key once.

Press the — (RIGHT) Key once. P2 is displayed.
‘., Press the — (RIGHT) Key once.

14

7. Connection Procedure

10

IP3 is displayed on the main
display.

Press the ZERO/SET Key.

Confirm that 250 is displayed on

the sub-display.

*If the setting value is different,
change the value by referring to L press the ZERO/SET Key once.
steps 11 and 12.

*In this step, you set 250 that is
the third octet of IP address
192.168.250.2.

Press the ZERORST/ESC Key

once. The first screen in this
step is displayed again. l_ Press the ZERORST/ESC Key once.

Press the — (RIGHT) Key once. IP3 is displayed.
J, Press the — (RIGHT) key once.

11

IP4 is displayed on the main —
display. | | l__'!

Press the ZERO/SET Key.

~.v Press the ZERO/SET Key once.

The default value is displayed v ! —‘ '—I'

on the sub-display. ' ' l
S N
L

Press the ZERO/SET Key. ~.v Press the ZERO/SET Key once.

The sub-display content
changes, allowing you to
change the value.

Select a digit whose value you
want to change by pressing the
— (RIGHT) or « (LEFT) Key.
You can change the value of a
blinking digit.

Change the value by pressing
the 1 (UP) or | (DOWN) Key.
Change to 000002.

Press the — (RIGHT) or «— (LEFT) Key.
Press the 1 (UP) or | (DOWN) Key.

15

7. Connection Procedure

12

000002 is displayed on the
sub-display.

Press the ZERO/SET Key.

2 is displayed on the
sub-display.

*In this step, you set 2 that is the
fourth octet of IP address
192.168.250.2.

-v Press the ZERO/SET Key once.

/ l:ll_;
I -

Press ZERORST/ESC Key
once. The first screen in step 11
is displayed again.

c

Press the ZERORST/ESC Key .-. Press the ZERORST/ESC Key once.
once. IP4 is displayed.

JJL Press the ZERORST/ESC Key once.

13

IPADDR is displayed on the
main display.

Press the — (RIGHT) Key once
to change the main display to
SUBNET.

-v Press the — (RIGHT) Key once.

|y LY |y .

JiJirJrvie_ i

Press the ZERO/SET Key.

‘Press the ZERO/SET Key once.

14

The main display content
changes to SUBI.

Press the ZERO/SET Key.

255 is displayed on the
sub-display.

Press the ZERORST/ESC Key
once.

‘., Press the ZERORST/ESC Key once.

16

7. Connection Procedure

15

Press the — (RIGHT) Key and
change the main display content
to SUB2, SUB3 and SUB4.
Press the ZERO/SET Key to
check the setting values.
Check that the values between
SUB2 and SUB4 are as follows:
*SUB2, SUB3: 255
*SUB4: 0

L) LS
*In steps 14 and 15, you set — l - y
subnet mask 255.255.255.0. i

]
J

i-r Press the ZERORST/ESC Key three
times.

After checking, press the
ZERORST/ESC Key three
times.

16

ETN is displayed on the main
display.

Press the — (RIGHT) Key and
change the main display content
to DELIMI.

-v Press the — (RIGHT) Key once.

Press the ZERO/SET Key.

17

Confirm that CR is displayed on
the sub-display.

*If the value is different, change
the value by pressing 1 (UP) or
| (DOWN).

<Setting range>
CR/LF/CRLF
Default: CR

Hold down the Mode switching
Key for two seconds.

-7Hold down the Mode switching Key for
two seconds.

17

7. Connection Procedure

18

The confirmation screen for

4

mode switching is displayed. | | |1) |

_-“frii’ By k.1

/ Y|
OK /L AN

Press the ZERO/SET Key.
-7Press the ZERO/SET Key once.

The save confirmation screen is
displayed.

Press the ZERO/SET Key.

The RUN mode screen is
displayed.

19

Cycle the power supply to the
Displacement Sensor.

*The new IP address and
subnet mask will take effect
after restarting.

18

7. Connection Procedure

I 7.3. Setting Up the Controller
Set up the Controller.

7.3.1. Starting the Sysmac Studio and Importing the Project File
Start the Sysmac Studio and import the project file.
Install the Sysmac Studio and USB driver beforehand.

1 Confirm that the personal
computer is connected to the
Controller through a USB cable,
and turn ON the power supply to
the Controller.

Start the Sysmac Studio and
click the Import Button.

*If a confirmation dialog for an
access right is displayed at
start, select to start.

2 The Import File Dialog Box is 2
. L. ¥ TSUNAGI ~ | 5 Seorch TSUNAG! pel
dlsplayed' Select Orgsnize » New folder - 0O @
OMRON_ZW_ETN(TCP)_EV10 J Favorites = | = oMRON 2w ETNCTCP) 1oL sme |
. & Download
1.smc and click the Open S Recent Places
B Desktop =|
Button.
= Libraries
S‘ Documents
. . . &' Music
*Obtain the project file from %mwes
Videos
OMRON.
*& Homegroup A
File name: OMRON_ZW _ETN(TCP) V101l.smc ~ |Sysmac Studio project file (".sr v]
open [v]| [concel |

3 OMRON_ZW_ETN(TCP)_V101
project is displayed.
The left pane is called Multiview I .
Explorer, the right pane is called

Toolbox and the middle pane is

called Edit Pane. Multiview
*If an error message is
displayed stating “Failed to
Load Descendants”, change the
version of the Sysmac Studio to
any version specified in 5.2.
Device Configuration or higher
version.

19

7. Connection Procedure

7.3.2. Checking the Parameters and Building
Check the set parameters, execute the program check on the project data and build the
Controller.

1 Double-click Built-in ¥ Configurations and Setup

EtherNet/IP Port Settings 5% EtherCAT
under Configurations and - =1 CPU/Expansion Racks
«* IO Map
¥ 3 Controller Setup
ff Operation Settings

Setup - Controller Setup in the
Multiview Explorer.

» it Motion Control Setup
2 The Built-in EtherNet/IP Port) Port
Settings Tab Page is displayed

in the Edit Pane.
v IP Address
) O Fixed setting
Select the TCP/IP Settings CELL IR 107, 168,250, 1
Button, select the Fixed setting il 255 - 255 . 255 . _0

. i . Default gateway |
Option in the IP Address Field, @ Obizin et BOOTP seni,

and make the foIIowing settings. @ Fix at the IP address obtained from BOCTP server.

*IP address: 192.168.250.1
*Subnet mask: 255.255.255.0
eDefault gateway:

. (blank)
3 Double-click the Task Settings » % Motion Control Setup
under Configurations and ¢ Cam Data Settings

Setup in the Multiview Explorer * Event Settings

F+ Data Trace Settin

4 The Task Settings Tab Page is
displayed in the Edit Pane.
Click the Program Assignment
Settings Button and confirm
that ProgramO is set under
PrimaryTask.

¥ I PrimaryTask
@ 1 Program0

5 Select Check All Programs | Project Controller Simulation Tos

from the Project Menu. Check All Programs F7
Check Selected Programs Shift+F7
Build Controller F&

Rebuild Controller

20

7. Connection Procedure

6 The Build Tab Page is displayed
in the Edit Pane.

) Program | Location
Confirm that “O Errors” and “O

Warnings” are displayed.

7 Select Rebuild Controller from Project Controller Simulation Toc

the Project Menu. Check All Programs F7
Check Selected Programs Shift+F7
Build Controller F&
Rebuild Controller
Shifi+Fg

L1l

A screen is displayed indicating
the conversion is being
performed.

8 Confirm that “0 Errors” and “0
Warnings” are displayed in the
Build Tab Page | Cesuiption | Program | Location

21

7. Connection Procedure

7.3.3. Connecting Online and Transferring the Project Data
Connect online with the Sysmac Studio and transfer the project data to the Controller.

Always confirm safety at the destination node before you transfer a user
program, configuration data, setup data, device variables, or values in memory
used for CJ-series Units from the Sysmac Studio.

The devices or machines may perform unexpected operation regardless of the
operating mode of the CPU Unit.

1 Select Change Device from the | Controller Simulation Tools Help
Controller Menu. Communications Setup...
Change Device

Cnline Ctrl+W
Ctri+Shift+W

2 The Change Device Dialog Box
is displayed.
Confirm that the Device and

L !
' i Select Device

Version are set as shown on the

right and click the OK Button. | Category Controller
Device NISO1 v - 1500
*If the settings are different, Version 1.02
change the values from the
pull-down list. OK

o8 crerge oo SN |

3 If settings are changed in step 2,
the Build Dialog Box is
displayed. Click the Yes Button.

*This dialog box is not displayed
if no change is made.

4 Select Communications Setup Controller Simulation Tools Help
from the Controller Menu. Communications Setup...

Change Device

Cnline Cirl+W
Crl+Shift+W

22

7. Connection Procedure

5 The Communications Setup (8l Commrict
¥ Connection type
D iaIOg Box is dis p [ayed i UG e

@ Direct connection via Ethemet

Select the Direct Connection via R e]

@ Ethemnet connection via a hub
@ Select one method from these options at every online connection.

USB Option for Connection B

Bl Remote connection via USB

Type] B Ethemet connection via a hub

H ¥ Remote IP Address
C I |Ck th e O K B Utton . Select a method to connect with the Controller to use every time you go online.

USB Communications Test Ethemet Communications Test
¥ Options

K Confirm the serial ID when going anline.
K Check forced refreshing when going offline.

¥ Response Monitor Time

Set the Response Monitor Time in the communications with the Controller.

2 [l
6 Select Online from the Controller Simulation Tools Help
Controller Menu. Communications Setup...
Cnline Cirl+W
Ctrl+Shift+W

*Example of confirmation dialog box
Sysmac studio

*If the dialog on the right is

displayed, the model or version IR

of the Controller does not Project: N1501-1300

match that of the project file. Controller: NJ501-1500

Check the settings of the Check the following:

prOjeCt flle, return to Step 1 and - Check the controller o connect (connection method) in the communications settings.
try ag ain_ - Is the controller model set in the project matched with the target controller model?

Click the OK Button to close
the dialog box.

*The model and version LR

displayed on the confirmation
dialog box differ depending on
the Controller used and the R Sy
device setting of the project file.

The device 'version' set in the project is newer than the 'version' of the connected Controller.

Check the device "version® set in the project.

0K

23

7. Connection Procedure

7 A confirmation dialog is
displayed. Click the Yes Button.

*The displayed dialog differs
depending on the status of the
Controller used. Select the Yes
Button to proceed with the
processing.

*The displayed serial ID differs
depending on the device.

