
eV+3

Keyword Reference Manual

I652-E-02

Copyright Notice

The information contained herein is the property of Omron Robotics and Safety Technologies, Inc., and
shall not be reproduced in whole or in part without prior written approval of Omron Robotics and Safety
Technologies, Inc.. The information herein is subject to change without notice and should not be con-
strued as a commitment by Omron Robotics and Safety Technologies, Inc. The documentation is peri-
odically reviewed and revised.

Omron Robotics and Safety Technologies, Inc., assumes no responsibility for any errors or omissions in
the documentation.

Copyright Omron Robotics and Safety Technologies, Inc. by OMRON Corporation. All rights reserved.

Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in Japan and
other countries for OMRON factory automation products.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

DeviceNet is a trademark of ODVA.

Other company names and product names in this document are the trademarks or registered trademarks
of their respective companies.

Created in the United States of America.

22353-000 Rev. B eV+3 Keyword Reference Manual 3

Table of Contents

Chapter 1: Introduction 13
1.1 Intended Audience 13
1.2 Related Manuals 14
1.3 Alert Levels 14
1.4 Special Information 14
1.5 Keyword Syntax 15
1.6 Keyword Parameters 15
Parameter Data Type Designations 16
Numeric Parameters 16

Chapter 2: Keyword Quick Reference 19
2.1 Function Keyword Summary 19
2.2 Monitor Command Keyword Summary 25
2.3 Other Keyword Summary 29
2.4 Program Command Keyword Summary 29
2.5 System Parameter Keyword Summary 36
2.6 System Switch Keyword Summary 37

Chapter 3: Keyword Details 39
3.1 Function Keywords 39
ABS 39
ACCEL 40
ACOS 42
ALIGN 44
ASC 45
ASIN 46
ATAN2 48
BASE 50
BCD 51
BELT 52
BITS 54
BMASK 56
BSTATUS 57
CAS 59
$CHR 60
COM 61
CONFIG 62
COS 67
CUBRT 69
$DBLB 70
DBLB 71

DCB 73
$DECODE 74
$DEFAULT 77
DEFINED 79
DEST 80
DEVICE 82
DISTANCE 84
DURATION 85
DX 87
DY 88
DZ 89
ENCLATCH 90
$ENCODE 91
$ERROR 94
ERROR 95
FALSE 100
$FLTB 101
FLTB 102
FRACT 104
FRAME 105
FREE 107
GETC 108
GET.EVENT 110
HERE 111
HOUR.METER 112
$ID 113
ID 114
IDENTICAL 124
INRANGE 125
$INTB 127
INT 128
INTB 130
INVERSE 132
IOSTAT 133
LAST 136
LATCH 138
LATCHED 139
LEN 141
$LNGB 142
LNGB 143
MAX 145
$MID 146
MIN 147
NETWORK 148
NORMAL 150
NOT 151
NULL 152
OFF 153
ON 154
OUTSIDE 155
PARAMETER 156
#PDEST 157

4 eV+3 Keyword Reference Manual 22353-000 Rev. B

22353-000 Rev. B eV+3 Keyword Reference Manual 5

#PHERE 158
PI 159
#PLATCH 160
POS 161
#PPOINT 162
PRIORITY 164
RANDOM 165
RX 166
RY 167
RZ 168
SCALE 169
SELECT 170
#SET.POINT 172
SHIFT 173
SIG.INS 174
SIGN 176
SIG 177
SIN 179
SOLVE.FLAGS 181
SPEED 183
SQRT 185
SQR 186
STATE 187
STATUS 195
STRDIF 197
SWITCH 199
TAN 200
TAS 201
TASK 204
$TIME 207
$TIME4 209
TIME 211
TIMER 213
TOOL 216
TPS 217
TRANS 218
$TRANSB 220
TRANSB 221
TRUE 222
$TRUNCATE 223
$UNPACK 224
VAL 226
VLOCATION 227
VPARAMETER 230
VRESULT 232
VSTATE 234
WINDOW 235

3.2 Monitor Command Keywords 238
ABORT 238
BASE 240
BITS 242
CALIBRATE 244

CD 247
COMMANDS 248
COPY 250
CYCLE.END 251
DEFAULT 253
DELETE 257
DELETEL 259
DELETEM 261
DELETEP 263
DELETER 265
DELETES 267
DIRECTORY 269
DISABLE 271
DO 273
ENABLE 275
ESTOP 277
EXECUTE 278
FCOPY 282
FDELETE 284
FDIRECTORY 286
FLIST 291
FREE 292
FRENAME 293
FSET 294
HERE 295
ID 297
IO 300
JOG 302
KILL 306
LIST 307
LISTL 309
LISTP 311
LISTR 312
LISTS 314
LOAD 316
MDIRECTORY 319
MODULE 321
NET 323
PANIC 326
PARAMETER 327
PING 329
PRIME 330
PROCEED 332
RENAME 334
RESET 335
RESET.LOCK 336
RETRY 337
SELECT 339
SIGNAL 341
SPEED 343
SRV.RESET 345
SSTEP 346

6 eV+3 Keyword Reference Manual 22353-000 Rev. B

22353-000 Rev. B eV+3 Keyword Reference Manual 7

STACK 348
STATUS 350
STORE 354
STOREL 356
STOREM 358
STOREP 360
STORER 362
STORES 364
SWITCH 366
TESTP 368
TIME 369
TOOL 371
WAIT.START 373
WHERE 375
XSTEP 376
ZERO 379

3.3 Other Keywords 381
.END 381
IPS 382
MMPS 383

3.4 Program Command Keywords 384
ABORT 384
ABOVE 386
ACCEL 388
ALIGN 391
ALTER 392
ALTOFF 394
ALTON 395
ANY 397
APPRO 398
APPROS 399
ATTACH 400
AUTO 404
BASE 407
BELOW 409
BITS 411
BRAKE 413
BREAK 414
BY 416
CALIBRATE 417
CALL 421
CALLS 424
CASE 426
CLEAR.EVENT 429
CLEAR.LATCHES 430
COARSE 431
CPOFF 433
CPON 435
CYCLE.END 437
DECOMPOSE 439
DEF.DIO 441

DEFBELT 443
DEPART 445
DEPARTS 447
DETACH 449
DISABLE 451
DO 453
DOS 455
DRIVE 457
DURATION 459
ELSE 461
ENABLE 462
END 464
ESTOP 466
EXECUTE 467
EXIT 471
EXTERNAL 472
FCLOSE 474
FCMND 475
FCOPY 479
FDELETE 481
FEMPTY 483
FINE 485
FLIP 487
FOPEN 490
FOPENA 493
FOPEND 496
FOPENR 499
FOPENW 502
FOR 505
FSEEK 507
FSET 509
GLOBAL 511
GOTO 513
HALT 514
HERE 515
IF ... GOTO 517
IF ... THEN 519
IGNORE 521
JMOVE 522
JOG 523
KEYMODE 527
KILL 529
LEFTY 530
LOCAL 532
LOCK 534
MC 536
MCS 538
MOVE 541
MOVEC 542
MOVES 549
NEXT 550
NOFLIP 551

8 eV+3 Keyword Reference Manual 22353-000 Rev. B

22353-000 Rev. B eV+3 Keyword Reference Manual 9

NONULL 552
NOOVERLAP 554
NULL 556
OVERLAP 558
PACK 560
PANIC 562
PARAMETER 563
PAUSE 565
PDNT.CLEAR 566
PDNT.NOTIFY 567
PDNT.WRITE 568
PENDANT 570
PROCEED 573
.PROGRAM 575
PROMPT 578
REACT 580
REACTE 583
REACTI 585
READ 587
READY 591
RELEASE 593
RESET 594
RETRY 595
RETURN 597
RETURNE 598
RIGHTY 599
RUNSIG 601
SELECT 603
SET.EVENT 605
SET 606
SETBELT 608
SETDEVICE 610
SIGNAL 612
SINGLE 614
SOLVE.ANGLES 615
SOLVE.TRANS 622
SPEED 624
STOP 627
SWITCH 628
TIME 630
TIMER 632
TOOL 633
TYPE 634
UNTIL 637
VALUE 638
VPARAMETER 639
VRUN 641
VWAITI 642
WAIT 643
WAIT.EVENT 644
WHILE 647
WINDOW 649

WRITE 651

3.5 System Parameter Keywords 654
BELT.MODE 654
JOG.TIME 657
NOT.CALIBRATED 658
VTIMEOUT 660

3.6 System Switch Keywords 661
AUTO.POWER.OFF 661
CP 663
DECEL.100 664
DELAY.IN.TOL 665
DRY.RUN 667
MESSAGES 669
OBSTACLE 670
POWER 672
ROBOT 674
SCALE.ACCEL 676
SCALE.ACCEL.ROT 678
UPPER 679

10 eV+3 Keyword Reference Manual 22353-000 Rev. B

Revision History

Revision
Code Release Date Details

A July, 2020 Original release

B August, 2020 Minor corrections and updates

22353-000 Rev. B eV+3 Keyword Reference Manual 11

Chapter 1: Introduction

eV+ uses a special programming language and command set to send and request information
to and from the operating system. The keywords detailed in this manual are used when cre-
ating programs with Sysmac Studio and issuing commands from the Monitor Window in the
Sysmac Studio interface.

Additional Information: More information about keyword syntax, parameters,
and data types can be found in the eV+3 User's Manual (Cat. No. I651).

IMPORTANT: An error "Command not supported" will be returned if a
keyword is issued on a system that does not include the NJ-series Robot Integ-
rated CPU Unit as the Host System.

There are 6 different types of keywords that are used based on the functionality that is needed
as described below.

Table 1-1. eV+ Keyword Types

Keyword Type Usage

Function keywords Used to return values from the eV+ Operating System.

Monitor command
keywords

Used to issue individual operations in the Monitor Window or to cre-
ate Monitor Command programs.

Program command
keywords

Used to command operations in V+ Programs.

System parameter
keyword

Used tomanipulate system parameters in V+ Programs or with the
Monitor Window.

System switch
keywords

Used tomanipulate system switches in V+ Programs or with
the Monitor Window.

Other keywords Used to specify units when using the SPEED program command
keyword.

Refer to the eV+3 User's Manual (Cat. No. I651) for more inform-
ation.

1.1 Intended Audience
This manual is intended for the following personnel, who must also have knowledge of com-
mon programming practices and robotic control methods.

l Personnel in charge of introducing FA systems.
l Personnel in charge of designing FA systems.
l Personnel in charge of installing and maintaining FA systems.
l Personnel in charge of managing FA systems and facilities.

22353-000 Rev. B eV+3 Keyword Reference Manual 13

14 eV+3 Keyword Reference Manual 22353-000 Rev. B

1.2 Related Manuals

1.2 Related Manuals
Use the following related manuals for reference.

Table 1-2. Related Manuals

Manual Description

eV+3 User's Manual (Cat. No. I651) Provides information that is necessary to use
eV+.

Sysmac Studio Robot Integrated System Build-
ing Function with Robot Integrated CPU Unit
Operation Manual (Cat. No. W595)

Learning about the operating procedures and
functions of the Sysmac Studio to configure
Robot Integrated System using Robot Integ-
rated CPU Unit.

Robot User Guides User Guide for the robot in use.

T20 Pendant User's Manual (Cat. No. I601) Describes the use of the optional T20 manual
control pendant.

NJ-series Robot Integrated CPU Unit
User's Manual (Cat. No. O037)

Describes the settings and operation of the
CPU Unit and programming concepts for
OMRON robot control.

Robot Safety Guide (Cat. No. I590) Contains safety information for OMRON indus-
trial robots.

1.3 Alert Levels
The following alert levels are used throughout this document.

!
DANGER: Identifies an imminently hazardous situation which, if not
avoided, is likely to result in serious injury, and might result in death or severe
property damage.

!
WARNING: Identifies a potentially hazardous situation which, if not avoided,
will result in minor or moderate injury, and might result in serious injury,
death, or significant property damage.

!
CAUTION: Identifies a potentially hazardous situation which, if not avoided,
might result in minor injury, moderate injury, or property damage.

1.4 Special Information
The following notation is used throughout this document to indicate special information.

IMPORTANT: Information to ensure safe use of the product.

Chapter 1: Introduction

NOTE: Information for more effective use of the product.

Additional Information: Helpful tips, recommendations, and best practices.

1.5 Keyword Syntax
Use the following guidelines with the keyword syntax provided in this manual.

l Keywords are presented with uppercase text and parameters are presented with lower-
case text.

l Any parentheses, brackets, and commas must be used exactly as shown.
l Bold text represents required syntax and non-bold text represents optional syntax.
l Commas must be present between consecutive parameters.
l Blank spaces are not evaluated by the system and extra spaces or missing spaces do not
cause syntax problems.

Use the following example to understand how keyword syntax is presented in this manual.

KEYWORD req_param1 = req_param2 SECONDARY.KEYWORD opt_param1, opt_param2

Table 1-3. Keyword Syntax Details

Item Details

KEYWORD Required andmust be entered exactly as shown.

req_param1 Required andmust be replacedwith a value, variable, or expres-
sion.

= Assignment operator. If required, follows the keyword and / or
parameters.

req_param2 Required when an equal sign is present andmust be replacedwith
a value, variable, or expression.

SECONDARY.KEYWORD If present, required andmust be entered exactly as shown.

opt_param1, opt_param2 Optional and if used, must be replacedwith a value, variable, or
expression.

1.6 Keyword Parameters
This section describes parameters and how they are used with keyword syntax.

NOTE: Do not confuse keyword parameters with system parameter keywords.
Refer to System Parameter Keywords on page 654 for more information.

Parameters are considered arguments to keywords. Keywords may have multiple required and
optional parameters. Some keywords do not use any parameters such as BREAK or FALSE .

22353-000 Rev. B eV+3 Keyword Reference Manual 15

16 eV+3 Keyword Reference Manual 22353-000 Rev. B

1.6 Keyword Parameters

When an optional parameter is omitted, the system will assume a default. Omitting an
optional parameter that is in the middle of the keyword's syntax must respect the use of any
necessary commas, as shown below.

CALL program_name(1, , n+3)

If an the optional parameter is trailing, it can be removed if unused. Consider the CALL
keyword shown with the syntax structure CALL program(arg_list). If this keyword is used to
simply execute a new subroutine program without passing arguments, the syntax would be as
follows.

CALL program_name

Parameter Data Type Designations

The data type of the constant or variable must be the same type that is required by the
keyword. String and numeric parameters can be constant values or any valid variable names.
Use the following rules to designate parameter data types used in keyword syntax.

l String variables must be preceded with the $ symbol and string constants must be
enclosed in quotes.

l Precision Point variables must be preceded with a # symbol.
l Belt variables must be preceded with a % symbol.
l Real and integer constants can be used without modification.

Additional Information: Keywords cannot be used as variable names or pro-
gram names.