F

e

Sysmac Studio

The CPU Unit has no name.
Do you want to write the project name [new_NJ501_0] to the CPU Unit name? (Y/N)

.
Sysmac Studio

Senial ID not matched.

Project:
Mame: [new_NJ501_0]
Serial ID: [L701-31810-9999]

Controller:
Mame: [new_NJ501_0]
Serial ID: [L701-08111-0104]

Do you want to continue the connection processing? (Y/N)

P

Sysmac Studio

Do you want to change the Serial ID in the project to the controller's Serial ID? (Y/N)
{It will be used at the ID check of next online connection.)

Additional Information

For details on online connections to a Controller, refer to Section 5 Going Online with a
Controller in the Sysmac Studio Version 1 Operation Manual (Cat. No. W504).

When an online connection is
established, a yellow bar is
displayed on the top of the Edit
Pane.

<\, Configurations and Setup

Select Synchronization from
the Controller Menu.

Controller Simulation Teools Help
Ctril+W
Offline Ctrl+5hift+W
Synchronization Ctrl+M
Maode 3

24

7. Connection Procedure

10 The Synchronization Dialog Box

is displayed.

Confirm that the data to transfer
(NJ501 in the right figure) is
selected. Then, click the
Transfer to Controller Button.

*After executing Transfer to
Controller, the Sysmac Studio
project data is transferred to the
Controller and the data are
compared.

Synchronization

! | Computer: Data Name |Computer: Update DaController: Update D4 Controller: Data Name [Compare
B L NS0l 20

Legend: | Synchronized

B Clear the present values of variables with Retain attribute (Valid for Transfer to Controller).

B Do not transfer the program source (Valid for Transfer to Controller). All data will be re-transferred when this option is changed.
E Do not transfer Special Unit parameters and backup parameters of EtherCAT slaves (out of synchronization scope).

o) All data will be transferred because the controller has no data.

s i]

11

A confirmation dialog is
displayed. Click the Yes Button.

A screen stating "Synchronizing”
is displayed.

A confirmation dialog box is
displayed. Click the Yes Button.

Sysmac Studio

Confirm that there is no problem if the controller operation is stopped.

The operating mode will be changed to PROGRAM mode. Then, EtherCAT slaves will be reset and forced refreshing will
be cancelled.

Do you want to continue?(¥/N)

| Yes No

Synchrenizing...

21%

Sysmac Studio

A

Confirm that there is no problem if the controller operation is started.
The operating mode will be changed to RUN mode.

Do you want to continue?{Y/MN)

25

7. Connection Procedure

12 Confirm that the synchronized
data is displayed with the color
specified by “Synchronized” and
that a message is displayed
stating "The synchronization
process successfully finished".
If there is no problem, click the
Close Button.

*A message stating "The
synchronization process
successfully finished" means
that the project data of Sysmac
Studio matches that of the
Controller.

*If the synchronization fails,
check the wiring and repeat the
procedure described in this
section.

Synchronization

| | Computer:Patabamz Cogiii, Uy =+2 N2 Controller: Data Name {Comparel
| NJ501 2013/01/07 11:06:

Legend: ' Synchronized

B Clear the present values of variables with Retain attribute (Valid for Transfer to Controller).
B Do not transfer the program source (Valid for Transfer to Controller). All data will be re-transferred when this option is changed.
K Do not transfer Special Unit parameters and backup parameters of EtherCAT slaves {out of synchronization scope).

The Synchronization process successfully finished.

Close

26

7. Connection Procedure

I 7.4. Checking the Ethernet Communications

Execute the program and confirm that Ethernet communications are normally performed.

/\ Caution

Sufficiently confirm safety before you change the values of variables on a Watch
Tab Page when the Sysmac Studio is online with the CPU Unit. Incorrect
operation may cause the devices that are connected to Output Units to operate
regardless of the operating mode of the Controller.

El Precautions for Correct Use

Please confirm that the LAN cable is connected before proceeding to the following steps.
If it is not connected, turn OFF the power to the devices, and then connect the LAN cable.

7.4.1. Executing the Program and Checking the Receive Data
Execute the program and confirm that the correct data are written to the variables of the

Controller.

1 Confim that RUN mode i
displayed on the Controller ONLINE @& 192.168.250.1
Status Pane of the Sysmac ERR/ALM & RUN mode
Studio. Controller Simulation Tools Help

If PROGRAM mode is shown,
Ctrl+W

select Mode - RUN Mode from Offline Ctri+Shift+W b
the Controller Menu. Synchronization Ctrl+M n +
Mode » RUN Mode.. Ctrl=3
| Ctrl+1

A confirmation dialog box is -

displayed. Click the Yes Button. '
Make sure a Controller startup will cause no problem.
Do you want to change to RUN Mode? (Y/N)

| g

2 Select Watch Tab Page from the | Wiew Inssrt Project Contreller Simulatio

View Menu. Cutput Tab Page Alt=3
Watch Tab Page Alt=4
Cross Reference Tak Page Alt=5
Build Tab Pags Alt=6

3 The Watch Tab Page 1 is

(SROutput Tab Page A, Build Tab Page [73 Watch Window (Proj

displayed in the lower section of I Cnine value | Modify | ___Data type
the Edit Pane.

27

7. Connection Procedure

4 Confirm that the variables shown

on the right are displayed in the Program{.Input_Start — Start input
Name Columns.
Program.Output_ErrCode —» Error codes
*To add a variable, click Input Program{.Cutput_SktCmdsErroriD
Name... Program0.Output_sktCloseErrorlD TCP
*Program0 of the Name is Program0.Cutput_MErrCode connection
omitted from the following Frogramd.0Output_EtnTcpsia status
descriptions. Program{.ETMN_SendMessagesSet_instance.Send_Data
FrogramQ.Output_Recvhess \
Program@.Local_Status \

— ‘ ! -

Program execution status Receive data Send data

5 Click TRUE on the Modify E |Online valuel Modify
Column of Input_Start Program.Input_Start False || TRUE FALSE
The Online value of Input_Start Name IOnline valuel Modify

Program@.Input_Start True) FALSE

changes to True.

The program is operated and
Ethernet communications are
performed with the destination
device.

6 When the communications end
normally, each error code
changes to 0.

The TCP connection status
(Output_EtnTcpSta) changes to
_CLOSED.

*In the case of error end, the
error code corresponding to the
error is stored. For details on
error codes, refer to 9.7 Error
Process.

The online value of
Local_Status.Done, which
indicates the execution status of
the program, changes to True. In
the case of error end,
Local_Status.Error changes to
True.

*When Input_Start changes to
FALSE, each Local_Status
variable also changes to False.
For details, refer to 9.6 Timing
Charts.

7. Connection Procedure

[Cnline valuel
ProgramQ.Input_Start

Program0.0utput_ErrCode

Program{.Cutput_skiCmdsErroriD

Program{.Output_sktCloseErrorlD

Program{.Cutput_MErrCode

Program.Output_EtnTcpSta _CLOSED

| True| FALSE |
ocoo |
ocoo |
oooo |
0000 0000 |

Modify

k3

Program0.Local_Status

False TRUE FALSE
True TRUE FALSE
TRUE FALSE

False

7 The response data received from
the destination device is stored
in Output_RecvMess.
(ETN_SendMessageSet_instanc
e.Send_Data is the send
command.)

Specify an area where you want
to reference in the Watch Tab
Pagel as shown in the right
figure.

*The response data differs
depending on the device used.

*Refer to 9.2. Destination Device
Command for details on the
command.

Program0.ETN_SendMessageSet_instance.Send_Data

Frogram0.Output_RecviMess

VRSR

ZW-C15 Verl.000 2012/02/09%R

Receive data
*\ersion information

Product type: ZW-C15
Blank: (2 characters)
Version: Ver1.000

Blank: (1 character)
Release date: 2012/02/09

*Terminator: “$R"([CR])

29

8. Initialization Method

8. Initialization Method

This document explains the setting procedure from the factory default setting.
Some settings may not be applicable as described in this document unless you use the
devices with the factory default setting.

I 8.1. Initializing the Controller

To initialize the settings of the Controller, place the operating mode to PROGRAM mode, and
select Clear All Memory from the Controller Menu of the Sysmac Studio. The Clear All
Memory Dialog Box is displayed. Click the OK Button.

~ Clear All Memory

CPU Umit Mame:
Model:
Area:

B Clear event log

= =

This function initializes the target area of destination Controller,
Confirm the area to initialize first, and press the OK button.

new_NJ501 0

NJ501-1500

User Program

User-defined Valiables

Controller Configurations and Setup

Security Information

Settings of Operation Authority(initialization at the next onling)

I 8.2. Initializing the Displacement Sensor

For the initialization of the Displacement Sensor, refer to Initializing Settings in Setting the
System in Chapter 3 SETTINGS FOR FUNCTIONS of the Confocal Fiber Type Displacement
Sensor User's Manual (Cat. No. Z2322).

30

9. Program

9. Program

This section describes the details on the program in the project file used in this document.

I9.1. Overview
This section explains the specifications and functions of the program used to check the
connection between the Displacement Sensor (ZW series) (hereinafter referred to as the
destination device) and the Controller (built-in EtherNet/IP port).

This program uses the socket service functions of the Controller to send and receive the “VR
(read version information)” command to/from the destination device and to detect a normal
end or an error end.

A normal end of this program means a normal end of the TCP socket communications.

An error end means an error end of the TCP socket communications and an error end of the
destination device (detected with the response data from the destination device).

In this section, the prefix “10#" (possible to omit) is added to decimal data and the prefix "16#"
to hexadecimal data when it is necessary to distinguish between decimal and hexadecimal
data. (e.g., “1000” or “10#1000” for decimal data and “16#03E8” for hexadecimal data, etc.)
Also, to specify a specific data type, the prefix “<data type>#" is added. (e.g.,
“WORD#16#03E8")

@ Additional Information
OMRON has confirmed that normal communications can be performed using this program
under the OMRON evaluation conditions including the test system configuration, version of
each product, and product Lot, No. of each device which was used for evaluation.
OMRON does not guarantee the normal operation under the disturbance such as electrical
noise or the performance variation of the device.

31

9. Program

9.1.1. Communications Data Flow

The following figure shows the data flow from when the Controller issues command data with
TCP socket communications to the destination device until when the Controller receives the
response data from the destination device. This program executes a series of processing from
the connect processing to the close processing continuously. The receive processing is
repeated when the response data is divided and multiple receive data arrive.

Connect processing The Controller issues a TCP socket connect request
to the destination device, and establishes a TCP
connection.

1

Sending a command The Controller issues a send message (command
data), which is set in the program, to the destination
device.

l

Receiving a response The Controller receives the receive message
(response data) from the destination device and
stores it in the specified internal variable (storage
area).

I

Close processing The Controller issues a close request to the
destination device, and terminates the TCP
connection.

*Depending on a destination device and a command, the response data may not be sent after
receiving command data or the response data may not be sent immediately after a
connection is established. With this program, the Send/Receive processing required/not
required setting can be set for the General-purpose Ethernet communications send data
setting function block.

If Send only is set, the response data receive processing is not performed. If Receive only is
set, the command data send processing is not performed.

32

9. Program

9.1.2. TCP Socket Communications with Socket Service Instructions
This section explains the TCP socket service function blocks and outlines the general
operation of the send/receive messages.

@ Additional Information

For details, refer to Communications Instructions in Section 2 Instruction Descriptions of the

NJ-series Instructions Reference Manual (Cat. No. W502).

eSocket Service Instructions

This program uses the following 5 standard instructions to perform socket communications.

Name Function blocks Description
Connect TCP SktTCPConnect Connects the TCP port of the destination device.
Socket
TCP Socket SktTCPSend Sends data from the specified TCP socket.
Send
TCP Socket SktTCPRcv Reads the data from the receive buffer for the
Receive specified TCP socket.
Close TCP SktClose Closes the specified TCP socket.
Socket
Read TCP SktGetTCPStatus | Reads the status of the specified TCP socket.
Socket Status The program uses this instruction for the following
2 types of processing.
(1) Processing to check the arrival of divided
packets
(2) Processing to check the close status at the
close processing

*The socket obtained by the Connect TCP socket instruction (SktTCPConnect) is used as an
input parameter for another socket service instruction. The data type of Socket is structure
sSOCKET. The specifications are as follows:

Variable Meaning Description Data type Valid range Default
Socket Socket Socket sSOCKET - -
Handle Handle Handle for data UDINT Dependson | -
communications data type
SrcAdr Local Local address *1 _SSOCKET_ADD | - -
address RESS
PortNo | Port Port number UINT 1 to 65535
number
IpAdr IP address | IP address or host name | STRING Depends on
*2 data type
DstAdr Destination | Destination address *1 _SSOCKET_ADD | - -
address RESS
PortNo | Port Port number UINT 1 to 65535
number
IpAdr IP address | IP address or host name | STRING Depends on
*2 data type

*1: The address indicates an IP address and a port number.
*2: A DNS or Hosts setting is required to use a host name.

33

eSend/Receive messages

9. Program

*k *k

Send message

*k *k *k *k *k

*k *k *k *k

- Destination
Header Command data Terminator ;
Controller device
>
) L
<
Receive message *% *% *k *% *% *k *% *% *% *% *k
(Response)
Header Response data Terminator
Receive message *% *% *¥ *% *k *ok *k $ok *ok *ok
(Error response)
Header Response data (Error code) Terminator

eCommunications sequence

TCP communications are performed between the destination device (server) and Controller
(client) in the following procedure.

Con

l

Active

establ

Next data
send processin

Data receive
processing
I Close processing |:

Connection

Data send
rocessi

troller
ient)

y .
— Connection requested

open

Destination|
device

(Server)

l Passive open l
»>

ished

Send data

N
(Connection
| establis

Il

hmed

Acknowledgement (ACK)

ng)
<
y

A

Send data

A

Acknowledgement (ACK)

\ 4
Data receive
request

D

Data send
request

A4

Close requested

LELE

y
Next data
send request

1 | Close

34

9. Program

I 9.2. Destination Device Command

This section explains the destination device command used in this program.

9.2.1. Overview of the Command
This program uses “VR (Version information acquisition)” command to read the controller
information of the destination device.

Command Description

VR Acquire version information.

’% Additional Information

For details on the destination device command and message format, refer to Command
format in Chapter 5 Ethernet/RS-232C COMMUNICATION of the Confocal Fiber Type
Displacement Sensor User's Manual (Cat. No. Z322).

9.2.2. Detailed Description of the Command
This section explains the “VR (Version information acquisition)” command.

eCommand format of the send message
This is the command format of the message that is sent by the Controller to the destination
device according to the setting of the “VR (Version information acquisition)” command.
*ASCII codes are sent except for the terminator.

Number
Data name of bytes Remarks
Header - None
Command 2 Fixed: "VR”
Terminator 1 Fixed: [CR](16#0D) (Default)

eCommand format of the receive message (normal)
This is the response format of the normal message received by the Controller from the

destination device according to the setting of the “VR (Version information acquisition)”
command.

*ASCII codes are received except for the terminator.

*The version information differs depending on the Displacement Sensor used.

35

9. Program

Command NiLllet2)r @i Remarks
bytes
Header - None
Version - -
information
Product type 6 "ZW-C15"
Blank 2 Fixed: "
Version 8 “Ver1.000”
Blank 1 Fixed: " “
Release data | 10 “2012/02/09”
Terminator 1 Fixed: [CR](16#0D) (Default)

eCommand format of the receive message (error)
This is the response format of the error message received by the Controller from the
destination device according to the setting of the “VR (Version information acquisition)”
command.
*ASCII codes are received except for the terminator.

Number
Command of bytes Remarks
Error code 2 Fixed: "ER"(16#4552)
Terminator 1 Fixed: [CR](16#0D) (Default)

36

9.2.3. Command

Settings

9. Program

This section explains the details on the "VR (Version information acquisition)” command

settings.

eSend data (command) settings

The send data is set in the SendMessageSet function block.

Variable Contents (Data type) Set value
Send_Header Send header (STRINGI[5]) “(Setting unnecessary)
Send_Addr Send address (STRINGI5]) “(Setting unnecessary)

Send_Command

Send data (STRING[256])

VR’

Send_Check

Addition of send check (STRIN

G[5])

“(Setting unnecessary)

Send_Terminate

Send terminator (STRINGI5])

‘$R’ ([CR]: 16#0D)

] Contents o
Variable (Data type) Data Description
CONCAT(Send_Header,
Send_Addr,
Send Data | Send message Send Command, | Used as send data of

(STRING[256])

SktTCPSend instruction.

Send_Check,
Send_Terminate)

eReceive data (re

sponse) that is stored

After a data check is performed on the receive data using the ReceiveCheck function block,

the receive data is stored in the receive data storage area.

Variable Description (data type) Storage area
Recv_Buif Receive data (STRING[256]) | Receive buffer
Recv_Data Receive data (STRING[256]) Receive data stprage area
(stores the receive buffer data)

eSend/Receive messages
*Send message
56 52 0D
Vv R [CR]
Command Terminator
*Receive message (at normal process)
5A 57 2D 43 31 35 20 20
z W - C 1 5 [SP] [SP] [~ !
Product type Blank | Blank !
i 56 65 72 31 2E 30 30 30 20
---p vV e r 1 0 0 0 [SP] ===
Version Blank !
i 32 30 31 32 2F 30 32 2F 30 39 0D
L--p| 2 0 1 2 / 0 2 / 0 9 [CR]
Release data Terminator

37

*Receive message (at error process)

45 52 0D
E R [CR]
Error code Terminator

9. Program

38

9. Program

I 9.3. Error Detection Processing

This section explains the error detection processing of this program.

9.3.1. Error Detection in the Program
This program detects and handles errors (1) to (4). For information on the error codes, refer to
9.7.1 Error Code List.

Controller

Destination device

Ethernet cable

7 J
y Y

1 @ Monito%g time 3)
(4)

(1) Communications errors in TCP socket communications using socket service instructions
Errors occurred in the program during TCP socket communications such as a command
format error and a parameter error are detected as communications errors. An error is
detected with the socket service instruction argument ErrorID.

(2)Timeout errors during communication with the destination device
When the connect processing, send processing, receive processing, or close processing is
not normally performed and cannot be completed within the monitoring time, it is detected
as a timeout error. An error is detected with the timer in the program. For information on the
time monitoring function of the timer in the program, refer to 9.3.2. Time Monitoring
Function.

(3)Errors in the destination device (Destination device error)
The destination device errors include a command error, a parameter error, and an
execution failure in the destination device. An error is detected with “ER” (16#4552) which
is returned from the destination device when an error occurs.

(4)TCP connection status error that occurs when ending the processing

This program always performs the close processing at the end of the whole processing
regardless of whether each processing from the connect processing to the receive
processing ends normally or in an error. When the close processing is operated abnormally,
the next connect processing may not be performed normally. The TCP connection status
variable TcpStatus of the SktGetTCPStatus instruction is used to detect whether the close
processing ends normally. For the corrective action of the TCP connection status error,
refer to 9.7.2 TCP Connection Status Error and Corrective Action.

39

9. Program

9.3.2. Time Monitoring Function
This section explains the time monitoring function of this program.
You can change the monitoring time settings by using the variables of the ParameterSet
function block.

eTime monitoring function of the communication instruction processing
To avoid the status that keeps executing a communications process without stop due to
abnormality, the timer in this program is used to abort the processing (timeout). The
timeout value for each processing from the connect processing to the close processing is 5
seconds.

[Monitoring time of the communications instruction processing]

Processing Monitoring Variable name Timeout time
Connect Time from the start to the end of the TopenTime 5 seconds
processing processing (UINT#500)
Send Time from the start to the end of the TfsTime 5 seconds
processing processing (UINT#500)

. Time from the start to the end of the
Recelve_ processing TfrTime > seconds
processing (Each receive processing) (UINT#500)
Close Tim_e from the start of the processing _ 5 seconds
. until the TCP socket enters the close | TcloseTime
processing Status. (UINT#500)

eReceive waiting function for divided packets/multiple response data
To repeat the receive processing, this function enables waiting for multiple responses that
arrive continuously or the receive data that is divided. The timer of the program monitors
the interval at which to receive the data. Then, if the next packet does not arrive from the
destination device within the set time (300 ms: default) after each receive processing (If the
receive data arrives at an interval of more than 300 ms), repeating the receive processing
will end.

[Receive wait monitoring time]

Processing Monitoring Vﬁg;tze Maximum waiting time
Time from when
-Srg Ejss?ggzt SktGetTCPStatus_instance.Dat TrTime 300 milliseconds
rocessin RcvFlag is turned OFF until (UINT#3)
P 9 when the flag is turned ON.

40

9. Program

eResend/time monitoring function of TCP/IP
When a communication problem occurs, TCP/IP automatically resends the data and
monitors the processing time if there is no error in the Controller. If processing ends in an

error, this program performs the close processing and stops the TCP/IP resend/time
monitoring function.

*If a TCP connection status error occurs at the close processing, the TCP/IP resend/time
monitoring function may still be operating. For information on the situation and corrective
action, refer to 9.7.2. TCP Connection Status Error and Corrective Action.