Numeric Parameters

Several types of numeric parameters can appear in keyword syntax. For each type of para-
meter, the value can generally be specified by a numeric constant, a variable name, or a math-
ematical expression. There are some restrictions on the numeric values that are accepted by
eV+. The following rules determine how a value will be interpreted in the various situations.

l Distances are used to define locations to where a robot is to move. The unit of measure
for distances is in millimeters, although units are never explicitly entered for any value.
Values entered for distances can be positive or negative. Refer to the IPS keyword for a
special case of specifying robot speed in inches/s.

l Joint numbers are integers from 1 up to the number of joints in the robot. Refer to the
robot User's Guide for information about robot joint numbering arrangements.

l Signal numbers are used to identify digital signals. They are always considered as
integer values. A negative signal number indicates an OFF state. Refer to the appro-
priate robot user's guide and the eV+3 User's Manual (Cat. No. I651) for more information
about signal numbers for your particular robot.

l Integer parameters can be satisfied with real values (values with integer and fractional
parts). When an integer is required, the value is rounded and the resulting integer is
used.

l Parameters indicated as being scalar variables can be satisfied with a real value (with
integer and fractional parts) except where noted. Scalar variables can range from -

Chapter 1: Introduction

9.22*1018 to 9.22*1018 in value (displayed as -9.22E18 and 9.22E18). Numbers declared
to be double-precision values can range from -1.8*10-307 to 1.8*10-307.

All numbers in this manual are decimal unless otherwise noted. Binary numbers are shown as
^B, octal numbers as ^, and hexadecimal numbers as ^H.

22353-000 Rev. B eV+3 Keyword Reference Manual 17

Chapter 2: Keyword Quick Reference

Use the sections below as a quick reference to all keywords described in this document.

2.1 Function Keyword Summary
The table below provides a summary of all function keywords.

Keyword Description Reference

ABS Real-valued function that returns the absolute value (mag-
nitude) of the argument provided.

Page 39

ACCEL Real-valued function that returns the current setting for robot
acceleration, deceleration, or the maximum allowable per-
centage limits defined in the robot configuration profile.

Page 40

ACOS Real-valued function that returns the arc cosine of its argu-
ment.

Page 42

ALIGN Transformation function that aligns the input location with the
nearest axis of the world coordinate system.

Page 44

ASC Real-valued function that returns an ASCII character value
from within a string.

Page 45

ASIN Real-valued function that returns the arc sine of its argument. Page 46

ATAN2 Real-valued function that returns the size of the angle in
degrees that has its trigonometric tangent equal to value_
1/value_2.

Page 48

BASE Transformation function that returns the transformation value
that represents the translation and rotation set by the last
BASE program command or monitor command.

Page 50

BCD Real-valued function that converts a real value to Binary Coded
Decimal (BCD) format.

Page 51

BELT Real-valued function that returns information about a con-
veyor belt being trackedwith the conveyor tracking feature.

Page 52

BITS Real-valued function that reads multiple digital signals and
returns the value corresponding to the binary bit pattern.

Page 54

BMASK Real-valued function that creates a bit mask by setting indi-
vidual bits.

Page 56

BSTATUS Real-valued function that returns information about the status
of the conveyor tracking system.

Page 57

CAS Real-valued function that compares a real variable to a test
value and conditionally sets a new value as one indivisible oper-
ation.

Page 59

22353-000 Rev. B eV+3 Keyword Reference Manual 19

20 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.1 Function Keyword Summary

Keyword Description Reference

$CHR String function that returns a one-character string cor-
responding to a given ASCII value.

Page 60

COM Perform the binary complement operation on a value. Page 61

CONFIG Real-valued function that returns a value providing information
about the robot's geometric configuration or the status of the
motion servo control features.

Page 62

COS Real-valued function that returns the trigonometric cosine of a
given angle.

Page 67

CUBRT Real-valued function that returns the cube root of a value. Page 69

$DBLB String function that returns an 8-byte string containing the bin-
ary representation of a real value in double-precision IEEE 754
floating-point format.

Page 70

DBLB Real-valued function that returns the value of eight bytes of a
string interpreted as an IEEE double-precision floating-point
number.

Page 71

DCB Real-valued function that converts BCD digits into an equi-
valent integer value.

Page 73

$DECODE String function that extracts part of a string as delimited by
given break characters.

Page 74

$DEFAULT String function that returns a string containing the current or
initial system default device, unit, and directory path for disk
file access.

Page 77

DEFINED Real-valued function that determines if a variable has been
defined.

Page 79

DEST Transformation function that returns a transformation value
representing the planned destination location for the current
robot motion.

Page 80

DEVICE Real-valued function that returns a real value from a specified
device. The value may be data or status information, depending
upon the device and the parameters.

Page 82

DISTANCE Real-valued function that determines the distance between the
points defined by two location values.

Page 84

DURATION Real-valued function that returns the current setting for one of
the motion DURATION specifications.

Page 85

DX Real-valued function that returns the X-axis component of a
given transformation value.

Page 87

DY Real-valued function that returns the Y-axis component of a
given transformation value.

Page 88

DZ Real-valued function that returns the Z-axis component of a
given transformation value.

Page 89

Chapter 2: Keyword Quick Reference

Keyword Description Reference

ENCLATCH Real-valued function that returns the encoder position for any
encoder in the system at the occurrence of the last latch.

Page 90

$ENCODE String function that returns a string created from output spe-
cifications.

Page 91

$ERROR String function that returns the error message associated with
the given error code.

Page 94

ERROR Real-valued function that returns the message number of a
recent system message that caused program execution to stop
or caused a REACTE operation.

Page 95

FALSE Real-valued function that returns the value used by eV+ to rep-
resent a logical false result.

Page 100

$FLTB String function that returns a 4-byte string containing the bin-
ary representation of a real value in single-precision IEEE float-
ing-point format.

Page 101

FLTB Real-valued function that returns the value of four bytes of a
string interpreted as an IEEE single-precision floating-point
number.

Page 102

FRACT Real-valued function that returns the fractional part of the argu-
ment.

Page 104

FRAME Transformation function that returns a transformation value
defined by four positions.

Page 105

FREE Real-valued function that returns the amount of unused free
memory of storage space.

Page 107

GETC Real-valued function that returns the next character (byte)
from a device or input record on the specified logical unit.

Page 108

GET.EVENT Real-valued function that return events that are set for the spe-
cified task.

Page 110

HERE Transformation function that returns a transformation value
that represents the current location of the robot tool point.

Page 111

HOUR.METER Real-valued function that returns the current value of the
robot hour meter.

Page 112

$ID String function that returns the system ID string. Page 113

ID Real-valued function that returns values that identify the con-
figuration of the current system.

Page 114

IDENTICAL Real-valued function that determines whether two location val-
ues are exactly the same.

Page 124

INRANGE Real-valued function that returns a value that indicates if a spe-
cific location can be reached by the robot and provides addi-
tional information when a location cannot be reached.

Page 125

$INTB String function that returns a 2-byte string containing the bin- Page 127

22353-000 Rev. B eV+3 Keyword Reference Manual 21

22 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.1 Function Keyword Summary

Keyword Description Reference

ary representation of a 16-bit integer.

INT Real-valued function that returns the integer part of the value. Page 128

INTB Real-valued function that returns the value of two bytes of a
string interpreted as a signed 16-bit binary integer.

Page 130

INVERSE Transformation function that returns the transformation value
that is the mathematical inverse of the given transformation
value.

Page 132

IOSTAT Real-valued function that returns status information for the
last input / output operation for a device associated with a
logical unit.

Page 133

LAST Real-valued function that returns the highest index used for an
array (dimension).

Page 136

LATCH Transformation function that returns a transformation value
representing the location of the robot at the occurrence of the
last external trigger.

Page 138

LATCHED Real-valued function that returns the status of the position
latch andwhich input triggered it.

Page 139

LEN Real-valued function that returns the number of characters in
the given string.

Page 141

$LNGB String function that returns a 4-byte string containing the bin-
ary representation of a 32-bit integer.

Page 142

LNGB Real-valued function that returns the value of four bytes of a
string interpreted as a signed 32-bit binary integer.

Page 143

MAX Real-valued function that returns the maximum value con-
tained in the list of values.

Page 145

$MID String function that returns a substring of the specified string. Page 146

MIN Real-valued function that returns the minimum value con-
tained in the list of values.

Page 147

NETWORK Real-valued function that returns network status and
IP address information of the robot controller.

Page 148

NORMAL Transformation function that corrects a transformation for any
mathematical round-off errors.

Page 150

NOT Operator that performs logical negation of a value. Page 151

NULL Transformation function that returns a null transformation
value (one with all zero components).

Page 152

OFF Real-valued function that returns the value used by eV+ to rep-
resent a logical false result.

Page 153

ON Real-valued function that returns the value used by eV+ to rep-
resent a logical true result.

Page 154

Chapter 2: Keyword Quick Reference

Keyword Description Reference

OUTSIDE Real-valued function that tests a value to determine if it is out-
side a specified range.

Page 155

PARAMETER Real-valued function that returns the current setting of the
named system parameter.

Page 156

#PDEST Precision-point function that returns a precision-point value rep-
resenting the planned destination location for the current robot
motion.

Page 157

#PHERE Precision-point function that returns a precision-point value rep-
resenting the current location of the currently selected robot.

Page 158

PI Real-valued function that returns the value of the math-
ematical constant pi (3.141593).

Page 159

#PLATCH Precision-point function that returns a precision-point value rep-
resenting the location of the robot at the occurrence of the last
external trigger.

Page 160

POS Real-valued function that returns the starting character pos-
ition of a substring in a string.

Page 161

#PPOINT Precision- point function that returns a precision-point value
composed from the given components.

Page 162

PRIORITY Real-valued function that returns the current reaction lock-out
priority for the program.

Page 164

RANDOM Real-valued function that returns a pseudo-random number. Page 165

RX Transformation function that returns a transformation describ-
ing a rotation about the X-axis.

Page 166

RY Transformation function that returns a transformation describ-
ing a rotation about the Y-axis.

Page 167

RZ Transformation function that returns a transformation describ-
ing a rotation about the Z-axis.

Page 168

SCALE Transformation function that returns a transformation value
equal to the transformation parameter with the position scaled
by the scale factor.

Page 169

SELECT Real-valued function that returns information about the device
specified for the currently selected task. .

Page 170

#SET.POINT Precision point function that returns the commanded joint-
angle positions computed by the trajectory generator during
the last trajectory-evaluation cycle.

Page 172

SHIFT Transformation function that returns a transformation value
resulting from shifting the position of the transformation para-
meter by the given shift amounts.

Page 173

SIG.INS Real-valued function that returns an indication of whether a
digital I/O signal is installed in the system or whether a soft-
ware signal is available in the system.

Page 174

22353-000 Rev. B eV+3 Keyword Reference Manual 23

24 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.1 Function Keyword Summary

Keyword Description Reference

SIGN Real-valued function that returns the value 1, with the sign of
the value parameter.

Page 176

SIG Real-valued function that returns the logical AND of the states
of the indicated digital signals.

Page 177

SIN Real-valued function that returns the trigonometric sine of a
given angle.

Page 179

SOLVE.FLAGS Real-valued function that returns bit flags representing the
robot configuration specified by an array of joint positions.

Page 181

SPEED Real-valued function that returns one of the system motion
speed factors.

Page 183

SQRT Real-valued function that returns the square root of the para-
meter.

Page 185

SQR Real-valued function that returns the square of the parameter. Page 186

STATE Real-valued function that returns a value to provide inform-
ation about the robot system state.

Page 187

STATUS Real-valued function that returns status information for an
application program.

Page 195

STRDIF Real-valued function that compares two strings byte-by-byte
for the purpose of sorting.

Page 197

SWITCH Real-valued function that returns information about the set-
ting of a system switch.

Page 199

TAN Real-valued function that returns the trigonometric tangent of
a given angle.

Page 200

TAS Real-valued function that returns the current value of a real-
valued variable and assigns it a new value. The two actions are
done indivisibly so that no other program task can modify the
variable at the same time.

Page 201

TASK Real-valued function that returns information about a program
execution task.

Page 204

$TIME String function that returns a string value containing either the
current system date and time or the specified date and time.

Page 207

$TIME4 String function that returns a string value containing either the
current system four-digit date and time or the specified four-
digit date and time.

Page 209

TIME Real-valued function that returns an integer value rep-
resenting either the date or the time specified in the given
string parameter.

Page 211

TIMER Real-valued function that returns the current time value of the
specified system timer.

Page 213

TOOL Transformation function that returns the value of the trans- Page 216

Chapter 2: Keyword Quick Reference

Keyword Description Reference

formation specified in the last TOOL operation.

TPS Real-valued function that returns the number of ticks of the
system clock that occur per second (Ticks Per Second).

Page 217

TRANS Transformation function that returns a transformation value
computed from the given X, Y, Z position displacements and y,
p, r orientation rotations.

Page 218

$TRANSB String function that returns a 48-byte string containing the bin-
ary representation of a transformation value.

Page 220

TRANSB Transformation function that returns a transformation value
represented by a 48-byte or 96-byte string.

Page 221

TRUE Real-valued function that returns the value used by eV+ to rep-
resent a logical true result.

Page 222

$TRUNCATE String function that returns all characters in the input string
until an ASCII NUL (or the end of the string) is encountered.

Page 223

$UNPACK String function that returns a substring from an array of 128-
character string variables.

Page 224

VAL Real-valued function that returns the real value represented by
the characters in the input string.

Page 226

VLOCATION Transformation function that returns a cartesian trans-
formation result of the execution of the specified vision
sequence. The returned value is a transform result as x, y, z,
yaw, pitch, and roll.

Page 227

VPARAMETER Transformation function that returns the current value of a vis-
ion tool parameter.

Page 230

VRESULT Real-valued function that returns a specified result of a vision
tool, or returns the status of a specified tool.

Page 232

VSTATE Real-valued function that returns the state of the execution of
a sequence.

Page 234

WINDOW Real-valued function that returns a value to indicate where the
location described by the belt-relative transformation value is
relative to the predefined boundaries of the working range on a
moving conveyor belt.

Page 235

2.2 Monitor Command Keyword Summary
The table below provides a summary of all monitor command keywords.

Keyword Description Reference

ABORT Monitor command that terminates execution of an execut-
able program.

Page 238

BASE Monitor command that translates and rotates the world ref- Page 240

22353-000 Rev. B eV+3 Keyword Reference Manual 25

26 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.2 Monitor Command Keyword Summary

Keyword Description Reference

erence frame relative to the robot.

CALIBRATE Monitor command that initializes the robot positioning sys-
tem.

Page 244

CD Monitor command that displays or changes the default path
for disk access.

Page 247

COMMANDS Monitor command that initiates processing of a Monitor
Command program.

Page 248

COPY Monitor command that creates a new program as a copy of
an existing program.

Page 250

CYCLE.END Monitor command that terminates the specified executable
program the next time it executes a STOP operation or its
equivalent. It will suspend processing of a command pro-
gram until a program completes execution.

Page 251

DEFAULT Monitor command that defines the default relationship
between the eV+ disk logical device and the physical device
to be accessed. This also displays the current default.

Page 253

DELETE Monitor command that deletes the specified programs from
the system memory.

Page 257

DELETEL Monitor command that deletes the named location vari-
ables from the system memory.

Page 259

DELETEM Monitor command that deletes the named program module
from the system memory.

Page 261

DELETEP Monitor command that deletes the named programs from
the system memory.

Page 263

DELETER Monitor command that deletes the named real-valued vari-
ables from the system memory.

Page 265

DELETES Monitor command that deletes the named string variables
from the system memory.