41

I 9.4. Variables

9. Program

9.4.1.

The table below lists the variables used in this program.

List of Variables

The data types, external variables (user-defined global variables/system-defined variables),
and internal variables used in this program are listed below.

eData type (Structure)
[Communications processing status flags]

Name Data type Description
sStatus STRUCT Structure of communications processing status flags

Communications processing in progress flag

Busy BOOL TRUE: Processing is in progress.
FALSE: Processing is not in progress.
Communications processing normal end flag

Done BOOL TRUE: Normal end / FALSE: Other than normal end
Communications processing error end flag

Error BOOL TRUE: Error end / FALSE: Other than error end

[Socket service instruction execution flags]

Name Data type Description
sControl STRUCT Socket service instruction execution flags
Send processing instruction
Send BOOL TRUE: Executed / FALSE: Not executed
Receive processing instruction
Recv BOOL TRUE: Executed / FALSE: Not executed
Connect processing instruction
Open BOOL TRUE: Executed / FALSE: Not executed
Close processing instruction
Close BOOL TRUE: Executed / FALSE: Not executed
TCP socket status read processing instruction
Status BOOL TRUE: Executed / FALSE: Not executed
[Timer enable flags]
Name Data type Description
sTimerControl STRUCT Time monitoring timer enable flags
Send processing time monitoring timer instruction
Tfs BOOL TRUE: Enabled / FALSE: Not enabled
Tfr BOOL Receive processing time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled
Connect processing time monitoring timer instruction
Topen BOOL TRUE: Enabled / FALSE: Not enabled
Close processing time monitoring timer instruction
Tclose BOOL TRUE: Enabled / FALSE: Not enabled
Tr BOOL Receive waiting time monitoring timer instruction
TRUE: Enabled / FALSE: Not enabled

42

9. Program

[Send/Receive processing required/not required setting flag]

Name Data type Description
sComType STRUCT fSlaegsd/Recelve processing required/not required setting
Send processing TRUE: Required / FALSE: Not
Send BOOL required
*Specify this when sending a command.
Receive processing TRUE: Required / FALSE: Not
Recv BOOL required
*Specify this when receiving a response.
Send/Receive processing required/not required setting
Error BOOL error flag (This flag changes to ON when a setting error
occurred.)
eData type (Union)
[Error code processing]
Name Data type Description
uErrorFlags UNION Union for error code processing

BoolData

ARRAY/[0..15]
OF BOOL

2-byte error code is processed in units of 1 bit as 16-bit
string.
: TRUE (Error) / FALSE (Normal)
Communications error
BoolData[0]: Send processing
BoolData[1]: Receive processing
BoolData[2]: Connect processing
BoolData[3]: Close processing
BoolData[4]: Processing number error
*Timeout error
BoolData[8]: Send processing
BoolData[9]: Receive processing
BoolData[10]: Connect processing
BoolData[11]: Close processing
*Others
BoolData[5]: Send/Receive required/not required
detection error
BoolData[12]: Destination device error
BoolData[6..7],[13..14]: Reserved
BoolData[15]: Error

WordData

WORD

2-byte error code is processed as WORD at once.

43

eExternal variables

[User-defined global variables]

9. Program

Variable name Data type Description
Communications start switch
Input_Start BOOL The program starts when this flag changes from FALSE to

TRUE.

Output_RecvMess

STRING[256]

An area that stores the receive data (response)
(256 bytes)

An area that stores the error flag for a communications
error or a timeout error that is detected at the connect

Output_ErrCode WORD processing, TCP socket status read processing, receive

processing or close processing.

Normal end: 1640000

An area that stores the error code for a communications

error or a timeout error that is detected at the connect
Output_SktCmdsErrorlD | WORD processing, TCP socket status read processing and

receive processing.

Normal end: 1640000

An area that stores the error code for a communications
Output_SktCloseErroriD WORD error or a timeout error that is detected at the close

processing.

Normal end: 16#0000

An area that stores the TCP socket status
Output_EtnTcpSta Ne%(_?’la\\l_ll_\lEECTIO _ESTABLISHED: Connect status

— _ CLOSED: Close status

An area that stores the destination device’s error code for

Output_MErCode DWORD an FCS error or a destination device error that is detected

after the receive processing.
Normal end: 16#00000000

[System-defined variable]

Variable name

Data type

Description

_EIP_EtnOnlineSta

BOOL

Status of built-in EtherNet/IP port communications
function
TRUE: Can be used, FALSE: Cannot be used

@ Additional Information

For information on the system-defined variables, refer to Communications Instructions in 2
Instruction Descriptions of the NJ-series Instructions Reference Manual (Cat. No. W502).

44

einternal variables (instance variables)
The internal variables used to execute the function blocks in the program are listed below.
An internal variable is called an "instance". The name of each function block to use is

specified as the data type of the variable.

[Instances for user-defined function blocks]

9. Program

Variable name Data type Description
Ethernet communications parameter setting function
. block
(I:E;'N_ParameterSet_lnstan ParameterSet This variable sets a destination IP address and
monitoring time for each processing from the connect
processing to the close processing.
Ethernet communications send data setting function
ETN_SendMessageSet_in SendMessageSet block
stance This variable sets the send/receive processing
required/not required setting and send data.
Ethernet communications receive processing function
ETN_ReceiveCheck_insta . block
ReceiveCheck

nce

This variable stores the receive data and detects a
normal end or an error end.

*For information on the user-defined function blocks, refer to 9.5.3 Detailed Description of

Function Blocks.

[Instances for timer]

Variable name Data type Description
SktTCPConnect_instance SktTCPConnect Connect TCP socket function block
SktTCPSend_instance SktTCPSend TCP socket send function block
SktTCPRcv instance SktTCPRcv TCP socket receive function block
SktClose_instance SktClose Close TCP socket function block
SktGetTCPStatus_instance | SktGetTCPStatus | Read TCP socket status function block

Additional Information

For information on the communications instructions, refer to Communications Instructions in
Section 2 Instruction Descriptions of the NJ-series Instructions Reference Manual (Cat. No.

W502).

[Instances for timer]

Variable name Data type Description
Topen_TON _instance TON Counts the time taken to perform the TCP connect processing.
Tfs_TON_instance TON Counts the time taken to perform the TCP send processing.
Tfr_TON_instance TON Counts the time taken to perform the TCP receive processing.
Tclose TON instance TON Counts the time taken to perform the close processing.
Tr TON instance TON Counts the time taken to wait for the next response.

45

9. Program

e|nternal variables

Variable name Data type Description
Communications processing status flags
This variable is defined as sStatus structure.
Local_State DINT Processing number

An area in which an error code is edited.

Local_Status sStatus

Local_ErrCode uErorFigs This variable is defined as uErrorFlgs union.
Local_ExecFlgs sControl Sopket §ervic¢ instruction execution flags
- This variable is defined as sControl structure.
Local_SrcDataByte UINT The number of bytes of send data
Local SrcData ARRAY[0..255] An area that stores the send data of the SkiTCPSend
- OF BYTE instruction (256 bytes)
Local RecvData ARRAY[0..2000] An area that stores the receive data of the SktTCPRcv
— OF BYTE instruction (2001 bytes)

An area that stores the receive data after converted into a

Local_ReceiveMessage STRING[256] string. (256 characters)

Local_ReceiveSize UINT The size of the receive data of SktTCPRcv instruction
Local_RecvDatalength UINT The total byte length of the receive data
Local_RecvCHNo UINT The element number of Local_RecvData that stores the

receive data
Destination device error detection instruction execution

Local_RecvCheckFlg BOOL flag

TRUE: Executed / FALSE: Not executed
Local_InitialSettingOK BOOL Initialization processing normal setting flag
Local_TONFlIgs sTimerControl Timer enable flags

This variable is defined as sTimerControl structure.
Send/Receive processing required/not required setting
Local_ComType sComType flags

This variable is defined as sControl structure.

46

I 9.5. ST Program

9. Program

9.5.1.

Functional Components of the Program

This program is written in the ST language. The functional components are as follows:

Major classification

Minor classification

Description

1. Communications
processing

1.1. Starting the communications
processing

1.2. Clearing the communications
processing status flags

1.3 Communications processing in
progress status

The communications processing
starts.

2. Initialization
processing

2.1. Initializing the timer

2.2. Initializing the instructions

2.3. Initializing the instruction execution
flags

2.4. Initializing the timer enable flags

2.5. Initializing the error code storage
areas

2.6. Setting each processing monitoring
time and Ethernet communications
parameters

2.7. Setting the send/receive processing
required/not required setting and send
data

2.8. Converting the send data from a
string to BYTE array

2.9. Initializing the receive data storage
areas

2.10. Initialization setting end processing

The parameters of Ethernet
communications are set and the error
code storage areas are initialized.
The send/receive required/not
required setting, the send data and
receive data are set.

3. Connect
processing

3.1. Determining the connect processing
status and setting the execution flag

3.2. Enabling the connect instruction
monitoring timer

3.3. Executing the connect instruction

The connect processing is performed.
The processing starts unconditionally
after starting the communications
processing and executing the
initialization setting.

4. Send processing

4.1. Determining the send processing
status and setting the execution flag

4.2. Enabling the send instruction
monitoring timer

4.3. Executing the send instruction

The processing starts when the send
processing is required and the
connect processing ends normally.

5. Receive
processing

5.1 Determining the receive processing
status and setting the execution flag

5.2 Enabling the receive waiting time
monitoring timer

5.3 Enabling the receive instruction
monitoring timer

5.4 Executing the receive instruction

5.5 Executing the TCP socket status read
processing

5.6 Executing the destination device error
detection instruction

The processing starts when the
receive processing is required and the
send processing ends normally.

If multiple receive data arrive, the
receive processing is repeated.

The receive data is stored and
checked.

6. Close processing

6.1. Determining the close processing
status and setting the execution flag

6.2. Enabling the close instruction
monitoring timer

6.3. Executing the close instruction

6.4. Executing the read TCP socket
status processing

The close processing is performed.
The processing starts in the following
cases.

*When the receive processing is not
required, and the send processing
ends normally

*When the receive processing ends
normally

*When any of the connect processing,
send processing or receive
processing ends in error

47

9. Program

Major classification

Minor classification

Description

7. Processing
number error
process

7. Processing number error process

The error process is executed if a
non-existent processing number is
detected.

48

9. Program

9.5.2. Program List

This section shows the program.