Page 267

DIRECTORY Monitor command that displays the names of some or all of
the programs in the system memory.

Page 269

DISABLE Monitor command that turns OFF one or more system
switches.

Page 271

DO Monitor command that executes a keyword(s) as though it
were the next step in an executable program or the next
step in the specified task / program context.

Page 273

ENABLE Monitor command that turns ON one or more system
switches.

Page 275

ESTOP Monitor command that stops the robot in the samemanner
as if an emergency stop signal was received.

Page 277

EXECUTE Monitor command that begins execution of a control pro- Page 278

Chapter 2: Keyword Quick Reference

Keyword Description Reference

gram.

FCOPY Monitor command that copies the information in an existing
disk file to a new disk file.

Page 282

FDELETE Monitor command that deletes one or more disk files match-
ing the given file specification.

Page 284

FDIRECTORY Monitor command that displays information about the files
on a disk and the amount of space remaining for storage as
well as creates and delete subdirectories on disks.

Page 286

FLIST Monitor command that lists the contents of the specified
disk file on the Monitor Window.

Page 291

FREE Monitor command that displays the percentage of available
system memory not currently in use.

Page 292

FRENAME Monitor command that changes the name of a disk file. Page 293

FSET Monitor command that sets or modifies attributes of a net-
work device.

Page 294

HERE Monitor command that defines the value of a trans-
formation or precision-point variable to be equal to the cur-
rent robot location.

Page 295

ID Monitor command that displays identity information about
components of the system.

Page 297

IO Monitor command that displays the current states of
external digital input / output signals or internal software
signals.

Page 300

JOG Monitor command that moves the specified joint of the
robot, or moves the robot tool along the specified Cartesian
axis. Each time JOG is executed, the robot moves for up to
300 ms.

Page 302

KILL Monitor command that clears a program execution stack
and detaches any I/O devices that are attached.

Page 306

LIST Monitor command that displays the value of the expression. Page 307

LISTL Monitor command that displays the values of the listed loc-
ations.

Page 309

LISTP Monitor command that displays all the steps of the listed
user programs.

Page 311

LISTR Monitor command that displays the values of the real
expressions specified.

Page 312

LISTS Monitor command that displays the values of the specified
strings.

Page 314

LOAD Monitor command that loads the contents of the specified
disk file into the system memory.

Page 316

22353-000 Rev. B eV+3 Keyword Reference Manual 27

28 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.2 Monitor Command Keyword Summary

Keyword Description Reference

MDIRECTORY Monitor command that displays the names of all the pro-
gram modules in the system memory or the names of the
programs in a specified program module.

Page 319

MODULE Monitor command that creates a new program module, or
modifies the contents of an existingmodule.

Page 321

NET Monitor command that displays status information about
the network. Also displays details about the remote mounts
that are currently defined in the eV+ system.

Page 323

PANIC Monitor command that simulates an external E-stop button
press, stops all robots immediately but does not turn
OFF robot high power.

Page 326

PARAMETER Monitor command that sets or displays the values of
system parameters.

Page 327

PING Monitor command that tests the network connection to a
node.

Page 329

PRIME Monitor command that prepares a program for execution
but does not start execution.

Page 330

PROCEED Monitor command that resumes execution of an application
program.

Page 332

RENAME Monitor command that changes the name of a user pro-
gram in memory to the new name provided.

Page 334

RESET Monitor command that will turn OFF all the digital output
signals.

Page 335

RESET.LOCK Monitor command that detaches a robot from the applic-
ation program.

Page 336

RETRY Monitor command that repeats execution of the last inter-
rupted statement and continues execution of the program.

Page 337

SELECT Monitor command that selects a robot for subsequent Mon-
itor Window operations

Page 339

SIGNAL Monitor command that turns ON or OFF digital output sig-
nals, internal software signals, or host signals.

Page 341

SPEED Monitor command that specifies monitor speed. Page 343

SRV.RESET Monitor command that restarts and resets eV+. Page 345

SSTEP Monitor command that executes a single step or an entire
subroutine of a control program.

Page 346

STACK Monitor command that specifies the amount of system
memory reserved for a program task to use for subroutine
calls and automatic variables.

Page 348

STATUS Monitor command that returns status information for the
system and the programs being executed.

Page 350

Chapter 2: Keyword Quick Reference

Keyword Description Reference

STORE Monitor command that stores programs and variables in a
disk file.

Page 354

STOREL Monitor command that stores location variables in a disk
file.

Page 356

STOREM Monitor command that stores a specified program module
to a disk file.

Page 358

STOREP Monitor command that stores program files to a disk file. Page 360

STORER Monitor command that stores real variables in a disk file. Page 362

STORES Monitor command that stores a string variable in a disk file. Page 364

SWITCH Monitor command that displays the settings of system
switches in the Monitor Window.

Page 366

TESTP Monitor command that tests for the presence of the named
program in the system memory.

Page 368

TIME Monitor command that sets or displays the date and time. Page 369

TOOL Monitor command that sets the internal transformation
used to represent the location and orientation of the tool tip
relative to the tool-mounting flange of the robot.

Page 371

WAIT.START Monitor command that puts a Monitor Command program
into a wait state until a condition is satisfied.

Page 373

WHERE Monitor command that displays the current location of the
robot and the hand opening.

Page 375

XSTEP Monitor command that executes a single step of a program. Page 376

ZERO Monitor command that initializes the eV+ system and
deletes all the programs and data in system memory.

Page 379

2.3 Other Keyword Summary
The table below provides a summary of all keywords not categorized as function, monitor com-
mand, program command, system parameter, or system switch keywords.

Keyword Description Reference

.END Keyword that marks the end of an eV+ program. Page 381

IPS Specify the units for a SPEED program command as inches
per second.

Page 382

MMPS Specify the units for a SPEED program command asmil-
limeters per second.

Page 383

2.4 Program Command Keyword Summary
The table below provides a summary of all program command keywords.

22353-000 Rev. B eV+3 Keyword Reference Manual 29

30 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.4 Program Command Keyword Summary

Keyword Description Reference

ABORT Terminate execution of an executing program task. Page 384

ABOVE Request a change in the robot configuration during the
next motion so that the elbow is above the line from the
shoulder to the wrist.

Page 386

ACCEL Set acceleration and deceleration for robot motions and
optionally specify a defined acceleration profile.

Page 388

ALIGN Align the robot tool Z-axis with the nearest world axis. Page 391

ALTER Specify the magnitude of the real-time path modification
that is to be applied to the robot path during the next tra-
jectory computation.

Page 392

ALTOFF Terminate real-time path-modification mode (alter mode). Page 394

ALTON Enable real-time path-modification mode (alter mode) and
specify the way in which alter coordinate information will
be interpreted.

Page 395

ANY Signal the beginning of an alternative group of commands
for the CASE structure.

Page 397

APPRO Start a robot motion toward a location defined relative to
specified location with joint-interpolatedmotion.

Page 398

APPROS Start a robot motion toward a location defined relative to
specified location with straight-line motion.

Page 399

ATTACH Make a device available for use by the application program. Page 400

AUTO Declare temporary variables that are automatically created
on the program stack when the program is entered.

Page 404

BASE Translate and rotate the world reference frame relative to
the robot.

Page 407

BELOW Request a change in the robot configuration during the
next motion so that the elbow is below the line from the
shoulder to the wrist.

Page 409

BITS Set or clear a group of digital signals based on a value. Page 411

BRAKE Abort the current robot motion. Page 413

BREAK Suspend program execution until the current motion com-
pletes.

Page 414

BY Completes the syntax of the SCALE and SHIFT functions. Page 416

CALIBRATE Initialize the robot positioning system with the robot's cur-
rent position.

Page 417

CALL Suspend execution of the current program and continue
execution with a new subroutine program.

Page 421

CALLS Suspend execution of the current program and continue
execution with a new subroutine program specified with a

Page 424

Chapter 2: Keyword Quick Reference

Keyword Description Reference

string value.

CASE Initiate processing of a CASE structure by defining the
value of interest.

Page 426

CLEAR.EVENT Clear an event associated with the specified task. Page 429

CLEAR.LATCHES Empties the latch buffer for the selected device. Page 430

COARSE Enable a low-precision nulling tolerance for the robot. Page 431

CPOFF Instruct the eV+ system to stop the robot at the com-
pletion of the next motion operation (or all subsequent
motion operations) and null position errors.

Page 433

CPON Instruct the eV+ system to execute the next motion oper-
ations (or all subsequent motion operations) as part of a
continuous path.

Page 435

CYCLE.END Terminate the executing program in the specified task the
next time it executes a STOP program command (or its
equivalent).

Page 437

DECOMPOSE Extract the real values of individual components of a loc-
ation value.

Page 439

DEF.DIO Assign virtual digital I/O to standard eV+ signal numbers
for use by keywords.

Page 441

DEFBELT Define a belt variable for use with a conveyor tracking
robot.

Page 443

DEPART Start a robot motion away from the current location with
joint-interpolatedmotion.

Page 445

DEPARTS Start a robot motion away from the current location with
straight-line motion.

Page 447

DETACH Release a specified device from the control of the applic-
ation program.

Page 449

DISABLE Turn OFF one or more system switches. Page 451

DO Introduce a DO program structure. Page 453

DOS Execute a keyword defined by a string expression. Page 455

DRIVE Execute a keyword defined by a string expression. Page 455

DURATION Set the minimum execution time for subsequent robot
motions.

Page 459

ELSE Separate the alternate group of statements in an IF ...
THEN control structure.

Page 461

ENABLE Turn ON one or more system switches. Page 462

END Mark the end of a control structure. Page 464

22353-000 Rev. B eV+3 Keyword Reference Manual 31

32 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.4 Program Command Keyword Summary

Keyword Description Reference

ESTOP Stop the robot in the samemanner as if an emergency-
stop signal was received.

Page 466

EXECUTE Begin execution of a control program. Page 467

EXIT Branch to the statement following the nth nested loop of a
control structure.

Page 471

EXTERNAL Declare a variable that is shared between eV+ and the NJ-
series Robot Integrated CPU Unit.

Page 472

FCLOSE Close the disk file currently open on the specified logical
unit.

Page 474

FCMND Generate a device-specific command to the input / output
device specified by the logical unit.

Page 475

FCOPY Copy the information in an existing disk file to a new disk
file.

Page 479

FDELETE Delete the specified disk file. Page 481

FEMPTY Empty any internal buffers in use for a disk file by writing
the buffers to the file if necessary.

Page 483

FINE Enable a high-precision nulling tolerance for the robot. Page 485

FLIP Request a change in the robot configuration during the
next motion so that the pitch angle of the robot wrist has a
negative value.

Page 487

FOPEN Create and open a new TCP connection. Page 490

FOPENA Opens a file for read-write-append access. If the specified
file does not already exist, the file is created.

Page 493

FOPEND Opens a disk directory for reading. Page 496

FOPENR Opens a file for read-only access. Page 499

FOPENW Opens a file for read-write access. If the file already exists,
an error occurs.

Page 502

FOR Execute a program loop a specified number of times. Page 505

FSEEK Position a file open for random access and initiate a read
operation on the specified record.

Page 507

FSET Set or modify attributes of a network device. Page 509

GLOBAL Declare a variable to be global and specify the type of the
variable.

Page 511

GOTO Perform an unconditional branch to the program step iden-
tified by the given label.

Page 513

HALT Stop program execution and do not allow the program to
be resumed.

Page 514

Chapter 2: Keyword Quick Reference

Keyword Description Reference

HERE Set the value of a transformation or precision-point vari-
able equal to the current robot location.

Page 515

IF ... GOTO Branch to the specified step label if the value of the logical
expression is TRUE (non-zero).

Page 517

IF ... THEN Conditionally execute a group of keywords (or one of two
groups) depending on the result of a logical expression.

Page 519

IGNORE Cancel the effect of a REACT or REACTI program com-
mand.

Page 521

JMOVE Moves all robot joints to positions described by a list of joint
values. The robot performs a coordinatedmotion in joint-
interpolatedmode.

Page 522

JOG Jogs the specified joint of the robot or moves the robot tool
along the specified cartesian direction.

Page 523

KEYMODE Set the behavior of a group of keys on the pendant. Page 527

KILL Clear a program execution stack and detach any I/O
devices that are attached.

Page 529

LEFTY Request a change in the robot configuration during the
next motion tomake the first two links of a SCARA robot
use the left arm orientation.

Page 530

LOCAL Declare permanent variables that are defined only within
the current program.

Page 532

LOCK Set the program reaction lock-out priority to the value
given.

Page 534

MC Introduce amonitor commandwithin a Monitor
Command program.

Page 536

MCS Invoke amonitor command from an application program. Page 538

MOVE Initiate a robot motion to the position and orientation
described by the given location with joint-interpolated
motion.

Page 541

MOVEC Initiate a circular / arc-path robot motion using the pos-
itions and orientations described by the given locations.

Page 542

MOVES Initiate a robot motion to the position and orientation
described by the given location with straight-line motion.

Page 549

NEXT Branch to the END statement of the nth nested loop, per-
form the loop test, and loop if appropriate.

Page 550

NOFLIP Request a change in the robot configuration during the
next motion so the pitch angle of the robot wrist has a pos-
itive value.

Page 551

NONULL Instruct the eV+ system to not wait for position errors to
be nulled at the end of continuous-path motions.

Page 552

22353-000 Rev. B eV+3 Keyword Reference Manual 33

34 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.4 Program Command Keyword Summary

Keyword Description Reference

NOOVERLAP Instruct the eV+ system to not wait for position errors to
be nulled at the end of continuous-path motions.

Page 552

NULL Instruct the eV+ system to wait for position errors to be
nulled at the end of continuous path motions.

Page 556

OVERLAP Disable the NOOVERLAP limit-error checking either for the
next motion or for all subsequent motions.

Page 558

PACK Replace a substring within an array of (128-character)
string variables, or within a (non-array) string variable.

Page 560

PANIC Simulate an external E-Stop button press to stop all robots
immediately, but do not turn off high power.

Page 562

PARAMETER Set the value of a system parameter. Page 563

PAUSE Stop program execution but allow the program to be
resumed.

Page 565

PDNT.CLEAR Clears the current notification window or custom message
window on the T20 pendant, if any, and returns the T20
pendant back to the Home screen.

Page 566

PDNT.NOTIFY Creates a pendant notification. Page 567

PDNT.WRITE Sets the pendant's Custom Message screen. Page 568

PENDANT Return input from the manual control pendant. Page 570

PROCEED Resume execution of an application program. Page 573

.PROGRAM Define the arguments that are passed to a program when
it is invoked.

Page 575

PROMPT Display a string on the Monitor Window andwait for oper-
ator input.

Page 578

REACT Initiate continuousmonitoring of a specified digital signal
and automatically trigger a subroutine call if the signal
transitions.

Page 580

REACTE Initiate the monitoring of system messages that occur dur-
ing execution of the current program task.

Page 583

REACTI Initiate continuousmonitoring of a specified digital signal.
Automatically stop the current robot motion if the signal
transitions properly and optionally trigger a subroutine call.

Page 585

READ Read a record from an open file or from an attached device
that is not file oriented. For an network device, read a
string from an attached and open TCP connection.