The function blocks (ParameterSet, SendMessageSet, and ReceiveCheck) are used to
perform the communications settings, send data (command data) setting and receive data
(response data) check that must be changed according to the destination device. To change

these values, refer to 9.5.3 Detailed Description of Function Blocks.

eProgram: ProgramO
(General-purpose Ethernet communications connection check program)

1. Communications processing

Mame: MJ-series Ethernet communications connection check program
Version: V1.00 New release 29 November 2012

V1.01 Update 19 February 2013
(C)Copyright OMROM Corporation 2012 All Rights Reserved.

(* 1. Communications processing
Communications start switch: Input_5Start
Communications processing status flags: Local_Status<STRUCT =
.Busy: Communications in progress
.Done: Communications normal end
.Error: Communications error end
Processing number: Local_State

10: Initialization processing

11: Connect processing

12: 5end processing

13: Receive processing

14: Close processing *)

(* 1.1. Starting the communications processing
Start the communications processing when the communications start switch changes to OM
when communications processing status flags have been cleared. *)
IF Input_Start AND
MOT({Local_Status.Busy OR Local_Status.Done OR Local_Status.Error) THEMN
Local_5tatus.Busy:=TRUE:
Local_State:=10; //1(: Initialization processing
END_IF;

(* 1.2. Clearing the communications processing status flags
Clear the communications processing status flags when the communications start switch
changes to OFF while communications processing is not in progress. *)
IF NOT Input_Start AND NOT Local_Status.Busy THEM
Local_Status.Done:=FALSE:
Local Status.Erron=FALSE;
END_IF;

(* 1.3. Communications processing in progress status

Execute the processing corresponding to the processing number (Local_State) *)
IF Local_S5tatus.Busy THEN

CASE Local_State OF

49

9. Program

2. Initialization processing
(* 2. Initialization processing
-Perform initialization for the whole communications and set the parameters.
-5et the send data and initialize the receive data storage area. *)
10:
(* 2.1. Initializing the processing time monitoring timer *)
Topen_TOM_instance (In:=FALSE);
Tfs_TOM_instance (In:=FALSE);
Tr_TOM_instance (In:=FALSE);
Tfr_TOM_instance (In:=FALSE);
Tclose_TOMN _instance{In:=FALSE);

(* 2.2. Initializing the socket service instructions *)
SKtTCPConnect_instance(Execute:=FALSE);
SktTCPSend_instance(Execute:=FALSE, SendDat:=Local_SrcData[0]);
SKtTCPRov_instance(Execute:=FALSE, RovDat:=Local_RecvData[0]):;
SktClose_instance(Execute:=FALSE);
SktGetTCPStatus_instance(Execute:=FALSE);

(* 2.3. Initializing the socket service instruction execution flags *)
Local_ExecFlgs.5end:=FALSE;

Local_ExecFlgs.Recv:=FALSE;

Local_ExecFlgs.Open:=FALSE;

Local_ExecFlgs.Close:=FALSE;

Local_ExecFlgs.5tatus:=FALSE;

(* 2.4. Initializing the processing time monitoring timer enable flags *)
Local_TOMNflgs. Tfs:=FALSE;

Local_TOMNflgs.Tfr:=FALSE;

Local_TOMNflgs.Topen:=FALSE;

Local_TONflgs. Tclose:=FALSE;

Local_TONflgs.Tr=FALSE;

(* 2.5. Imitializing the error code storage areas ™)
Local_ErrCodeWordData:=\WORD#16#0000;
Output_ErrCode:=WORD#16+#FFFF;
Output_MErCode:=DWORD#16#FFFFFFFF;
Cutput_SktCmdsErrorlD:=WORD#16#FFFF;
Cutput_SktCloseErrorlD:=\WORD#16#FFFF;

(* 2.b. Setting each processing monitoring time and setting the Ethernet-related parameters *)
ETM_ParameterSet_instance(Execute:=TRUE):

50

9. Program

(* 2.7. Setting the send/receive processing required/not required setting and send data *)
ETM_SendMessagebet_instance(Execute:=TRUE):

(* Detect a setting error in the send/receive processing required/not required setting *)
Local_ComType.5end:=TestABIt(ETN_SendMessageSet_instance.ComType, O);
Local_ComType.Recv:=TestABIt(ETN_SendMessageSet_instance.ComType, 1);
Local_ComType.Erron=MOT(Local_ComType.5end OR Local_ComType.Recv);

IF Local_ComType.Error THEN
Cutput_ErrCode:=WORD#16#0020;
Local_ImtialSettingOK:=FALSE;

ELSE
Local_InmtialSettingOK:=TRUE;

END_IR

(* 2.8. Converting the send data from a string to BYTE array *)
Local_SrcDataByte:=
StringToAny(ETN_SendMessagebet_instance.Send_Data, Local_SrcData[0]):

(* 2.9. Initializing the receive data storage areas *)
Clear5tring(Local_ReceiveMessage);
Clear5tring(Output_RecvMess);
Local_RecwCHMo:=0;

Local_RecvDatalength:=0;
Local_ReceiveSize:=UINT#256;

(* 2.10. Initialization setting end processing *)
IF Local_InitialSettingOK THEN
Local_State:=11; //11: Connect processing
ELSE
Local_Status.Busy:=FALSE;
Local_Status.Errorn=TRUE;
Local_State:=0; //0: Communications not in progress status
END_IF;

51

9. Program

3. Connect processing
(* 3. Connect processing

-Establish a connection with the destination TCP port ¥}
11:
(* 3.1. Determining the connect processing status and setting the execution flag *)
(* 3.1.1. Timeout processing *}
IF Topen_TOM_instance.) THEN
Local_ErrCode.BoolData[10]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Open:=FALSE
Local_TOMflgs.Topen:=FALSE;
Local_State:=14; //14: Close processing

(* 3.1.2. Normal end processing *)

ELSIF SktTCPConnect_instance.Done THEM
Local_ErrCode.BoolData[2]:= FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Open:=FALSE
Local_TOMflgs.Topen:=FALSE;

IF Lecal_ComType.Send THEN
Local_State:=12; //12: Send processing
EL5IF Local_ComType.Recy THEN
Local_State:=13: //13: Receive processing
END_IF;

(* 3.1.3. Error end processing *)

ELSIF SktTCPConnect_instance.Error THEN
Local_ErrCode.BoolData[2]:=TRUE;
Output_SktCmdsErrorlD:=5SktTCPConnect_instance.ErrorlD;
Local_ExecFlgs.Open:=FALSE;
Local_TOMNflgs.Topen:=FALSE;

Local_Statei=14; //14: Close processing

(* 3.1.4. Setting the connect instruction execution flag/timer enable flag *}
ELSE

Local_ExecFlgs.Open:=TRUE

Local_TOMflgs. Topen:=TRUE;
EMD_IF;

(* 3.2. Enable the connect processing time monitoring timer *)
Topen_TON_instance(In:=Local_TONflgs.Topen,
PT:=MULTIME(TIME#10ms, ETN_ParameterSet_instance. TopenTime]);

(* 3.3. Executing the connect instruction *)
SktTCPConnect_instance(
Execute:=Local_ExecFlgs.Open AND _EIP_EtnOnline5ta,
SrcTepPort:=ETM_ParameterSet_instance.SrcPort,
DstTcpPort:=ETN_Parameterbet_instance. DstPort,
DstAdrn=ETMN_ParameterSet_instance.DstIPAddr):

52

9. Program

4. Send processing
(* 4. Send processing
-Send data from the specified TCP port. *)
12:

(* 4.1. Determining the send processing status and setting the execution flag *)

(* 4.1.1. Timeout processing *)

IF Tfs_TON_instance.(} THEM
Local_ErrCode.BoclData[8l:=TRUE:
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Send:=FALSE:
Local_TOMflgs.Tfs:=FALSE;

Local_State:=14; //14: Close processing

(*4.1.2. Normal end processing *)
ELSIF SktTCPSend_instance.Done THEM
Local_ErrCode.BoolData[0]:=FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Send:=FALSE:
Local_TONflgs. Tfs:=FALSE:
Local_State:=5EL({Local_ComType.Reacv,14,13); //13: Receive processing/14: Close processing

(* 4.1.3. Error end processing *)

ELSIF SktTCPSend_instance.Error THEM
Local_ErrCode.BoolData[0]:=TRUE;
Output_SkiCmdsErrorlD:=5ktTCPSend_instance.ErrorlD;
Local_ExecFlgs.Send:=FALSE:

Local_TOMNflgs. Tfs:=FALSE;
Local_State:=14; //14: Close processing

(* 4.1.4. Setting the send instruction execution flag/timer enable flag *)
ELSE

Local_ExecFlgs.Send:=TRUE;

Local_TONflgs. Tfs:=TRUE:
EMND_IF;

(* 4.2. Enabling the send processing time monitoring timer *)
Tfs_TON_instance(In:=Local_TONflgs.Tfs,
PT:=MULTIME(TIME#10ms, ETN_ParameterSet_instance. TfsTime));

(* 4.3. Executing the send instruction *}
SktTCPSend_instance(
Execute:=Local_ExecFlgs.5end AND _EIP_EtnCnline5ta,
Size:=Local_SrcDataByte,
Socket:=SktTCPConnect_instance.5ocket,
SendDat:=Local_SrcData[0]);

53

9. Program

5. Receive processing
(* 5. Receive processing
-Read the data from the receive buffer of the specified TCP socket. *)
13:
(* 5.1. Determining the receive processing status and setting the execution flag *)
(* 5.1.1. Receive end processing *)
IF Tr_TOMN_instance.Q THEN
Local_ExecFlgs.Status:=FALSE;
Local_TOMflgs. Tfr=FALSE
Local_TOMflgs.Tr:=FALSE;
(* Convert the receive data from BYTE array to STRING *)
Local_ReceiveMessage:=AryToString(Local_RecvData[0],Local_RecvDatalength):
(* Setting the destination device error detection instruction execution flag *)
Local_RecwCheckFlg:=TRUE;
Local_State:=14; //14: Close processing

(* 5.1.2. Timeout processing *)

ELSIF Tfr_TOM_instance.() THEM
Local ErrCode.BoclData[S]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF:
Local_ExecFlgs.Recv:=FALSE;
Local_ExecFlgs.Status:=FALSE;
Local_TOMflgs. Tfr=FALSE
Local_5State:=14; //14: Close processing

(* 5.1.3. Normal end processing *)

ELSIF SktTCPRcov_instance.Done THEN
Local_RecvDatalength:=Local_RecvDatalength+SktTCPRcv_instance.RovSize:
Local_RecwCHMao:=Local_RecvDatalength;

Local_ExecFlgs.Recv:i=FALSE;
Local TOMflgs.Tfr=FALSE:
Local TOMflgs. Tr=TRUE; // 5.1.5. Reading the receive data