Page 587

READY Move the robot to the ready location. Page 591

RELEASE Allow the next available program task to run. Page 593

RESET Turn OFF all external output signals. Page 594

Chapter 2: Keyword Quick Reference

Keyword Description Reference

RETRY Repeat execution of the last interrupted program com-
mand and continue execution of the program.

Page 595

RETURN Terminate execution of the current subroutine and
resume execution of the suspended program at its next
step.

Page 597

RETURNE Terminate execution of an error reaction subroutine and
resume execution of the last-suspended program at the
step following the statement that caused the subroutine
to be invoked.

Page 598

RIGHTY Request a change in the robot configuration during the
next motion tomake the first two links of a SCARA robot
use the right arm orientation.

Page 599

RUNSIG Turn ON or OFF the specified digital signal as long as exe-
cution of the invoking program task continues.

Page 601

SELECT Select a unit of the named device for access by the current
task.

Page 603

SET.EVENT Set an event associated with the specified task. Page 605

SET SET Page 606

SETBELT Set the encoder offset of the specified belt variable equal to
the value of the expression.

Page 608

SETDEVICE Initialize a device or set device parameters. The operation
performed depends on the device referenced.

Page 610

SIGNAL Turn ON or OFF external digital output signals or internal
software signals.

Page 612

SINGLE Limit rotations of the robot wrist joint to the range -180
degrees to +180 degrees.

Page 614

SOLVE.ANGLES Compute the robot joint positions for the current robot
that are equivalent to a specified transformation.

Page 615

SOLVE.TRANS Compute the transformation equivalent to a given set of
joint positions for the current robot.

Page 622

SPEED Set the nominal speed for subsequent robot motions. Page 624

STOP Terminate execution of the current program cycle. Page 627

SWITCH Enable or disable a system switch based on a value. Page 628

TIME Set the date and time. Page 630

TIMER Set the specified system timer to the given time value. Page 632

TOOL Set the internal transformation used to represent the loc-
ation and orientation of the tool tip relative to the tool
mounting flange of the robot.

Page 633

TYPE Display the information described by the output spe- Page 634

22353-000 Rev. B eV+3 Keyword Reference Manual 35

36 eV+3 Keyword Reference Manual 22353-000 Rev. B

2.5 System Parameter Keyword Summary

Keyword Description Reference

cifications on the Monitor Window.

UNTIL Indicate the end of a DO ... UNTIL control structure and
specify the expression that is evaluated to determine
when to exit the loop. The loop continues to be executed
until the expression value is nonzero.

Page 637

VALUE Indicate the values that a CASE statement expression
must match in order for the program statements imme-
diately following to be executed.

Page 638

VPARAMETER Sets the current value of a vision tool parameter. Page 639

VRUN Initiates the execution of a vision sequence. Page 641

VWAITI Waits until the specified vision sequence reaches the state
specified by the type parameter.

Page 642

WAIT Put the program into a wait loop for one trajectory cycle. If
a condition is specified, wait until the condition is TRUE.

Page 643

WAIT.EVENT Suspend program execution until a specified event has
occurred or until a specified amount of time has elapsed.

Page 644

WHILE Initiate processing of a WHILE structure if the condition is
TRUE or skipping of the WHILE structure if the condition is
initially FALSE.

Page 647

WINDOW Set the boundaries of the operating region of the specified
belt variable for conveyor tracking.

Page 649

WRITE Write a record to an open file or to any I/O device. For net-
work device, write a string to an attached device and open
a TCP connection.

Page 651

2.5 System Parameter Keyword Summary
The table below provides a summary of all system parameter keywords.

Keyword Description Reference

BELT.MODE System parameter that sets the characteristics of the con-
veyor tracking feature of the eV+ system.

Page 654

JOG.TIME System parameter that sets the keep-alive time of a jog oper-
ation.

Page 657

NOT.CALIBRATED System parameter that indicates or asserts the calibration
status of the robots connected to the system.

Page 658

VTIMEOUT System parameter that sets a timeout value so that an error
message is returned if no response is received following a vis-
ion command.

Page 660

Chapter 2: Keyword Quick Reference

2.6 System Switch Keyword Summary
The table below provides a summary of all system switch keywords.

Keyword Description Reference

AUTO.POWER.OFF This system switch disables high power when certain
motion errors occur.

Page 661

CP System switch that controls the continuous-path function
of a robot.

Page 663

DECEL.100 System Switch that enables or disables the maximum decel-
eration of 100% for the ACCEL program command
keyword.

Page 664

DELAY.IN.TOL System switch that controls the timing of coarse or fine
nulling after the eV+ system completes a motion segment.

Page 665

DRY.RUN System switch that controls whether or not eV+ com-
municates with the robot.

Page 667

MESSAGES System Switch to enable or disable output to the Monitor
Window from TYPE Program Commands.

Page 669

OBSTACLE System Switch that enables or disables up to four obstacles
for a selected robot.

Page 670

POWER System Switch that controls or monitors the status of the
robot high power.

Page 672

ROBOT System switch that enables or disables one robot or all
robots.

Page 674

SCALE.ACCEL System switch that enables or disables the scaling of accel-
eration and deceleration as a function of program speed.

Page 676

SCALE.ACCEL.ROT System switch that specifies whether or not the
SCALE.ACCEL switch takes into account the Cartesian rota-
tional speed during straight-line motions.

Page 678

UPPER System switch that controls whether or not the case of
each character is ignoredwhen string comparisons are per-
formed.

Page 679

22353-000 Rev. B eV+3 Keyword Reference Manual 37

Chapter 3: Keyword Details

This section provides details for all eV+ keywords.

3.1 Function Keywords
Use the information in this section to understand function keywords and their use with the
eV+ system.

ABS

Real-valued function that returns the absolute value (magnitude) of the argument
provided.

Syntax

ABS (value)

Parameter

value Real-valued expression.

Examples

The following example returns 0.123.

ABS(0.123)

The following example returns 5.462

ABS(-5.462)

The following example returns 0.013125.

ABS(1.3125E-2)

The following example divides the variable "part.size" by the absolute value of
the variable "belt.scale" and returns the result to the variable "belt.length".

belt.length = part.size/ABS(belt.scale)

22353-000 Rev. B eV+3 Keyword Reference Manual 39

40 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ACCEL

Real-valued function that returns the current setting for robot acceleration, decel-
eration, or the maximum allowable percentage limits defined in the robot con-
figuration profile.

Syntax

ACCEL (value)

Usage Considerations

The ACCEL function returns information for the robot selected by the task execut-
ing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Parameter

value Real-valued expression, the result of which is rounded to an
integer to select the value that is returned. Setting the select
parameter to the following values will return the specified
information.

l 0: Number of selected acceleration profile.
l 1: Acceleration
l 2: Deceleration
l 3: Maximum allowable acceleration percentage
l 4: Maximum allowable deceleration percentage
l 5: Program speed below which acceleration and decel-
eration are scaled proportional to a program's speed set-
ting when the SCALE.ACCEL system switch is enabled

Examples

The following example will return the current acceleration setting.

ACCEL(1)

The following example will return the current deceleration setting.

ACCEL(2)

Related Keywords

ACCEL (program command)

SCALE.ACCEL

SELECT (real-valued function)

Chapter 3: Keyword Details

SELECT (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 41

42 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ACOS

Real-valued function that returns the arc cosine of its argument.

Syntax

ACOS (value)

Usage Considerations

The value parameter must be in the range of -1.0 to +1.0. Any value outside this
range will cause an illegal value error.

Parameter

value Real-valued expression that defines the cosine value to be
considered.

Details

Returns the inverse cosine (arccosine) of the argument, which is assumed to be in
the range of -1.0 to +1.0. The resulting value is always in the range of 0.0 to
+180.0, inclusive.

Examples

The following example returns a value of 90.

ACOS(0)

The following example returns a value of 180.

ACOS(-1)

The following example returns a value of 84.2608295.

ACOS(0.1)

The following example returns a value of 60.

ACOS(0.5)

NOTE: TYPE, PROMPT, and other similar commands output the
results of the above examples as single-precision values. However,
they are actually stored and manipulated as double-precision val-
ues. The LISTR monitor command will display real values to full
precision.

Related Keywords

COS

Chapter 3: Keyword Details

SIN

ASIN

TAN

ATAN2

22353-000 Rev. B eV+3 Keyword Reference Manual 43

44 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ALIGN

Transformation function that aligns the input location with the nearest axis of
the world coordinate system.

Syntax

ALIGN (location)

Parameter

location Transformation value to be used as a reference.

Details

Returns a modified version of the input location that is aligned parallel to the
nearest axis of the World coordinate system.

Example

The following example aligns the position of a robot to a location defined as
"point1" and sets it to the value of the location variable "align.loc".

SET align.loc= ALIGN(point1)

Related Keywords

ALIGN (program command)

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

ASC

Real-valued function that returns an ASCII character value from within a string.

Syntax

ASC(string, index)

Parameters

string String expression from which the character is to be picked. If
the string is empty, the function returns the value -1.

index Optional real-valued expression defining the character pos-
ition of interest. The first character of the string is selected if
the index is omitted or has a value of 0 or 1.

If the value of the index is negative, or greater than the
length of the string, the function returns the value -1.

Details

The ASCII value of the specified character is returned as a real value.

Examples

The following example returns the ASCII value of the letter "a".

ASC("sample", 2)

The following example returns the ASCII value of the first character of the string
contained in the variable "$name".

ASC($name)

The following example uses the value of the real variable "i" as an index to the
character of interest in the string contained in the variable "$system".

ASC($system, i)

Related Keywords

$CHR

VAL

22353-000 Rev. B eV+3 Keyword Reference Manual 45

46 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ASIN

Real-valued function that returns the arc sine of its argument.

Syntax

ASIN (value)

Usage Considerations

The value parameter must be in the range of -1.0 to +1.0. Any value outside this
range will cause an illegal value error.

Parameter

value Real-valued expression that defines the sine value to be con-
sidered.

Details

Returns the inverse sine (arcsine) of the argument, which is assumed to be in the
range of -1.0 to +1.0. The resulting value is always in the range of -90.0 to +90.0,
inclusive.

Examples

The following example returns a value of 0.

ASIN(0)

The following example returns a value of -90.

ASIN(-1)

The following example returns a value of 5.73917047.

ASIN(0.1)

The following example returns a value of 30.

ASIN(0.5)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LISTR monitor command will display real values to full pre-
cision.

Related Keywords

COS

Chapter 3: Keyword Details

ACOS

SIN

TAN

ATAN2

22353-000 Rev. B eV+3 Keyword Reference Manual 47

48 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ATAN2

Real-valued function that returns the size of the angle in degrees that has its tri-
gonometric tangent equal to value_1/value_2.

Syntax

ATAN2 (value_1, value_2)

Usage Considerations

The returned value is zero if both parameter values are zero.

Parameters

value_1 Real-valued expression.

value_2 Real-valued expression.

Examples

The following example returns 26.1067.

ATAN2(0.123,0.251)

The following example returns -6.600926.

ATAN2(-5.462,47.2)

The following example returns -90.56748.

ATAN2(1.3125E+2,-1.3)

The following example returns and angle value to the "slope" variable from tri-
gonometric tangent equal to "rise"/"run".

slope = ATAN2(rise, run)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LISTR monitor command will display real values to full pre-
cision.

Related Keywords

COS

ACOS

SIN

Chapter 3: Keyword Details

ASIN

TAN

22353-000 Rev. B eV+3 Keyword Reference Manual 49

50 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

BASE

Transformation function that returns the transformation value that represents the
translation and rotation set by the last BASE program command or monitor com-
mand.

Syntax

BASE

Usage Considerations

The BASE function returns information for the robot selected by the task execut-
ing the function.

The statement LISTL BASE can be used to display the current base setting.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Examples

The following example sets the new base location using the BASE program com-
mand and then moves to the new base location.

BASE 100,100

MOVE BASE

Related Keywords

BASE (monitor command)

BASE (program command)

LISTL

SELECT (real-valued function)

SELECT (program command)

Chapter 3: Keyword Details

BCD

Real-valued function that converts a real value to Binary Coded Decimal (BCD)
format.

Syntax

BCD (value)

Usage Considerations

The BCD function is most useful when used in conjunction with the BITS
keyword.

Parameter

value Real-valued expression defining the value to be converted.

Details

The BCD function converts an integer value in the range 0 to 9999 into its BCD
representation. This can be used to set a BCD value on a set of external output
signals for example.

Example

The following example converts the real variable "digit" to a BCD value and
applies it to external digital output signals 4 through 8.

BITS 4,4 = BCD(digit)

Related Keywords

DCB

BITS (program command)

BITS (real-valued function)

BITS (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 51

52 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

BELT

Real-valued function that returns information about a conveyor belt being
tracked with the conveyor tracking feature.

Syntax

BELT (%belt_var, mode)

Usage Considerations

The BELT system switch must be enabled before this function can be used.

The SETBELT program command is generally used in conjunction with the BELT
function to set the effective belt position to zero. This must be done each time the
robot will perform a sequence of motions relative to the belt and must be done
shortly before the first motion of such a sequence.

WARNING: It is important to execute the SETBELT program
command each time the robot is going to track the belt to
make sure the difference between the current belt position as
returned by the BELT function and the belt position of the spe-
cified belt variable does not exceed 8,388,607 (^H7FFFFF)
during active belt tracking. Unpredictable robot motion may
result if the difference does exceed this value while tracking
the belt.

Parameters

%belt_var The name of the belt variable used to reference the con-
veyor belt. As with all belt variables, the namemust
begin with a percent symbol (%).

mode Control value that determines the information that will
be returned.

If the mode is omitted or its value is equal to zero, the
BELT function returns the encoder reading in encoder
counts of the belt specified by the belt variable. The value
returned by this function is limited to an absolute value
of 8,388,607 andwill roll over to -8,388,608 after.

If the value is equal to -1, the BELT function returns the
last latched encoder position in encoder counts of the belt
specified by the belt variable. This value equivalent to the
value returned by DEVICE(0, enc, stt, 4) except it is not
bounded to 8,388,607.

If the value of the expression is greater than zero, the
encoder velocity is returned in units of encoder counts
per eV+ cycle (16 ms).

Chapter 3: Keyword Details

Examples

The following example will set the point of interest on the referenced conveyor to
be that corresponding to the current reading of the belt encoder.

SETBELT %main.belt = BELT(%main.belt)

The folowing example will save the current speed of the belt associated with the
belt variable "%b".

belt.speed = BELT(%b, 1)

Related Keywords

DEFBELT

DEVICE

SETBELT

22353-000 Rev. B eV+3 Keyword Reference Manual 53

54 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

BITS

Real-valued function that reads multiple digital signals and returns the value cor-
responding to the binary bit pattern.

Syntax

BITS (first_sig, num_sigs)

Usage Considerations

External digital input or output signals or internal software signals can be ref-
erenced.

A maximum of 32 signals can be read at one time.

Any group of up to 32 signals can be read provided that all the signals in the
group are configured for use by the system.

Parameters

first_sig Real-valued expression defining the lowest-numbered sig-
nal to be read.

num_sigs Optional real-valued expression specifying the number of
signals to be affected. A value of 1 is assumed if none is spe-
cified. The maximum valid value is 32.