(* 5.1.4. Error end processing *)

ELSIF SktTCPRcov_instance.Error THEN;
Local_ErrCode BoolData[1]:=TRUE;
Output_SktCmdsErrorlD: =5kt TCPRev_instance.ErrorlD;
Local_ExecFlgs.Recv:=FALSE;
Local TOMNflgs. Tfr=FALSE:
Local_State:=14 //14: Close processing

(* 5.1.5. Reading the receive data *)
ELSIF SktGetTCPStatus_instance.Done
OFR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE;
{* When there is data to read: Continue the receive processing *)
IF SktGetTCPStatus_instance.DatReovFlag THEN
Local_ExecFlgs.Recw:=TRUE;
Local_TONflgs.Tfn=TRUE:
Local_TOMflgs.Tr=FALSE;
END_IF;
(* When there is no data to read:
-When no data is received,
do not perform any processing and
execute the read TCP socket status at the next period.
-When data has already been received,
if there is no response when the maximum receive waiting time has elapsed
read the data that has been already received and end the receive processing *)

54

9. Program

(* 5.1.6. Setting the TCP status get instruction execution flag,/timer enable flag *)
ELSE
Local_ExecFlgs.Status:=TRUE
Local_TONflgs. Tfr=TRUE:
(* Initialize the destination device error detection instruction execution flag *)
Local_RecvCheckFlg:=FALSE;
END_IF;

(* 5.2. Enabling the receive waiting time monitoring timer *)
Tr_TOM_instance(In:=Local_TOMflgs.Tr,
PT:=MULTIME(TIME#100ms, ETMN_ParameterSet_instance. TrTime));

(* 5.3. Enabling the receive processing time monitoring timer *)
Tir_TON_instance(In:=Local_TONflgs. Tfr,
PT:=MULTIME(TIME#10ms, ETM_ParameterSet_instance. TfrTime));

(* 5.4. Executing the receive instruction *)
SKtTCPRov_instance(
Execute:=Local_ExecFlgs.Recv AND _EIP_EtnCnline5ta,
Socket:=SkKtTCPConnect_instance.Socket,
TimeDut:=ETM_ParameterSet_instance.TrTime,
Size:=Local_ReceiveSize,
RovDat:=Local_RecvData[lLocal_RecwCHMo]);

(* 5.5. Executing the read TCP socket status instruction *)

SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnline5ta,
Socket:=SktTCPConnect_instance.Socket);

(* 5.6. Executing the destination device error detection instruction *)
ETM_ReceiveCheck_instance(
Execute:=Local_RecvCheckFlg,
Recv_Buff:=Local_ReceiveMessage,
Recv_Data:=0utput_RecvMess,
tLength:=Local_RecvDatalength,
ErrorlD:=Local_ErrCodeWordData,
ErrorlDEx:=0utput_MErrCode);

55

9. Program

6. Close processing
(* 6. Close processing

Close the specified socket *)
14:

(* 6.1. Determining the close processing status and setting the execution flag *)

(* 6.1.1. Timeout processing *)

IF Tclose_TOM_instance.(} THEM
Local_ErrCode.BoolData[11]:=TRUE;
Cutput_SktCloseErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Close:=FALSE;

Local_TOMflgs.Tclose:=FALSE;
Local_ExecFlgs.Status:=FALSE;
Output_EtnTcpSta:=SktGetTCPStatus_instance TepStatus;
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WordData;
Local_Status.Busy:=FALSE;

Local_Status.Error=TRUE;

Local_State:={; //0: Communications not in progress status

(* 6.1.2. Normal end processing *)
ELSIF SktClose_instance.Done THEN
Local_ExecFlgs.Status:=TRUE;
IF SktGetTCP5Status_instance.Done OR SktGetTCPStatus_instance.Error THEM
Local_ExecFlgs.Status:=FALSE;
IF SktGetTCPStatus_instance. TepStatus = _CLOSED THEN
Local_TONflgs. Tclose:=FALSE;
Output_SktCloseErrorlD:=WORD#16#0000;
Output_EtnTcpSta:=5kitGetTCPStatus_instance. TcpStatus;
Local_ExecFlgs.Close:=FALSE;

(* Determine the processing result of the whole communications processing *)
Local_Status.Busy:=FALSE;
(* Communications processing normal end *)

IF Local_ErrCodeWordData = WORD#16#0000 THEN
Local_Status.Done:=TRUE;
Local_ErrCode.BoolData[15]:=FALSE;

(* Communications processing error end *)

ELSE
Local_Status.Errorn=TRUE;
Local_ErrCode.BoolData[15]:=TRUE;

END_IF

Output_ErrCode:=Local_ErrCodeWordData;

Local_State:=0; //0: Communications not in progress status

END_IF
END_IF;

56

(* 6.1.3. Error end processing *)

ELSIF SktClose_instance.Error THEM
Local_ErrCode.BoolData[3]:=TRUE:
Output_SktCloseErrorlD:=5ktClose_instance.ErrorlD;
Local_ExecFlgs.Close:=FALSE;
Local_TOMflgs.Tclose:=FALSE;
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCoder=Local_ErrCode.WordData;
Local_5tatus.Busy:=FALSE;
Local_Status.Error=TRUE;

Local_State:=0; //0: Communications not in progress status

(* 6.1.4. Setting the close instruction execution flag/timer enable flag *)
ELSE

Local_ExecFlgs.Close:=TRUE

Local_TOMflgs.Tclose:=TRUE;
EMD_IFR

(* 6.2. Executing the close processing time monitoring timer *)
Telose_TOM_instance(In:= Local_TONflgs.Tclose,
PT:=MULTIME(TIME#10ms,ETN_Parameterset_instance. TcloseTime));

(* 6.3. Executing the close instruction *)

SktClose_instance(Execute:=Local_ExecFlgs.Close AMD _EIF_EtnOnline5ta,

Socket:=SktTCPConnect_instance.Socket);

(* 6.4, Executing the read TCP socket status instruction *)

SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.Socket);

7. Processing number error process
(* 7. Processing number error process

-Error process for nonexistent processing number *)
99:
Output_ErrCode:=WORD#16#0010;
Local_Status.Busy:=FALSE;
Local_Status.Error=TRLUE;
Local_State:=0; //0: Communications not in progress status

ELSE
Local_State:=99; //9%: Processing number error process

END_CASE;

END_IF;

9. Program

57

9. Program

9.5.3. Detailed Description of Function Blocks
The user-defined function blocks are shown below.

The code which you need to edit according to the destination device is indicated by the red
frames on the function blocks below.

eParameterSet function block

(General-purpose Ethernet communications parameter setting)

Instruction

Meaning

ST expression

ParameterSet

General-purpose
Ethernet

Communications
parameter setting

ETN_ParameterSet_instance(Execute,
TopenTime,
TfsTime,
TrTime,
TfrTime,
TcloseTime,
SrcPort,
DstIPAddr,
DstPort);

[Internal variable]

None
[Input/Output]
Name 1/0 Data type Description
Execution flag: The function block is executed when this
Execute Input BOOL variable changes to TRUE and it is stopped when this variable
changes to FALSE.
Connect processing monitoring time:
TopenTime Output | UINT This variable sets the monitoring time of the connect
processing in increments of 10 ms.
Send processing monitoring time:
TfsTime Output | UINT This variable sets the monitoring time of the send processing
in increments of 10 ms.
Receive wait monitoring time:
TrTime Output | UINT This variable sets the waiting time for the receive data in
increments of 100 ms.
Receive processing monitoring time:
TfrTime Output | UINT This variable sets the monitoring time of the receive
processing in increments of 10 ms.
Close processing monitoring time:
TcloseTime Output | UINT This variable sets the monitoring time of the close processing
in increments of 10 ms.
SrcPort Output | UINT Local port number: This variable sets the local port number.
DstIPAddr Output | STRING[256] Edejrt:ansztlon IP address: This variable sets the destination IP
DstPort Output | UINT Destination port number: This variable sets the destination
port number.
Busy Output | BOOL Busy
Done Output | BOOL Normal end
Error Output | BOOL Error end Not used
P (Not used in this program.)
ErrorlD Output | WORD Error code
ErrorIDEx Output | DWORD Expansion error code

[External variable]

None

58

9. Program

[Program]

Mame: NJ-series general-purpose Ethernet communications parameter setting function block
Applicable device: OMROMN Corporation ZW-series Displacement Sensor
Version: V1.00 New release 29 November 2012
¥1.01 Update 19 February 2013
(C)Copyright OMROM Corporation 2012 All Rights Reserved.

IF Execute THEM
(* Set the Ethernet-related parameters *)

SrcPorti= UINT#; // Local port No.
DstiPAddr= "192.168.250.2"; // Destination IP address
DstPort:= UINT#9600; [/ Destination port No.

(* Set the processing monitoring time: Maximum time from the start to end of the processing *)
TopenTime := UINT#500; // Connect monitoring time setting: Setting unit 10ms<500-=5s>
TtsTime:= UINT#500; // 5end monitoring time setting: Setting unit 10ms<500->5s>
TirTime:= UINT#500; // Receive monitoring time setting: Setting unit 10ms<500->5s>
TcloseTime:=UINT#500; // Close monitoring time setting: Setting unit 10ms<500->5s>

(* Maximum waiting time of packet interval when a response is received after dividing into multiple packets
Also, maximum waiting time for next response
(Receive waiting time monitoring timer) *)
TrTime:= UINT#3; ff Maximum receive waiting time: Setting unit 100ms<3->300ms>
END_IF;

RETURN;

59

9. Program

eSendMessageSet function block
(General-purpose Ethernet communications send data setting)

Instruction Meaning ST expression
(é;neral;purpose ETN_SendMessageSet_instance(Execute,
SendMessageSet eme o Send_Data,
communications ComType);
send data setting
[Internal variables]
Name Data type Description
Send_Header STRING[5] Send header: Header of the send message
Send_Addr STRING[5] Destination device address: Address of the destination device
Destination device command:
Send_Command STRING[256] Command sent to the destination device
Send_Check STRING[5] Send check code: Check code of the send message
Send_Terminate STRING[5] Send terminator: Terminator of the send message
[Input/Output]
Name I/0 Data type Description
Execution flag: The function block is executed when this
Execute Input BOOL variable changes to TRUE and it is stopped when this variable

changes to FALSE.

Send data: This variable sets a command that is sent to the
destination device.

Send/Receive type: This variable sets whether send/receive
processing are required.