Details

This function returns a value that corresponds to the binary bit pattern present
on 1 to 32 digital signals.

The binary representation of the value returned by the function has its least-sig-
nificant bit determined by signal numbered first_sig and its higher-order bits
determined by the next num_sigs -1 signals.

Example

The example below assumes that the following input signal states are present.

Signal: 1008 1007 1006 1005 1004 1003 1002 1001
State: 1 1 0 1 0 1 1 0

The following statement will return a value of 5 for variable "x" because the four
signals 1003, 1004, 1005, and 1006 can be interpreted as a binary representation
of that value.

x = BITS(1003, 4)

Related Keywords

BITS (program command)

IO

Chapter 3: Keyword Details

RESET

SIG

SIG.INS

SIGNAL (monitor command)

SIGNAL (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 55

56 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

BMASK

Real-valued function that creates a bit mask by setting individual bits.

Syntax

BMASK (bit, bit, ..., bit)

Parameter

bit Integer value from 1 to 32 specifying a bit to turn ON. The
least-significant bit is number 1.

Details

This function creates a bit mask by turning ON the specified bits and leaving all
other bits OFF (ON = 1, OFF = 0).

Bit 32 is the sign bit and yields a negative number when set.

Examples

The following example creates a bit mask ^B10001 and attaches to a disk LUN
with mode bit 2 turned ON.

bm = BMASK(1, 5)

mode = BMASK(2)
ATTACH (lun, mode) "DISK"

Chapter 3: Keyword Details

BSTATUS

Real-valued function that returns information about the status of the conveyor
tracking system.

Syntax

BSTATUS

Usage Considerations

The BSTATUS function returns information for the robot selected by the task
executing the function.

Details

This function is normally used when the BELT.MODE system parameter bit 4 is
set.

This function returns a value that is equivalent to the binary value represented
by a set of bit flags that indicate the following conditions of the conveyor tracking
software.

Bit 1 (LSB) Tracking belt (mask value = 1)

When this bit is set, the robot is currently tracking a belt.

Bit 2 Destination upstream (mask value = 2)

When this bit is set, the destination location was found to
be upstream of the belt window during the planning of the
last motion.

Bit 3 Destination downstream (mask value = 4)

When this bit is set, the destination location was found to
be downstream of the belt window during the planning of
the last motion.

Bit 4 Window violation (mask value = 8)

When this bit is set, a window violation occurred while the
robot was tracking a belt during the last belt-relative
motion. This flag is cleared at the start of each belt-relative
motion.

Related Keywords

BELT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 57

58 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

PARAMETER (monitor command)

PARAMETER (Program command)

PARAMETER (real-valued function)

WINDOW (program command)

WINDOW (real-valued function)

Chapter 3: Keyword Details

CAS

Real-valued function that compares a real variable to a test value and con-
ditionally sets a new value as one indivisible operation.

Syntax

CAS (variable, test_value, new_value)

Usage Considerations

The eV+ system does not enforce any protection scheme for global variables that
are shared by multiple program tasks. It is the programmer's responsibility to
keep track of the usage of such global variables. The CAS real-valued function (or
the similar TAS function) can be used to implement logical interlocks on access
to shared variables.

This function can also be used to bypass a restriction on the simultaneous access
of global arrays by multiple program tasks. Program execution can fail if two or
more tasks attempt to increase the size of an array at the same time. Refer to the
eV+3 User's Manual (Cat. No. I651) for more information about global array access
restriction.

Parameters

variable Name of the real-valued variable to be tested and
assigned the new value given.

test_value Real value, variable, or expression that defines the com-
parison value.

new_value Real value, variable, or expression that defines the new
value to be assigned to the specified variable.

Details

If the variable is equal to the test value, the new value is stored in the variable.
Otherwise the variable is not modified. The original value of the variable is
returned as the function value.

The compare and set-new-value operations occur with interrupts locked so that
the operation is indivisible. This function provides a way for setting semaphores
between tasks, similar to the TAS real-valued function. Refer to TAS for more
information.

If the variable is undefined when the function is executed, it is treated as having
the value zero.

Related Keywords

TAS

22353-000 Rev. B eV+3 Keyword Reference Manual 59

60 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$CHR

String function that returns a one-character string corresponding to a given ASCII
value.

Syntax

$CHR(value)

Parameter

value Real-valued expression defining the value to be translated
into a character. The value must be in the range of 0 to 255
(decimal).

If the value is in the range 0 to 127 (decimal), the cor-
responding ASCII character will be returned.

Example

The following example returns the character "A" (ASCII value 65).

$CHR(65)

Related Keywords

ASC

$DBLB

$FLTB

$INTB

$LNGB

Chapter 3: Keyword Details

COM

Perform the binary complement operation on a value.

Syntax

... COM value ...

Usage Considerations

The COM function is meaningful only when performed on an integer value. Only
the integer parts of real values are used. Any fractional parts are ignored.

Parameter

value Real-valued expression defining the value to be com-
plemented.

Details

The COM function performs the binary complement operation on a bit-by-bit
basis, resulting in a real value.

The COM operation consists of the following steps.

1. Convert the operand to a sign-extended 32-bit integer, truncating any frac-
tional part.

2. Perform a binary complement operation.

3. Convert the result back to a real value.

To review the order of evaluation for operators within expressions, refer to the
eV+3 User's Manual (Cat. No. I651).

Examples

The following example returns the value of -41.

COM 40

Related Keywords

NOT

22353-000 Rev. B eV+3 Keyword Reference Manual 61

62 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

CONFIG

Real-valued function that returns a value providing information about the robot's
geometric configuration or the status of the motion servo control features.

Syntax

CONFIG (select)

Usage Considerations

The CONFIG function returns information for the robot selected by the task
executing the function.

If the eV+ system is not configured to control a robot, use of the CONFIG function
causes an error.

Parameter

select Optional real value, variable, or expression interpreted as an
integer that has a value from 0 to 13 and selects the category
of the configuration information to be returned.

Details

This function returns a value that is interpreted as a series of bit flags. The inter-
pretation of the value returned by this function depends on the select parameter.

When the select parameter is omitted or has the value 0, 1, or 2, the CONFIG
function returns a value that can be interpreted as bit flags indicating a geometric
configuration of the robot. Each bit in the value represents one characteristic of a
robot configuration.

When the select parameter is 3, 4, or 5, the CONFIG function returns a value that
can be interpreted as bit flags indicating the settings of several robot motion
servo control features. Each bit in the value represents the state of one motion
servo control feature.

When the select parameter is 6, 7, or 8, the CONFIG function returns a value that
represents the setting of the FINE tolerance. Limitations to this functionality
apply when using FINE with the ALWAYS parameter. Refer to FINE on page
485 for more information.

When the select parameter is 9, 10, or 11, the CONFIG function returns a value
that represents the setting of the COARSE tolerance. Limitations to this func-
tionality apply when using COARSE with the ALWAYS parameter. Refer to
COARSE on page 431 for more information.

The parameter values in this group determine which robot configuration is
returned by the function.

select = 0

This returns the robot's current configuration. The default value is 0.

Chapter 3: Keyword Details

select = 1

This returns the configuration the robot will achieve at the completion of the cur-
rent motion or the current configuration if no motion is in progress (while the
robot is attached).

select = 2

This returns the configuration the robot achieves at the completion of the next
motion assuming that it is a joint-interpolated and not straight-line motion.

The interpretations of the bit flags returned when Select = 1, 2, or 3 are shown in
the table below.

Bit # Bit
Mask Indication if Bit ON

1 1 Robot has righty configuration.

2 2 Robot has below configuration.

3 4 Robot has flipped configuration.

select = 3

This returns the permanent settings of the robot motion servo control features
that are defined by keywords that specify the ALWAYS qualifier.

select = 4

This returns the temporary settings for the motion currently executing or the last
motion completed if no motion is in progress.

select = 5

This returns the temporary settings that will apply to the next motion performed.

The interpretations of the bit flags returned by selections 3, 4, and 5 are shown in
the table below.

Bit# Bit Mask Indication if bit CLEAR Bit SET

1 1 None None

2 2 FINE asserted COARSE asserted

3 4 NULL asserted NONULL asserted

4 8 MULTIPLE asserted SINGLE asserted

5 ^H10 CPON asserted CPOFF asserted

22353-000 Rev. B eV+3 Keyword Reference Manual 63

64 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Bit# Bit Mask Indication if bit CLEAR Bit SET

6 ^H20 OVERLAP asserted NOOVERLAP asserted

select = 6

This returns the FINE tolerance as the permanent setting as a percentage of the
standard tolerance.

select = 7

This returns FINE tolerance as the setting used for the previous or current motion
as a percentage of the standard tolerance.

Select = 8

This returns FINE tolerance as the setting to be used for the next motion as a per-
centage of the standard tolerance.

select = 9

This returns COARSE tolerance as the permanent setting as a percentage of the
standard tolerance.

select = 10

This returns COARSE tolerance as the setting used for the previous or current
motion as a percentage of the standard tolerance.

select = 11

This returns the COARSE tolerance as the setting to be used for the next motion
as a percentage of the standard tolerance.

select = 12

When select = 12, the available joint configuration options for the selected robot
are returned as shown in the table below.

Bit # Bit Mask Indication if bit set

1 1 Robot can have lefty or righty configuration.

2 2 Robot can have above or below configuration.

3 4 Robot can have flipped or noflip configuration.

18 ^H20000 Robot supports the OVERLAP and NOOVERLAP
keywords.

22 ^H200000 Robot's last rotary joint can be limited to ±180

Chapter 3: Keyword Details

Bit # Bit Mask Indication if bit set

degrees with SINGLE program commands.

select = 13

When the select parameter is 13, the type of robot motion is returned. The bit val-
ues returned are shown in the table below.

Bit # Bit Mask Description

1 1 This bit is set if the motion is joint interpolated. It is
cleared for straight-line motion.

Example

The following example will check the if the robot is moving to a righty or lefty
configuration. Text will be displayed in the Monitor Window to indicate the con-
figuration.

IF (CONFIG(1)==0) OR (CONFIG(1)==4 THEN
TYPE "Robot is moving to a lefty position."

END
IF (CONFIG(1)==1) OR (CONFIG(1)==5) THEN

TYPE "Robot is moving to a righty position."
END

Related Keywords

ABOVE

BELOW

COARSE

CPOFF

CPON

FINE

FLIP

LEFTY

NOFLIP

NONULL

NOOVERLAP

NULL

OVERLAP

RIGHTY

SELECT

22353-000 Rev. B eV+3 Keyword Reference Manual 65

66 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SELECT (real-valued function)

SINGLE

STATE

Chapter 3: Keyword Details

COS

Real-valued function that returns the trigonometric cosine of a given angle.

Syntax

COS(angle)

Usage Considerations

The angle parameter must be measured in degrees. The parameter is interpreted
as modulo 360 degrees, but excessively large values may cause a loss of accuracy
in the returned value.

Parameter

angle Real-valued expression that defines the angular value (in
degrees) to be considered.

Details

Returns the trigonometric cosine of the argument, which is assumed to be in
degrees. The resulting value is always in the range of -1.0 to +1.0, inclusive.

Examples

The following example returns a value of 0.999962.

COS(0.5)

The following example returns a value of 0.9954596.

COS(-5.462)

The following example returns a value of 0.4999999.

COS(60)

The following example returns a value of -0.659345.

COS(1.3125E+2)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LISTR monitor command will display real values to full pre-
cision.

Related Keywords

ACOS

22353-000 Rev. B eV+3 Keyword Reference Manual 67

68 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SIN

ASIN

TAN

ATAN2

Chapter 3: Keyword Details

CUBRT

Real-valued function that returns the cube root of a value.

Syntax

CUBRT(value)

Parameters

value Real-valued expression defining the value whose cube
root is to be computed.

Examples

The following example returns a value of 0.497319.

CUBRT(0.123)

The following example returns a value of 2.0.

CUBRT(8)

The following example returns a value of -1.7611.

CUBRT(-5.462)

The following example returns a value of 5.081982.

CUBRT(1.3125E+2)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LIST and LISTR monitor commands display real values to full
precision.

Related Keywords

SQR

SQRT

22353-000 Rev. B eV+3 Keyword Reference Manual 69

70 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$DBLB

String function that returns an 8-byte string containing the binary representation
of a real value in double-precision IEEE 754 floating-point format.

Syntax

$DBLB(value, littleEndian)

Parameter

value Real-valued expression which is converted to its
IEEE 754 floating-point binary representation.

littleEndian Optional value to specify the type of little endian. If
1, then it is a little end, otherwise it is big end.

Details

The primary use of this function is to convert a double-precision real value to its
binary representation in an output record of a data file.

A real value is converted to its binary representation using the IEEE double-pre-
cision standard floating-point format. This 64-bit value is packed as eight suc-
cessive 8-bit characters in a string. Refer to the DBLB real-valued function for a
more detailed description of IEEE 754 floating-point format.

Example

The following example will return a character string as shown below.

$DBLB(1.215)

Character string returned as:

$CHR(^H3F)+$CHR(^H3F)+$CHR(^H70)+$CHR(^HA3)+$CHR
(^HD7)+$CHR(^H0A)+$CHR(^H3D)+$CHR(^H71)

Related Keywords

$CHR

FLTB

$FLTB

$INTB

$TRANSB

Chapter 3: Keyword Details

DBLB

Real-valued function that returns the value of eight bytes of a string interpreted
as an IEEE double-precision floating-point number.

Syntax

DBLB ($string, first_char, litteEndian)

Parameters

$string String expression that contains the eight bytes to be
converted.

first_char Optional real-valued expression that specifies the
position of the first of the eight bytes in the string.

If first_char is omitted or has a value of 0 or 1, the
first eight bytes of the string are extracted.

If first_char is greater than 1, it is interpreted as the
character position for the first byte. For example, a
value of 2 means that the second through ninth bytes
are extracted.

If first_char specifies eight bytes that are beyond the
end of the input string, an error is generated.

littleEndian Optional value to specify the type of little endian. If
1, then it is a little end, otherwise it is big end.

Details

The primary use of this function is to convert a binary floating-point number
from an input data record to a value that can be used internally by eV+.

Floating-point Numbers

Eight sequential bytes of the given string are interpreted as being a double-pre-
cision (64-bit) floating-point number in the IEEE standard format. This 64-bit field
is interpreted as follows.

FractionExponentS

63 62 52 51 0

Bytes 1 and 2 Bytes 3 and 4 Bytes 5 and 6 Bytes 7 and 8

Figure 3-1. 64-bit Floating Point Format

22353-000 Rev. B eV+3 Keyword Reference Manual 71

72 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Table 3-1. 64-Bit Floating Point Format Description

Item Description

S Sign bit (0 = positive, 1 = negative)

Exponent Binary exponent, biased by -1023

Fraction Binary fraction with an implied 1 to the left of the binary point

The value of a floating point number is shown below for 0 < exponent < 2047.

-1s * (1.fraction) * 2exp -1023

Double-precision real values have the following special values.

Exponent Fraction Description

0 Zero Zero value

0 Nonzero Denormalized number

2047 Zero Signed infinity

2047 Nonzero Not a number

The range for normalized numbers is approximately 2.2 x 10-308 to 1.8 x 10307

Example

The following example returns a value of 1.0.