Send_Data Output | STRING[256]

ComType Output | BYTE 1:Send only, 2: Receive only, 3: Send and
receive
Busy Output | BOOL Busy
Done Output | BOOL Normal end
Error Output | BOOL Error end Notused _
ErroriD Output | WORD Error code (Not used in this project.)
ErrorlDEX Output | DWORD Expansion error
code

[Internal variable]
None

60

9. Program

[Program]

Mame: MJ-series general-purpose Ethernet communications send data setting function block
Applicable device: OMROM Corporation ZW-series Displacement Sensor
Version: V1.00 Mew release 29 Movember 2012
W1.01 Update 19 February 2013
(C)Copyright OMRON Corporation 2012 All Rights Reserved.

IF Execute THEM
(* Set the send/receive processing reguired/not required setting *)
| ComType:= BYTE#F16#03; | // 1: Send only, 2: Receive only, 3: Send/Receive

(* Set the send data *)

Send_Header="; /f Send header: Mone
Send_Addr="" /{ Destination device address: None
Send_Command:="VR"; /f Destination device command: VR
Send_Check:="" J/f FCS calculation : None
Send_Terminate:= "§R’; /{ Send terminator: CR{0x0D): Fixed

(* Create (concatenate) the send data ®)
Send_Data:=
COMNCAT{Send_Header,5end_Addr,5end_Command,Send_Check,Send_Terminate);
END_IF:

RETURM;

61

eReceiveCheck function block
(General-purpose Ethernet communications receive processing)

9. Program

Instruction Meaning ST expression
ETN_ReceiveCheck_instance(Execute,
General-purpose Recv_Data,
ReceiveCheck Ethernet Recv_Buff,
Communications Error,
receive processing ErrorID,
ErrorlDEX);

[Internal variables]

None
[Input/Output]
Name 1/0 Data type Description
Execution flag: The function block is executed when this
Execute Input BOOL variable changes to TRUE and it is stopped when this variable
changes to FALSE.
tLength Input UINT Receive data length: The byte length of the receive data
Recv_Data In-out STRING[256] Receive data storage area: An area that stores the receive
data after detection
Recv_Buff In-out STRING[256] Receive buffer: An area t_hat temporarily stores the receive
data that is used for detection.
Error code: This variable stores 16#1000 for a destination
ErroriD In-out WORD device error and 16#2000 for an FCS error.
Expansion error code:
ErrorIDEx In-out DWORD This variable stores the FCS determination result or the
destination device error code.
Busy Output | BOOL Busy Not used
Done Output | BOOL Normal end (Not used in this program.)
Error Output | BOOL Error end: TRUE when an error occurs.

[External variable]

None

62

9. Program

{ sl el

Mame: MJ-series general-purpose Ethernet communications receive processing function block
Applicable device: OMROM Corporation ZW-series Displacement Sensor
Version: V1.00 Mew release 29 Movember 2012
W1.01 Update 19 February 2013
(C)Copyright OMRON Corporation 2012 All Rights Reserved.

IF Execute THEMN
(* Store the receive buffer data in the receive data storage area *)

Recv_Data:= Recv_Buff;

(* Detect the destination device error
(* Error: The code starts with 'ER" *)
IF FIND(LEFT(Recv_Buff.2),'ER") = UINT#1 THEN
Errori= TRUE; [Error flag set
ErrorlD:= WORD#16#1000; Jf Error code set
ErrorlDEx= DWORD#16#45520000; /f Store the destination device error code (ER).

(* Mormal: The code does not start with "ER'. ®)

ELSE
Error:= FALSE; /{ Error flag reset
ErrorlD:= WORD#16#0000; Jf Error code clear

ErrorlDEx= DWORD#16#00000000; /f Destination device error code clear
EMD_IF;

END_IF;

63

I 9.6. Timing Charts

9. Program

The timing charts of this program are shown below.

eStart & End processing

Input_Start _l

Input_Start _l

Local_Status.Busy Y Local_Status.Busy Y
) A) A
[}] 3 [}
4 | 4 1
‘ Connect processing | \ Connect processing \:
\\ ; s \\]
‘ Send processing ‘ X ‘ Send processing ‘ \
| |
\\ | \\ |
‘ Receive processing ‘: \ Receive processing \:
\ <] \ N]
| |
\ Close processing \l ‘ Close processing ‘l
\) : \) ;
\‘: (gi
Local_ErrCode } Local_ErrCode
.WordData 16#0000 : .WordData 16#0000 XlG#**** i
|
Local_ErrCode 1 Local_ErrCode Y
.BoolData[15] : .BoolData[15]
\4 '
Local_Status.Done Local_Status.Done :
T
4
Local_Status.Error Local_Status.Error
(Normal end) (Error end)

If Input_Start changes from TRUE to FALSE during execution, a normal end or an error end is
output for one period after the processing is completed as shown below.

Input_Start _l_| Input_Start _|—|

Local_Status.Busy _Ti Local_Status.Busy _Ti

£)

Local_Status.Done Local_Status.Done

<
<

Output for one period

Local_Status.Error Local_Status.Error

~N

Output for one period

(Normal end) (Error end)

64

9. Program

eConnect processing

Input_Start r--------------------.

Input_Start r------------------------ X
-\ -
1 1
SktTCPConnect SkiTCPConnect ¢
instance.Execute _instance.Execute _l—l—
_ l .
Topen_TON Topen_TON !
_instance.Q — _instance.Q :
|
SktTCPConnect _Ti SktTCPConnect _Ti
_instance.Busy 4 _instance.Busy) S—
SktTCPConnect ' SktTCPConnect X
instance.Done \|_| _instance.Done)
_ . ;
SktTCPConnect) SktTCPConnect '
instance.Error] _instance.Error \
_ y N
Local_ErrCode N Local_ErrCode —T_\'7
.BoolData[2] i’ .BoolData[2] L
4
SktTCPSend)‘ ------------ SktClose *.’ -----------
_instance.Execute - - _________ ' _instance.Execute - ___________ '
(Normal end) (Error end)

Input_Start r-------=---=------------

SktTCPConnect
_instance.Execute
| Ve
Topen_TON ' Monitoriny
_instance.Q , time elapsed
|

SkiTCPConnect ¥ "

()
_instance.Busy] :1‘ _____________
[}
1
SktTCPConnect : /

_instance —,:f ______________

’

[}
SktTCPConnect o
_instance.Error :

Local_ErrCode .
.BoolData[10] ——

SktClose |ttt
_instance.Execute ____________]

(Timeout)

65

eSend processing

r=

SktTCPConnect
1

. 1
_instance.DoNe -1 - oo oo
1)

SktTCPSend

_instance.Execute
Tfs_TON
_instance.Q

[}

[}

[}

i
SktTCPSend 'li

_instance.Busy)

SktTCPSend !

_instance.Done

SktTCPSend
_instance.Error !

7/
g
-
-

Local_ErrCode /
.BoolData[0]

SktGetTCPStatus C .
_instance.Execute -------------- A

(Normal end)

SktTCPConnect T
_iNStance.DoNe - & oo oo oo
)
SktTCPSend
_instance.Execute
Tfs TON :Monitoring
; . 'time elapsed
_instance.Q : psed|
[AY
SktTCPSend _T—'ll‘:
_instance.Busy P R
[
SktTCPSend V)
_instance.Done —)I.’ ______________
/
SkiTCPSend S
_instance.Error — !~ _____________
\
Local_ErrCode N 4
BoolData[8] — ‘|
\
SktClose ‘.’ —————————————
_instance.Execute - - _____ 1
(Timeout)

9. Program

r=

SktTCPConnect .
_instance.Done _n Lo
]

SktTCPSend

_instance.Execute :l—l—

Tfs_TON !
_instance.Q

SktTCPSend _T—
_instance.Busy

SktTCPSend
_instance.Done

SktTCPSend —|
_instance.Error

Local_ErrCode 7
.BoolData[0] —— [/

SktClose S
_instance.Execute - - - ______ 3

(Error end)

66

eReceive processing

SktTCPSend
_instance.Done

[}
[
-\ -
/

Ry

/7

SktGetTCPStatus
_instance.Execute

’ Noreceive data

SktTCPSend
_instance.Done

SktGetTCPStatus
_instance.Execute

SktGetTCPStatus

instance.DatRevFlag 4 ——————¢

!
SktTCPRcv
_instance.Execute

A
v

Tr_TON_instance.Q Receive waiting time

SktTCPRcv
_instance.Busy '\

M

iy

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

4-|---=-}----

Local ErrCode Destination device
.BoolData[12] w
\’ ”

SktClose
_instance.Execute

(Destination device error)

instance.DatRcvFlag

SktTCPRcv
_instance.Execute

Tr_TON_instance.Q

SktTCPRcv
_instance.Busy

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

Local_ErrCode
.BoolData[1]

SktClose
_instance.Execute

9. Program

[

%

4

. /
SktGetTCPStatus Reedals | 4o i SKIGEtTCPStatus / Y o e vata
_instance.DatRcvFla | L exsts. ! H _instance.DatRcvFlag
’ \‘) | e
)
SKITCPRcy 4 — 4 SKITCPRcv
_instance.Execute \ |_l _instance.Execute |
| \ [})
. . < >
] Vo
Tr_TON_instance.Q : L Tr_TON_instance.Q ' Receive waiting time|_|
. T | :
SKITCPRey | VT SKtTCPRcv — !
instance.Busy i ,' | _instance.Busy '
’ \ !
SKtTCPRev SKITCPRcv Y '
. |
instance.Done [| | _instance.Done _]—| !
SKITCPRcv SK{TCPRev |
_Instance.Error _instance.Error :
|
LOC;:)—OITS;SFE Local_ErrCode Nodestination !
' .BoolData[12] device error v
b
SktClose) W
_instance.Execute - - - oo oo ___ .
(Repetition) ... » (Norma| end)
SktTCPSend SKtTCPSend -,
_instance.Done __________________________ _instance.DONe —w - - - ool
1
SktGetTCPStatus s SktGetTCPStatus
_instance.Execute - _l_l— _instance.Execute
7z | , | eoe | /
SktGetTCPStatus ,/ ¥ Y ¥

Receive data exists.
\

J

(Error end)

67

9. Program

SktTCPSend £
_instance.Done - KI dmmmm e mm e

SktGetTCPStatus :l_‘
_instance.Execute
7

SktGetTCPStatus Receive data exists.
J

_instance.DatRcvFlag \

SKtTCPRov
_instance.Execute _,—l—
[} z
Tfr_TON_instance.Q Monitoring tilm'e
elansed. \
SKtTCPRov ~ 1 ——!

A

_instance.Busy

]
|
| fmmmmmmmmmmm-
1
SktTCPRcv (]
/
_instance.Done ————— 0o
/,
|
/
SktTCPRcv)/ :
instanceError ———————+— 4~ oo oo
|
\
Local_ErrCode \ A
BoolData[9] —————*
\
SktClose ‘:- _____________
_instance.Execute ------------ a

(Timeout)

68

eClose processing

Tr_TON_instance.Q

SktClose
_instance.Execute
Tclose_ TON
_instance.Q

SktClose
_instance.Busy

SktClose

r=

R

Tr_TON_instance.Q

_instance.Done

SktClose
_instance.Error

SktGetTCPStatus
_instance.Execute

SktGetTCPStatus
_instance.TcpSta

Local_ErrCode
.BoolData[3]

Tr_TON_instance.Q
etc

SktClose
_instance.Execute
Tclose_ TON
_instance.Q

SktClose
_instance.Busy

SktClose

To End processing

Normal end)

1+ Monitoring time »
' elapsed.

_instance.Done

SktClose
_instance.Error

SktGetTCPStatus
_instance.Execute

SktGetTCPStatus
_instance.TcpSta

Local_ErrCode
.BoolData[11]

To End processing

(Timeout)

SktClose

_instance.Execute

Tclose_TON
_instance.Q
SktClose
_instance.Busy

SktClose
_instance.Done

SktClose
_instance.Error

r=ia

9. Program

SktGetTCPStatus

_instance.Execute

SktGetTCPStatus —————1

_instance.TcpSta

Local_ErrCode
.BoolData[3]

“XXXX 1

---j-—- - -

To End processing

(Error

end)

69

9. Program

I 9.7. Error Process

9.7.1. Error Code List
The error codes of this program are shown below.

eError flag (Error end/timeout) [Output_ErrCode]
If the connect processing, send processing, receive processing or close processing ends in
error or times out, the error flag will be set in the Output_ErrCode variable.

Error flag Description

16#0000 Normal end

16#0001 The send processing ended in error.

16#0002 The receive processing ended in error.

16#0004 The connect processing ended in error.

16#0008 The close processing ended in error.

16#0100 The send processing did not end in time.

16#0200 The receive processing did not end in time.
(Including when an arrival of the response cannot be checked.)

16#0400 The connect processing did not end in time.

16#0800 The close processing did not end in time.

16#0010 Processing number error

16#0020 Send/Receive required/not required detection error

16#1000 Destination device error

16#2000 Destination device FCS (checksum) error

16#8000 Error occurrence

*The error flags detected for each processing are added and the addition result is stored in

the error flag.

(Example) Error end of connect TCP socket instruction + Time out of close status check

WORD#16#8000 (Error occurrence)
+WORD#16#0001 (Error end of TCP socket connect instruction)
+WORD#16#0100 (Timeout of close status check)

!

Output_ErrorID: WORD#16#8101

70

=\

=\

9. Program

eError codes [Output_SktCmdsErrorID], [Output_SkTcloseErroriD]
If an error occurs in the connect processing, send processing or receive processing, th
error code is stored in the Output_SktCmdsErrorID variable and then the close processin
is performed.
If an error occurs in the close processing, the error code is stored in the
Output_SkTcloseErrorID variable and the processing ends. The main error codes are
shown below.

e
g

Error code Description
16#0000 Normal end
16#0400 An input parameter for an instruction exceeded the valid range for an input variable.
The results of instruction processing exceeded the data area range of the output
16#0407
parameter.
16#2000 An instruction was executed when there was a setting error in the local IP address.
Address resolution failed for a destination node with the domain name that was
16#2002 oo . .
specified in the instruction.
The status was not suitable for execution of the instruction.
*SktTCPConnect Instruction
The TCP port that is specified with the SrcTcpPort input variable is already connected.
The destination node that is specified with DstAdr input variable does not exist.
The destination node that is specified with DstAdr and DstTcpPort input variables are
not waiting for a connection.
16#2003 *SktTCPRcv Instruction
The specified socket is receiving data.
The specified socket is not connected.
*SktTCPSend Instruction
The specified socket is sending data.
The specified socket is not connected.
16#2006 A timeout occurred for a socket service instruction.
16#2007 The handle that is specified for the socket service instruction is not correct.
1642008 The maximum resources that you can use for socket service instructions at the same
time was exceeded.
16#FFFF Processing ended without completing the executing of an instruction.

Additional Information

For details, refer to A-1 Error Code Details and A-2 Error Code Descriptions under

Appendices in the NJ-series Instructions Reference Manual (Cat. No. W502).

Additional Information

For details on the socket service errors and troubleshooting, refer to 9-7 Precautions in Using

Socket Services of Chapter 9 Socket Service in the NJ-series CPU Unit Built-in EtherNet/I
Port User's Manual (Cat. No. W506).

P

71

9. Program

o TCP connection status error [Output_EtnTcpSta]
If the TCP connection status does not enter the normal status (_ CLOSED) in time after the

close processing, a TCP connection status code is set in the Output_EtnTcpSta variable.

Error code enumerator
_eCONNECTION_STATE

Description

CLOSED Connection closed. (Normal status)
_LISTEN Waiting for connection
_SYN SENT SYN sent in active status.
_SYN RECEIVED SYN sent and received.
_ESTABLISHED Already established.
_CLOSE WAIT FIN received and waiting for completion.
_FIN WAIT1 Completed and FIN sent.
_CLOSING Completed and exchanged FIN. Awaiting ACK.
_LAST ACK FIN received and completed. Awaiting ACK.
_FIN WAIT2 Completed and ACK received. Awaiting FIN.
_TIME WAIT After closing, pauses twice the maximum segment life (2MSL).

eDestination device error code
The destination device error code is stored in the Output_MErrCode variable.
If a destination device error occurs, the response data will be “ER”.

Error No.

Error name

16#0000 0000

Normal end

16#4552 0000

The error response from the destination device (“ER” is received.)

’g Additional Information

For details and troubleshooting the destination device errors, refer to Troubleshooting in
Chapter 7 APPENDIX of the Confocal Fiber Type Displacement Sensor User's Manual (Cat.

No. Z322).

72

9. Program

9.7.2. TCP Connection Status Error and Corrective Action
This section describes the status when a TCP connection status error occurs and explains the
corrective action.

e Affects of a TCP connection status error

After a TCP connection status error occurs, if this program is executed again without taking
any corrective action or without notifying the error, then the destination node specified with
the destination IP address (DstAdr) input variable and destination port (DstTcpPort) input
variable may not be waiting for a connection. (Hereinafter this error is referred to as a
connect processing error.) This may be affected by the TCP connection status error that
occurred when the previous communication processing ended. (For error details, refer to
9.7.1 Error Code List.)

e Status when a TCP connection status error occurs
Both the TCP connection status error after the close processing and a connect processing
error that occurs when the next communications processing is performed can be caused
by the fact that the close processing is not completed at the destination device. In this
situation, although all processing (until the close processing) of the program ended in the
Controller, the close processing completion notification is not received from the destination
device (The completion of the close processing is not confirmed at the destination device).

eCorrective action
The close processing may not be completed at the destination device. Check if the
communications port of the destination device is closed. If not closed or not possible to
check, reset the communications port of the destination device. The communications port
of the destination device can be reset by executing restart operation from the software or
by cycling the power supply. For details, refer to the manual for each destination device.

IE' Precautions for Correct Use

Make sure that the destination device is disconnected from other device before resetting the
communications port of the destination device.

eController status when a TCP connection status error occurs
When the TCP connection status error occurs, the processing of this program is completed.
However, the resend/time monitoring function of TCP/IP, which is described in 9.3.2. Time
Monitoring Function, may be operating. This resend processing will stop in the following
cases. Therefore, you do not have to stop it.
*When a connect processing request is made again by re-executing the program
*When a communications problem such as cable disconnection is cleared during resend
processing
*When the resend processing is completed with the TCP/IP time monitoring (timeout)
function

*When the Controller restarts or the power supply is turned OFF
73

10. Revision History

10. Revision History

Revision Date of revision Revision reason and revision page
code
01 Jul. 31, 2013 First edition

74

OMRON Corporation Industrial Automation Company
Tokyo, JAPAN
Contact: www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69-2132 JD Hoofddorp One Commerce Drive Schaumburg,

The Netherlands IL 60173-5302 U.S.A.

Tel: (31)2356-81-300/Fax: (31)2356-81-388 Tel: (1) 847-843-7900/Fax: (1) 847-843-7787
OMRON ASIA PACIFIC PTE. LTD. OMRON (CHINA) CO., LTD.

No. 438A Alexandra Road # 05-05/08 (Lobby 2), Room 2211, Bank of China Tower,

Alexandra Technopark, 200 Yin Cheng Zhong Road,

Singapore 119967 PuDong New Area, Shanghai, 200120, China

Tel: (65) 6835-3011/Fax: (65) 6835-2711 Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2013 All Rights Reserved.

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. P558-E1-01

0911(-)

	NJ-series General-purpose Ethernet Connection Guide to ZW-series
	Table of Contents
	1. Related Manuals
	2. Terms and Definitions
	3. Remarks
	4. Overview
	5. Applicable Devices and Support Software
	5.1. Applicable Devices
	5.2. Device Configuration

	6. Ethernet Communications Settings
	6.1. Ethernet Communications Settings
	6.1.1. Communications Settings between the Controller and the Displacement Sensor

	6.2. Example of Checking Connection

	7. Connection Procedure
	7.1. Work Flow
	7.2. Setting Up the Displacement Sensor
	7.2.1. Parameter Setting

	7.3. Setting Up the Controller
	7.3.1. Starting the Sysmac Studio and Importing the Project File
	7.3.2. Checking the Parameters and Building
	7.3.3. Connecting Online and Transferring the Project Data

	7.4. Checking the Ethernet Communications
	7.4.1. Executing the Program and Checking the Receive Data

	8. Initialization Method
	8.1. Initializing the Controller
	8.2. Initializing the Displacement Sensor

	9. Program
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications with Socket Service Instructions

	9.2. Destination Device Command
	9.2.1. Overview of the Command
	9.2.2. Detailed Description of the Command
	9.2.3. Command Settings

	9.3. Error Detection Processing
	9.3.1. Error Detection in the Program
	9.3.2. Time Monitoring Function

	9.4. Variables
	9.4.1. List of Variables

	9.5. ST Program
	9.5.1. Functional Components of the Program
	9.5.2. Program List
	9.5.3. Detailed Description of Function Blocks

	9.6. Timing Charts
	9.7. Error Process
	9.7.1. Error Code List
	9.7.2. TCP Connection Status Error and Corrective Action

	10. Revision History