DBLB($CHR(^H3F)+$CHR(^HF0)+$CHR(0)+$CHR(0)+$CHR(0)+$CHR(0)+$CHR
(0)+$CHR(0))

Related Keywords

ASC

$DBLB

FLTB

$FLTB

INTB

TRANSB

VAL

Chapter 3: Keyword Details

DCB

Real-valued function that converts BCD digits into an equivalent integer value.

Syntax

DCB(value)

Usage Considerations

No more than four BCD digits can be converted. The DCB function is most often
used with the BITS real-valued function to decode input from the digital input
signal lines.

Parameter

value Real value interpreted as a binary bit pattern representing up
to four BCD digits.

NOTE: An error is reported if any digit is not a valid BCD digit (if
a digit is greater than 9).

Example

The following example sets the real variable "input" equal to the integer equi-
valent of the BCD input on the specified signals if external input signals 1001-
1008 (8 bits of input) receive two BCD digits from an external device.

input = DCB(BITS(1001, 8))

Related Keywords

BITS

BCD

22353-000 Rev. B eV+3 Keyword Reference Manual 73

74 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$DECODE

String function that extracts part of a string as delimited by given break char-
acters.

Syntax

$DECODE ($string_var, string_exp, mode)

Usage Considerations

$DECODE modifies the input $string_var variable as well as returning a string
value.

The evaluation for break characters is always performed without regard for the
case of the characters in the input string.

The break characters are treated as individual characters independent of the
other characters in the string that defines them.

Parameters

$string_var String variable that contains the string to be scanned.
After the function is processed, this variable will con-
tain the portion of the original string that was not
returned as the function value.

NOTE: This parameter is modified by the function and cannot be spe-
cified as a string constant or expression.

If the program causes the same variable to receive the function value, the
variable contain the value returned by the function.

string_exp String constant, variable, or expression that defines
the individual break characters, which are to be con-
sidered as separating the substrings of interest in the
input string value. The order of the characters in this
string has no effect on the function operation.

mode Optional real value, variable, or expression that con-
trols the operation performed by the function. Mode
values are -3, -2, 0, and 1.

If the mode is negative, 0, or is omitted, characters
up to the first break character are removed from the
input string and returned as the output of the func-
tion.

If the mode is greater than 0, characters up to the
first non-break character are removed from the input
string and returned as the output of the function.
This case returns all the leading break characters in

Chapter 3: Keyword Details

the input string.

Details

This function is used to scan an input string and return the initial substring as
delimited by any of a group of break characters. After the substring is returned by
the function, it is deleted from the input string.

The string returned and deleted can either contain no break characters (mode 0),
or all break characters (mode 1). $DECODE can return and delete all the char-
acters up to the first break character for a desired substring or the function can
return and delete all the leading break characters which are usually discarded.

By alternating the modes, groups of desired characters can be extracted from the
input string (see the first example below).

The modes -2 and -3 copy all nonbreak characters up to the first break characters
plus the first break character.

Mode -2 is equivalent to the following statements.

$s = $DECODE($i,$break,0) ;Extract up to the first break character
$s = $s+$MID($i,1,1) ;Add on 1st break character
$i = $MID($i,2,127) ;Remove the break character

The following statement has the same functionality.
$s = $DECODE($i,$break,-2) ;Extract through 1st break character

Mode -3 is equivalent to mode -2 if a break character is present. However, if no
break character is contained in the input string, mode -3 returns an empty string
and leaves the input string unchanged.

Examples

The examples below extract consecutive numbers from the string "$input", assum-
ing that the numbers are separated by some combination of spaces and commas.

The first example within the DO structure sets the variable "$temp" to the sub-
string from "$input" that contains the first number, and removes that substring
from "$input". The VAL function is used to convert the numeric string into its cor-
responding real value, which is assigned to the next element of the real array
value. The $DECODE function is used a second time to extract the characters that
separate the numbers. The characters found are ignored.

i = 0 ;Set array index
DO

$temp = $DECODE($string_var," ,",0) ;Extract a number string
value[i] = VAL($temp) ;Convert to real value
$temp = $DECODE($string_var," ,",1) ;Discard spaces and commas
i = i+1 ;Advance the array index

UNTIL $string_var == "" ;Stop when input is empty

In a case where "$string_var" contains a sequence of numeric values as strings
separated by spaces, commas, or any combination of spaces and commas, execut-

22353-000 Rev. B eV+3 Keyword Reference Manual 75

76 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ing the following statement results in the first four elements of the "value" array
getting the values shown below.

$string_var = "1234. 93465.2, .4358,3458103"

value[0] = 1234.0
value[1] = 93465.2
value[2] = 0.4358
value[3] = 3458103.0

The string variable input ($string_var) also contains an empty string ("").

As shown above, use of the $DECODE function normally involves two string
variables as the input variable and the output variable. If you are interested only
in the characters up to the first break character, and want to discard all the char-
acters that follow, the same variable can be used for both input and output. In
the following example, the same variable is used on both sides of the equal sign
because the programmer wants to discard all the white space (spaces and tabs)
characters at the end of the input string.

NOTE: The break characters are specified by a string expression
consisting of a space character and a tab character.

$line = $DECODE($line," "+$CHR(9),0) ;Discard trailing
blanks

Related Keywords

$TRUNCATE

$MID

Chapter 3: Keyword Details

$DEFAULT

String function that returns a string containing the current or initial system
default device, unit, and directory path for disk file access.

Syntax

$DEFAULT (mode, empty_arg)

Usage Considerations

Parentheses must be included even when mode is omitted.

Parameter

mode Optional real value, variable, or expression (inter-
preted as an integer) that specifies the default path to
be returned.

If the parameter is omitted, or has the value 0, the cur-
rent system default path is returned.

If the parameter has the value 1, the default path
returned is the one that was in effect immediately
after the eV+ system was booted from disk.

empty_arg This should be NULL.

Details

The system default device, unit, and directory path can be set by the CD or
DEFAULT command. The $DEFAULT function returns the current or initial
default values as a string as shown below.

device>disk_unit:directory_path

This string contains the portions of the following information that have been set.

device Can be one of the following.

DISK A local disk.

SYSTEM A disk device, drive, and subdirectory
path currently set with the DEFAULT
monitor command.

Additional Information: Refer to the
ATTACH command for more inform-
ation on valid devices.

22353-000 Rev. B eV+3 Keyword Reference Manual 77

78 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

disk_unit The disk unit specified to the DEFAULT command.
The colon (:) is omitted if no unit was specified.

directory_path Any input to the DEFAULT command that followed
the device and unit. The directory path is omitted if no
additional input was specified.

Example

The following example sets the default drive specification to DISK>D:\TEST\
and then displays it on the terminal for confirmation.

DEFAULT = DISK>D:\TEST\ LISTS $DEFAULT()

Related Keywords

CD

DEFAULT

Chapter 3: Keyword Details

DEFINED

Real-valued function that determines if a variable has been defined.

Syntax

DEFINED (var_name)

Parameter

var_name The name of a location, string, or real variable. Both
scalar variables and array variables are permitted. A loc-
ation variable can be a transformation, a precision point,
or a belt variable.

Details

The value of the specified variable is tested. If the value is defined, the function
returns the value TRUE. Otherwise, the value FALSE is returned.

If a specific array element is specified for array variables, the single array element
is tested. If no array element is specified, this function returns a TRUE value if
any element of the array is defined.

NOTE: For non-real arguments (i.e., strings, locations, trans-
formations) that are passed in the argument list of a CALL state-
ment, you can test to see if the variable is defined or not. You
cannot assign a value to undefined non-real arguments within the
called program. If you attempt to assign a value to an undefined
non-real argument, an undefined value error message is returned.

When using DEFINED to test for user input, assign a default value to the vari-
able before testing it as shown in the examples below.

Examples

The following statement returns a value of TRUE if the variable "base_part" is
defined.

DEFINED(base_part)

The following statement returns a value of TRUE if any element of the array
"corner" has been defined.

DEFINED(corner[])

Related Keywords

STATUS

TESTP

22353-000 Rev. B eV+3 Keyword Reference Manual 79

80 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

DEST

Transformation function that returns a transformation value representing the
planned destination location for the current robot motion.

Syntax

DEST

Usage Considerations

The DEST function returns information for the robot selected by the task execut-
ing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Details

DEST returns the location to which a robot was moving when its motion was
interrupted. This applies to motion keywords with the following considerations.

l Motions to named locations.

MOVE start
MOVES #part[10]

NOTE: Even though the second statement references a pre-
cision-point location variable, the DEST function returns a
transformation value during that motion.

l Motions to locations defined relative to named locations or defined rel-
ative to the current robot location.

APPROS drop, 50.00
DEPART 30.00
MOVE SHIFT(HERE BY 50,0,10)

l Motions to special locations.

READY

The location value returned by the DEST function may not be the same as the loc-
ation at which the robot stops if the motion of the robot is interrupted for some
reason. For example, if an emergency stop operation occurs, the robot stops imme-
diately, but the DEST function still returns the location to which the robot was
moving.

If a motion is not started because eV+ detects the destination location cannot be
reached, then the DEST function is not set to the goal location.

Example

The following example continues a motion that has been interrupted by a reac-
tion initiated by a REACTI keyword. The subroutine automatically invoked can

Chapter 3: Keyword Details

contain steps such as the following to process the interruption and resume the
original motion.

SET save = HERE
SET old.dest = DEST
old.speed = SPEED(3)
DEPART 50.0

.

.

.
APPRO save, 50.0
MOVES save
SPEED old.speed
MOVES old.dest

Related Keywords

HERE

#PDEST

SELECT (real-valued function)

SELECT (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 81

82 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

DEVICE

Real-valued function that returns a real value from a specified device. The value
may be data or status information, depending upon the device and the para-
meters.

Syntax

DEVICE (type, unit, error, p1, p2,...)

Usage Considerations

The syntax contains optional parameters that may be useful only for specific
device types and information requests.

Parameters

type Real value, variable, or expression interpreted as an integer
that indicates the type of device being referenced. The fol-
lowing types are available.

0 = Belt encoder
1 = (Reserved for future use))
2 = Force Processor Board
3 = Robot device
4 = Vision
5 = (Reserved for future use)

unit Real value that indicates the device unit number. The value
must be in the range 0 to -1, where -1 is the maximum num-
ber of devices of the specified type. The value should be 0 if
there is only one device of the given type.

error Optional real variable that receives a standard system error
number which indicates if this function succeeded or failed. If
this parameter is omitted, any device error stops program exe-
cution. If error is specified, the program must check it to
detect errors.

p1, p2,
...

Optional real values that are sent to the device as part of the
request. The number of values specified and the meanings of
the values depend upon the particular device type.

Details

DEVICE is a function for returning data and status information from external
devices.

Chapter 3: Keyword Details

Examples

The following example captures the current belt encoder position when the last
parameter =1 and captures the next latched encoder position from the buffer
when the last parameter = 4.

IF (sv.emulate.mode) THEN
latch.num = 1
latch.value = DEVICE(0,pick.encoder[0]-1,sts,1)

ELSE
latch.value = DEVICE(0,pick.encoder[0]-1,sts,4)

END
SETBELT %pick.belt[0] = latch.value

Related Keywords

SETDEVICE

22353-000 Rev. B eV+3 Keyword Reference Manual 83

84 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

DISTANCE

Real-valued function that determines the distance between the points defined by
two location values.

Syntax

DISTANCE (location_1, location_2)

Usage Considerations

Only X, Y, and Z axes are considered.

Either location can be expressed as a compound transformation.

Parameter

location_1 Transformation value that defines the first point of
interest. This can be a function, a variable, or a com-
pound transformation.

location_2 Transformation value that defines the second point of
interest. This can be a function, a variable, or a com-
pound transformation.

Details

Returns the distance in millimeters between the points defined by the two spe-
cified locations. The order in which the locations are specified does not matter.
Also, the orientations defined by the locations have no effect on the value
returned.

Example

The following example sets the value of the real variable x to be the distance
between where the robot tool point is currently located and the point defined by
the transformation part.

x = DISTANCE(HERE, part)

Related Keywords

IDENTICAL

Chapter 3: Keyword Details

DURATION

Real-valued function that returns the current setting for one of the motion
DURATION specifications.

Syntax

DURATION (select)

Usage Considerations

The DURATION function returns information for the robot selected by the task
executing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Parameter

select Real-valued expression whose value determines which dur-
ation value should be returned.

Details

This function returns the user-specified minimum robot motion duration in
seconds corresponding to the select parameter value. Refer to the DURATION pro-
gram command for an explanation of the specification of motion duration times.

Different select values determine when the duration time returned applies as
described below. The acceptable range for the select parameter is 2 to 4. Other val-
ues for this parameter are invalid.

Select DURATION value returned

2 Permanent minimum robot motion duration (set by a DURATION ...
ALWAYS statement)

3 Temporary motion duration for the current or last motion.

4 Temporary motion duration to be used for the next motion.

Examples

The following example will check if the DURATION setting is 2 using the real-
valued function and if not, will set it to 2 using the program command.

SELECT ROBOT = 1

IF DURATION(2)<>2 THEN
DURATION 2 ALWAYS

END

22353-000 Rev. B eV+3 Keyword Reference Manual 85

86 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Related Keywords

CONFIG

DURATION (program command)

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

DX

Real-valued function that returns the X-axis component of a given trans-
formation value.

Syntax

DX (location)

Parameter

location Transformation value from which a component is desired.
This can be a function, a variable, or a compound trans-
formation.

Details

This function returns the respective X-axis component of the specified trans-
formation value.

NOTE: The DECOMPOSE command can also be used to obtain
the displacement components of a transformation value. If the rota-
tion components are desired, the DECOMPOSE command must be
used. DECOMPOSE is more efficient if more than one element is
needed and the location is a compound transformation.

Example

Consider the transformation "start" with the following components.

125, 250, -50, 135, 50, 75

The following example will return a value of 125.00.

DX(start)

Related Keywords

DECOMPOSE

DY

DZ

RX

RY

RZ

22353-000 Rev. B eV+3 Keyword Reference Manual 87

88 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

DY

Real-valued function that returns the Y-axis component of a given trans-
formation value.

Syntax

DY (location)

Parameter

location Transformation value from which a component is desired.
This can be a function, a variable, or a compound trans-
formation.

Details

This function returns the respective Y-axis component of the specified trans-
formation value.

NOTE: The DECOMPOSE command can also be used to obtain
the displacement components of a transformation value. If the rota-
tion components are desired, the DECOMPOSE command must be
used. DECOMPOSE is more efficient if more than one element is
needed and the location is a compound transformation.

Example

Consider the transformation "start" with the following components.

125, 250, -50, 135, 50, 75

The following example will return a value of 250.00.

DY(start)

Related Keywords

DECOMPOSE

DX

DZ

RX

RY

RZ

Chapter 3: Keyword Details

DZ

Real-valued function that returns the Z-axis component of a given trans-
formation value.

Syntax

DZ (location)

Parameter

location Transformation value from which a component is desired.
This can be a function, a variable, or a compound trans-
formation.

Details

This function returns the respective Z-axis component of the specified trans-
formation value.

NOTE: The DECOMPOSE command can also be used to obtain
the displacement components of a transformation value. If the rota-
tion components are desired, the DECOMPOSE command must be
used. DECOMPOSE is more efficient if more than one element is
needed and the location is a compound transformation.

Example

Consider the transformation "start" with the following components.

125, 250, -50, 135, 50, 75

The following example will return a value of -50.00.

DZ(start)

Related Keywords

DECOMPOSE

DX

DY

RX

RY

RZ

22353-000 Rev. B eV+3 Keyword Reference Manual 89

90 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ENCLATCH

Real-valued function that returns the encoder position for any encoder in the system at the
occurrence of the last latch.

Syntax

ENCLATCH(select)

Usage Considerations

If an encoder that is not configured is specified for the select parameter, executing the
ENCLATCH keyword will return an error.

Parameter

select Optional integer, expression, or real variable specifying the encoder id. This
can be a value from 1 to 116.

Details

The ENCLATCH keyword returns a real-value that represents the location of the encoder when
the last external trigger occurred. The LATCHEDkeyword should be used to determined when
an external trigger has occurred and a valid location has been recorded. The DEVICE keyword
may be also used to read the latched value of an encoder as well as other information of the
encoder.

Operation of the external trigger can be configured with the Sysmac Studio. Refer to the Sysmac
Studio Robot Integrated System Building Function with Robot Integrated CPU Unit Operation Manual
(Cat. No. W595) for more information.

Examples

The following example returns the encoder position of encoder 1 and assigns the value to
"Latch_pos".

encoder_id = 1
Latch_sig = LATCHED(-1*encoder_id)
Latch_pos = ENCLATCH(encoder_id)

Related Keywords

LATCHED

Chapter 3: Keyword Details

$ENCODE

String function that returns a string created from output specifications.

Syntax

$ENCODE (output_specification, output_specification, ...)

Parameter

An output specification can consist of any of the following components in any
order, separated by commas.

l A string expression.

l A real-valued expression that is evaluated to determine a value to be dis-
played.

l Format control specifier that determines the format of the output message.

Details

This function makes strings normally produced by the TYPE command available
within a program. The $ENCODE function creates a string value but does not
generate any output.

The following format specifiers can be used to control the display of numeric val-
ues. These settings remain in effect for the remainder of the function parameter
list unless another specifier is used.

For all these specifiers, if a value is too large to be displayed in the given field
width, the field is filled with asterisk characters (*).

/D Use the default format, which is equivalent to /G15.8 (see
below), except trailing zeros and all but one leading space
are omitted.

The following format specifications accept a 0 as the width field. This
causes the actual field size to vary to fit the value and all leading spaces
to be suppressed. This is useful when a value is displayed within a line
of text or at the end of a line.

/En.m Format values in scientific notation (for example, -1.234E+02)
in fields n spaces wide with m digits in the fractional parts.
If n is not zero, it must be large enough to include space for a
minus sign (if the displayed value is negative), one digit to
the left of the decimal point, a decimal point (if m is not
zero), m digits, and four or five characters for the exponent.

22353-000 Rev. B eV+3 Keyword Reference Manual 91

92 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

/Fn.m Format values in fixed-point notation (for example, -123.4) in
fields n spaces wide, with m digits in the fractional parts.

/Gn.m Format values in F format with m digits in the fractional
parts if that can be done in fields n spaces wide. Otherwise
/En.m format is used.

/Hn Format values as hexadecimal integers in fields n spaces
wide.

/In Format values as decimal integers in fields n spaces wide.

/On Format values as octal integers in fields n spaces wide.

The following specifiers can be used to insert special characters in the
string.

/Cn Include the characters carriage return (CR) and line feed (LF)
n times.

If the string resulting from the $ENCODE function is output to the Mon-
itor Window, this results in n blank lines if the format control specifier is
at the beginning or end of the function parameter list. Otherwise, n -1
blank lines result.

/Un Include the characters necessary to move the cursor up n
lines if the resulting string is output to the Monitor Window.

/Xn Include n spaces.

Example

The following example adds a formatted representation of the value of count to
the string contained in $output.

$output = $output+$ENCODE(/F6.2, count)

The following example provides a method of adding a format control specifier to
the output from a PROMPT command. This example displays the value of the
motor as part of the prompt message.

Chapter 3: Keyword Details

PROMPT $ENCODE("Start motor #",/I0,motor," (Y/N)? "),
$answer

This PROMPT command displays the following user prompt when the value of
motor is 3.

Start motor #3 (Y/N)?

Related Keywords

PROMPT

TYPE

22353-000 Rev. B eV+3 Keyword Reference Manual 93

94 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$ERROR

String function that returns the error message associated with the given error
code.

Syntax

$ERROR (error_code)

Parameter

error_code Real-valued expression, with a negative value, that
identifies an error condition.

Details

Any error code returned by the IOSTAT function or by message string and also
by the ERROR real-valued function can be converted into their corresponding
eV+ error message strings with this function. The ERROR real-valued function
must be used to determine the variable portion of the error message for an error
code less than or equal to -1000.

Refer to the eV+3 User's Manual (Cat. No. I651) for a list of all the eV+ error mes-
sages and their error codes.

Example

The following example displays an error message if an I/O error occurs:

READ (5) $input
IF IOSTAT(5) < 0 THEN

TYPE "I/O error during read: ", $ERROR(IOSTAT(5))
HALT

END

Related Keywords

ERROR

IOSTAT

REACTE

Chapter 3: Keyword Details

ERROR

Real-valued function that returns the message number of a recent system mes-
sage that caused program execution to stop or caused a REACTE operation.

Syntax

ERROR (source, select)

Usage Considerations

Executing a REACTE statement clears any system messages for the current task
and prevents the ERROR function from returning messages as expected.

A first-in-first-out buffer is available that receives all asynchronous messages that
occur from the time an enable high power request is issued until power is dis-
abled for any reason. The buffer is accessed using the this function.

The asynchronous message buffer is not valid while the robot is in the power-
down initialization state. User programs should wait until STATE(1) <> 0 before
calling this function with a source parameter > 1000.

Additional Information: Refer to the eV+3 User's Manual (Cat. No.
I651) for error details.

22353-000 Rev. B eV+3 Keyword Reference Manual 95

96 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Parameters

Chapter 3: Keyword Details

source Real value, variable, or expression interpreted as an integer whose
value selects the source of the message code as follows.

-2 Return additional message code for current robot.

ERROR(-2, 0) Returns the standard eV+ message
ERROR(-2, 1) Returns the motor mask for the cur-

rent robot. This bit mask indicates
the motor(s) referenced for the mes-
sage number returned by the state-
ment ERROR(-2,0). The LSB
indicates motor 1, etc. If the state-
ment ERROR(-2, 1)=0, the message
is not associated with a specific
motor.

-1 Return the number of the most recent message from
the program in which the ERROR function is
executed.

0 Return the number of the most recent message from
the program executing as task 0.

0 < source ≤ 63

Return the number of the most recent message from
the program executing as the corresponding task
number.

1001 < source < 1021

Asynchronous first-in-first-out buffer element n-
1000, where n represents the following,

1 Most recent item

2 Next recent item, etc.

Returns 0 if nomore first-in-first-out buffer elements
exist. Valid select parameter values for the first-in-
first-out buffer are 0, 1, and 3.

The asynchronous first-in-first-out buffer is not valid
while the robot is in power-down initialization state.
User programs should wait until STATE(1) returns a
nonzero value before using ERRORwith source >
1000.

2000 Returns the last eV+ system message.

2001 to 2008

Returns the last message associated with a specific
robot where 2001 to 2008 corresponds with robots 1
to 8.

22353-000 Rev. B eV+3 Keyword Reference Manual 97

98 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

select Optional real value, variable, or expression interpreted as an
integer that selects the message information to be returned. The
value 0 is assumed if this parameter is omitted.

0 Return the message number of the most recent pro-
gram execution error excluding I/O errors. Refer to
IOSTAT for the specified program task.

1 If the most recent message for the specified program
task had a code in the range -1100 to -1199, return
the variable part of the correspondingmessage as a
numeric value. If the most recent message had an
error code in the range -1000 to -1099, return the
variable portion of the correspondingmessage as a bit
mask indicating the joints or motors to which the
message applies. Zero is returned if the message did
not have a variable portion in its message. Refer to
see select = 3 below.

2 Return the message number of the most recent mes-
sage from an MCS Program command executed by
the specified program task.

3 Return the number of the robot associated with the
most recent message for the specified program task.
Zero is returned if the message was not associated
with a specific robot. Refer to select = 1.

Details

An eV+ task can access any messages that result in robot power being disabled.
These include the asynchronous messages that previously were output only to
the Monitor Window.

This function is useful in a REACTE subroutine program to determine why the
REACTE was triggered.

NOTE: The ERROR function does not report errors reported by the
IOSTAT function.

Refer to the eV+3 User's Manual (Cat. No. I651) for a list of all the eV+ system mes-
sages and their error numbers.

When the select parameter is 1, the value returned by this function should be
interpreted as a 6-bit numeric value. The following example illustrates how the
value should be interpreted.

Example

The example below will return the message corresponding to an error code where
the following conditions are present.

Chapter 3: Keyword Details

l "code" is the basic error code from ERROR(n) or IOSTAT(lun) for example.
l "vcode" is the variable part of the error code from ERROR (n,1) for
example.

l "robot" is the number of the robot associated wiht the error from ERROR
(n,3) for example.

l "$msg" is the corresponding error message. This may be null.

.PROGRAM error.string(code, vcode, robot, $msg)
AUTO i, n
$msg = ""
IF code < 0 THEN

$msg = $ERROR(code)

IF (-1100 < code) AND (code <= -1000) THEN
n = 1
FOR i = 1 TO 7

IF vcode BAND n THEN
$msg = $msg+$ENCODE(i)

END
n = 2*n

END
END

IF (-1200 < code) AND (code <= -1100) THEN
$msg = $msg+$ENCODE(vcode)

END

IF robot AND (SELECT(ROBOT,-1) > 1) THEN
$msg = $msg+" (Robot"+$ENCODE(robot)+")"

END
END

RETURN
.END

Related Keywords

$ERROR

IOSTAT

MCS

REACTE

22353-000 Rev. B eV+3 Keyword Reference Manual 99

100 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

FALSE

Real-valued function that returns the value used by eV+ to represent a logical
false result.

Syntax

FALSE

Details

This named constant is useful for situations where true and false conditions need
to be specified. The value returned is 0.

Example

The following example program loop will execute continuously until the sub-
routine cycle returns a FALSE value for the real variable "continue".

DO
CALL cycle(continue)

UNTIL continue == FALSE

Related Keywords

OFF

ON

TRUE

Chapter 3: Keyword Details

$FLTB

String function that returns a 4-byte string containing the binary representation of
a real value in single-precision IEEE floating-point format.

Syntax

$FLTB (value)

Parameter

value Real-valued expression, the value of which is converted to
its IEEE floating-point binary representation.

Details

A real value is converted to its binary representation using the IEEE single-pre-
cision standard floating-point format. This 32-bit value is packed as four suc-
cessive 8-bit characters in a string. Refer to the FLTB real-valued function for a
more detailed description of IEEE floating-point format.

The main use of this function is to convert a real value to its binary rep-
resentation in an output record of a data file.

Example

The following example will return a character string as shown below.

$FLTB(1.215)

Character string returned as:

$CHR(^H3F)+$CHR(^H9B)+$CHR(^H85)+$CHR(^H1F)

Related Keywords

$CHR

DBLB

$DBLB

FLTB

$INTB

LNGB

$LNGB

TRANSB

22353-000 Rev. B eV+3 Keyword Reference Manual 101

102 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

FLTB

Real-valued function that returns the value of four bytes of a string interpreted as
an IEEE single-precision floating-point number.

Syntax

FLTB ($string, first_char)

Parameters

$string String expression that contains the four bytes to be
converted.

first_char Optional real-valued expression that specifies the pos-
ition of the first of the four bytes in the string.

If first_char is omitted or has a value of 0 or 1, the
first four bytes of the string are extracted. If the first_
char is greater than 1, it is interpreted as the character
position for the first byte.

For example, a value of 2 indicates that the second,
third, fourth, and fifth bytes are extracted.

An error is generated if first_char specifies four bytes
that are beyond the end of the input string.

Details

The main use of this function is to convert a binary floating-point number from
an input data record to a value that can be used internally by eV+.

Four sequential bytes of the given string are interpreted as being a single-pre-
cision (32-bit) floating-point number in the IEEE standard format. This 32-bit field
is interpreted as follows.

FractionExponentS

31 30 23 22 0

Byte 1 Byte 2 Byte 3 Byte 4

Figure 3-2. 32-bit Floating Point Format

Chapter 3: Keyword Details

Table 3-2. 32-Bit Floating Point Format Description

Item Description

S Sign bit (0 = positive, 1 = negative)

Exponent Binary exponent, biased by -127

Fraction Binary fraction with an implied 1 to the left of the binary point

 For 0 < exp < 255, the value of a floating-point number is:

-1s * (1.fraction) * 2exp -127

For exp = 0, the value is zero; for exp = 255, an overflow error exists.

Examples

The following example returns 1.0.

FLTB($CHR(^H3F)+$CHR(^H80)+$CHR(0)+$CHR(0))

The following example returns -3.0.

FLTB($CHR(^HC0)+$CHR(^H40)+$CHR(0)+$CHR(0))

Related Keywords

ASC

DBLB

$DBLB

$FLTB

INTB

LNGB

$LNGB

TRANSB

VAL

22353-000 Rev. B eV+3 Keyword Reference Manual 103

104 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

FRACT

Real-valued function that returns the fractional part of the argument.

Syntax

FRACT (value)

Parameter

value Real-valued expression whose fractional part is returned by
this function.

Details

The fractional part of a real value is the portion to the right of the decimal point
when the value is written without the use of scientific notation.

The value returned has the same sign as the function argument.

Examples

The following example returns 0.123.

FRACT(0.123)

The following example returns -0.462.

FRACT(-5.462)

The following example returns 0.25.

FRACT(1.3125E+2)

Related Keywords

INT

Chapter 3: Keyword Details

FRAME

Transformation function that returns a transformation value defined by four pos-
itions.

Syntax

FRAME (location_1, location_2, location_3, location_4)

Parameters

location_1 Transformation, compound transformation, or a trans-
formation-valued function whose position is used to
define the X axis of the computed frame.

The positive X axis is parallel to a line passing through
the points defined by location_1 and location_2 in the
direction from location_1 to location_2.

location_2 Transformation, compound transformation, or a trans-
formation-valued function whose position is used to
define the X axis of the computed frame.

The positive X axis is parallel to a line passing through
the points defined by location_1 and location_2 in the
direction from location_1 to location_2.

location_3 Transformation, compound transformation, or a trans-
formation-valued function whose position is used to
define the Y axis of the computed frame.

The X-Y plane is parallel to the plane that contains the
points defined by location_1, location_2, and location_3.

location_4 Transformation, compound transformation, or a trans-
formation-valued function whose position is returned as
the position of the computed frame transformation.

The origin is at the point defined by location_4.

Details

While the robot can be used to define an X, Y, Z position very accurately, it is
often difficult to define an orientation precisely. For applications such as pal-
letizing, the FRAME function is very useful for accurately defining a base trans-
formation whose position and orientation are determined by four positions.

Example

The following example defines the transformation base.frame to have the same X,
Y, Z position as origin, its X axis parallel to the line from center to x, and its Y
axis approximately in the same direction as the line from center to y.

22353-000 Rev. B eV+3 Keyword Reference Manual 105

106 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SET base.frame = FRAME(center, x, y, origin)

Related Keywords

TRANS

Chapter 3: Keyword Details

FREE

Real-valued function that returns the amount of unused free memory of storage
space.

Syntax

FREE (memory, select)

Function

Return the amount of unused free memory storage space.

Parameters

memory Optional real value, variable, or expression interpreted as an
integer that specifies which portion of system memory is to be
examined. The value zero is assumed if the parameter is omitted.

l 0: Program memory
l 1: Reserved for future use
l 2: Reserved for future use

select Optional real value, variable, or expression interpreted as an
integer that specifies what information about the memory is to
be returned. The value zero is assumed if the parameter is omit-
ted.

l 0: Percentage of memory available
l 1: Available memory in kilobytes (1024 bytes)

Details

This function returns the information displayed by the FREE monitor command.
Unlike the FREE monitor command, this function returns only one value determ-
ined by the values specified for the memory and select parameters.

Examples

The following example will display the available memory in kilobytes in the
Monitor Window.

memory = FREE(0,1)
TYPE memory

Related Keywords

FREE (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 107

108 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

GETC

Real-valued function that returns the next character (byte) from a device or input
record on the specified logical unit.

Syntax

GETC (lun, mode)

Usage Considerations

The logical unit must be attached by the program for normal, variable-length
record input / output.

Parameters

lun Real value, variable, or expression interpreted as an integer
that identifies the device to be accessed.

Refer to the ATTACH command for a description of the unit
numbers.

mode Real value, variable, or expression interpreted as an integer
that specifies the mode of the read operation. The mode is
used only for the terminal.

The value is interpreted as a sequence of bit flags as detailed
below. All bits are assumed to be clear if no mode value is
specified.

Bit 1 (least significant bit): disable waiting for input (mask
value = 1)

If this bit is OFF, program execution is suspended until the
next byte is received. If the bit is ON and no bytes are avail-
able, the function immediately returns the error code for "No
data received" (-526).

NOTE: A -526 error may be returned by the
first no-wait GETC even if there are bytes
queued.

Bit 2 Disable echo (mask value = 2)

If this bit is OFF, input from the terminal is echoed back to
the source. If the bit is ON, characters are not echoed back to
the source.

Details

The next byte from the device is returned. When reading from a record-oriented
device such as the disk file or Monitor Window, the carriage-return and line-feed

Chapter 3: Keyword Details

characters at the end of records are also returned. When the end of a disk file is
reached, a Ctrl+Z character (26 decimal) is returned.

When reading from the terminal, GETC will return the next character entered at
the keyboard. All control characters will be read except Ctrl+S, Ctrl+Q, Ctrl+O,
and Ctrl+W, which will have their normal terminal control functions.

Normally, the byte value returned is in the range 0 to 255 (decimal). If an input
error occurs, a negative error code number is returned. Refer to the eV+3
User's Manual (Cat. No. I651) for more information about error numbers.

Example

The following example reads characters from a disk file until a comma, char-
acter, a control character, or an I/O error is encountered. The characters are appen-
ded to the string variable $field. The disk file must have already been opened for
accessing variable-length records.

$field = ""
c = GETC(5)
WHILE (c > ^H1F) AND (c <> ',) DO

$field = $field+$CHR(c)
c = GETC(5)

END
IF c < 0 THEN

TYPE $ERROR(c)
HALT

END

Related Keywords

ATTACH

READ

22353-000 Rev. B eV+3 Keyword Reference Manual 109

110 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

GET.EVENT

Real-valued function that return events that are set for the specified task.

Syntax

GET.EVENT (task)

Usage Considerations

Do not confuse this function with the GETEVENT program command.

Parameter

task Optional real value, variable, or expression interpreted as an
integer that specifies the task for which events are to be
returned. The valid range is -1 to 6, or -1 to 64, inclusive. If
the parameter is omitted or has the value -1, the current task
is referenced.

Details

This function returns events of the specified task. If the task parameter is set to a
value of -1, it will return events of the current task.

The events are returned in a value that should be interpreted as a sequence of bit
flags as detailed below.

Bit 1 (least significant bit) I/O Completion (mask value = 1)

When this bit is ON, it indicates that a system input/ output operation has com-
pleted. Refer to SET.EVENT and WAIT.EVENT keywords for more information.

Related Keywords

CLEAR.EVENT

SET.EVENT

WAIT.EVENT

Chapter 3: Keyword Details

HERE

Transformation function that returns a transformation value that represents the
current location of the robot tool point.

Syntax

HERE

Usage Considerations

The current location is obtained by reading the instantaneous value of the joint
encoders so that it represents the actual location of the robot.

The HERE function returns information for the robot selected by the task execut-
ing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Example

The following example calculates the distance between the current robot location
and the location the robot is currently moving to.

dist = DISTANCE(HERE, DEST)

Related Keywords

DISTANCE

HERE (monitor command)

HERE (program command)

SELECT (program command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 111

112 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

HOUR.METER

Real-valued function that returns the current value of the robot hour meter.

Syntax

HOUR.METER(robot number)

Details

The robot hour meter records the number of hours that robot power has been
turned ON. The meter is updated after one half hour of power-on time and
hourly thereafter.

The hour meter is maintained by the Robot Signature Card in robot controller. If
the Robot Signature Card does not respond, the HOUR.METER function returns
the value -1.

Examples

The following example assigns the current reading of the robot hour meter to the
real-valued variable "start".

start = HOUR.METER

Chapter 3: Keyword Details

$ID

String function that returns the system ID string.

Syntax

$ID (select)

Parameter

select Integer specifying the ID information to return. Valid integer
values are described below.

Integer Description

-1 Returns the system revision message.

-2 Returns the revision letter and issue number
for the eV+ system.

-3 Returns the vision revision message string.

-4 Returns the servo revision message string.

Details

This function returns a string that identifies the revision and date of the reques-
ted system software component.

Example

The following example will display the revision letter and issue number for the
eV+ system in the Monitor Window.

$string1=$ID(-2)

TYPE $string1

Related Keywords

ID (monitor command)

ID (function)

22353-000 Rev. B eV+3 Keyword Reference Manual 113

114 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ID

Real-valued function that returns values that identify the configuration of the cur-
rent system.

Syntax

ID (component, device, board)

Usage Considerations

The function returns the value 0 for devices that do not exist. Device numbers
that do not exist return the value 0. For valid devices, an *Invalid argument*
error message is reported if the requested component is not valid.

Parameters

component Real value, variable, or expression interpreted as an
integer whose value determines which component of iden-
tification information is returned.

device Optional real value, variable, or expression interpreted as
an integer whose value selects the device to be identified.
Device 1 (the basic system) is assumed if this parameter is
omitted.

board Optional integer specifying the CPU of interest when the
device parameter value equals 4. Board 1 (the main CPU)
is assumed if this parameter is omitted.

Details

The ID function enables a program to access the information displayed by the ID
monitor command keyword. The values of the components are the same as the
fields displayed by that command.

Use the table below to understand parameter settings and the associated inform-
ation that is returned with the ID real-valued function.

Table 3-3. ID Parameter Details

Device Component Board Information
Returned

1: Basic
System

1: Model Number Not Used The model designation
of the NJ-series Robot
Integrated CPU Unit is
returnedwhen the
robot in service mode.

The model designation
of the robot is returned

Chapter 3: Keyword Details

Device Component Board Information
Returned

when the robot is in
operation mode.

2: Serial Number The NJ-series Robot
Integrated
CPU Unit returns 3000.

When the robot is in ser-
vice mode, the serial
number of the robot is
returned.

3: eV+ Internal Major Ver-
sion

The eV+ internal major
version is returned.

4: eV+ Internal Minor Ver-
sion

The eV+ internal minor
version is returned.

11: Controller
Hardware Configuration

A value of 4 is returned
if Emulation Mode is act-
ive.

A value of 0 is returned
if Emulation Mode is not
active.

14: eV+ External Version A value of 3 is returned
(eV+3).

2: T20 Pend-
ant

1: Pendant Version Not used The complete version
number of the Pendant
software is returned.

If Emulation Mode is
operating or the Pend-
ant is not connected,
the error *Pendant Not
Connected* (-657) is
returned.

2: Pendant Major Version The major version num-
ber of the Pendant soft-
ware is returned.

If Emulation Mode is
operating or the Pend-
ant is not connected,
the error *Pendant Not
Connected* (-657) is
returned.

22353-000 Rev. B eV+3 Keyword Reference Manual 115

116 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Device Component Board Information
Returned

3: Pendant Minor Version The minor version num-
ber of the Pendant soft-
ware is returned.

If Emulation Mode is
operating or the Pend-
ant is not connected,
the error *Pendant Not
Connected* (-657) is
returned.

4: Pendant Build Version The build version of the
Pendant software is
returned.

If Emulation Mode is
operating or the Pend-
ant is not connected,
the error *Pendant Not
Connected* (-657) is
returned.

5: Pendant
Revision Version

The revision version of
the Pendant software is
returned.

If Emulation Mode is
operating or the Pend-
ant is not connected,
the error *Pendant Not
Connected* (-657) is
returned.

6: Pendant Connected The status of the
pendant connection is
returned.

l -1: Pendant is
connected and
communicating

l 0: A timeout
occurred and the
pendant could
not be detected.

If Emulation Mode is
operating or the Pend-
ant is not connected,
the error *Pendant Not
Connected* (-657) is
returned.

Chapter 3: Keyword Details

Device Component Board Information
Returned

4: System
CPUs

1: Number of the CPU CPU Board
(-32768
to 32767)

The number of
the CPU is returned.

A non-existant CPU will
return a value of -1.

The main CPU will
return a value of 1.

5: CPU Type Not used The NJ-series Robot
Integrated
CPU Unit returns a
value of 9.

8: Robot
Configuration
for currently
selected
robot

1: Robot Model Not used Returns the model des-
ignation of the robot.

2: Robot Serial Number Returns the serial num-
ber of the robot.

3: Number of Motors Returns the number of
motors configured for
the robot.

4: Value Interpreted as
Bit Flags for the Robot
Joints That Are Enabled

Returns a value inter-
preted as bit flags for
the robot joints that are
enabled.

A value of 0 is returned
if the robot does not
have joints that can be
selectively disabled.

5:Kinematic Module ID Returns the robot con-
trol module iden-
tification number.

7: Number of Robot Joints
Configured for Use

Returns the number of
robot joints configured
for use.

8: First Robot Option Word Returns the first Robot
Option Word.

Refer to Robot Option
Words on page 122 for
more information.

9: Product Type Returns the robot
product type.

10: Number of Cartesian
Axes Used DuringMotion

Returns the number of
axes used during

22353-000 Rev. B eV+3 Keyword Reference Manual 117

118 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Device Component Board Information
Returned

Planning motion planning.

This number specifies
how many values must
be defined in the robot
loadmodule arrays to
determine the max-
imum cartesian velo-
cities and accelerations.

11: Second
Robot Option Word

Returns the Second
Robot Option Word.

Refer to Robot Option
Words on page 122 for
more information.

12: Information About
the Robot Module

Returns information
about the robot mod-
ule. Only bit 1 (mask 1)
is defined.

If this bit is ON, the spe-
cified robot is an
OMRON robot.

13: Robot Safety Level Returns the safety level
configured for the
robot.

l 0: No safety
level configured

l 1: Configured as
a Category 1
Robot System
per ISO 10218
and EN954

l 3: Configured as
a Category 3
Robot System
per ISO 10218
and EN954

15: eSeries Robot Type Returns the eSeries
robot type.

l 0: eSeries Lite
l 1: eSeries Stand-
ard

l 2: eSeries Pro
l 3: sSeries

16: First and Second Parts Returns the first and

Chapter 3: Keyword Details

Device Component Board Information
Returned

of the Robot Security ID second part of the
Robot Security ID,
shown as "aaaa-bbbb"
below.

Security ID: aaaa-bbbb-
cccc

17: Third Part of the
Robot Security ID

Returns the third part
of the Robot Security
ID, shown as
"cccc" below.

Security ID: aaaa-bbbb-
cccc

18: Number of Tasks Cur-
rently Attached to
the Robot

Returns the number of
the task currently
attached to the robot.

19: Robot Joint Control Returns a value of -1 if
the robot can be moved
under joint control
mode.

Returns a value of 0 if
the robot can be moved
under joint control
mode.

10: Belt 7: Number of Belts Not used Returns the number of
belts configured in the
system.

11 to 18:
Robot con-
figuration for
robots 1 to 8

(10 + robot
number)

1: Robot Model Not used Returns the model des-
ignation of the robot.

2: Robot Serial Number Not used Returns the serial num-
ber of the robot.

3: Number of Motors Returns the number of
motors configured for
the robot.

4: Value Interpreted as
Bit Flags for the Robot
Joints That Are Enabled

Returns a value inter-
preted as bit flags for
the robot joints that are
enabled.

A value of 0 is returned
if the robot does not
have joints that can be
selectively disabled.

22353-000 Rev. B eV+3 Keyword Reference Manual 119

120 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Device Component Board Information
Returned

5:Kinematic Module ID Returns the robot con-
trol module iden-
tification number.

7: Number of Robot Joints
Configured for Use

Returns the number of
robot joints configured
for use.

8: First Robot Option Word Returns the first Robot
Option word.

Refer to Robot Option
Words on page 122 for
more information.

9: Product Type Returns the robot
product type.

10: Number of Cartesian
Axes Used DuringMotion
Planning

Returns the number of
axes used during
motion planning.

This number specifies
how many values must
be defined in the robot
loadmodule arrays to
determine the max-
imum cartesian velo-
cities and accelerations.

11:
Second Robot Option Word

Returns the second
Robot Option word.

Refer to Robot Option
Words on page 122 for
more information.

12: Information About
the Robot Module

Returns information
about the robot mod-
ule. Only bit 1 (mask 1)
is defined.

If this bit is ON, the spe-
cified robot is an
OMRON robot.

13: Robot Safety Level Returns the safety level
configured for the
robot.

l 0: No safety
level configured

l 1: Configured as

Chapter 3: Keyword Details

Device Component Board Information
Returned

a Category 1
Robot System
per ISO 10218
and EN954

l 3: Configured as
a Category 3
Robot System
per ISO 10218
and EN954

15: eSeries Robot Type Returns the eSeries
robot type.

l 0: eSeries Lite
l 1: eSeries Stand-
ard

l 2: eSeries Pro
l 3: sSeries

16: First and Second Parts
of the Robot Security ID

Returns the first and
second part of the
Robot Security ID,
shown as "aaaa-bbbb"
below.

Security ID: aaaa-bbbb-
cccc

17: Third Part of the
Robot Security ID

Returns the third part
of the Robot Security
ID, shown as
"cccc" below.

Security ID: aaaa-bbbb-
cccc

18: Number of Tasks Cur-
rently Attached to
the Robot

Returns the number of
the task currently
attached to the robot.

19: Robot Joint Control Returns a value to indic-
ate if the robot can be
moved under joint con-
trol.

l -1: robot can be
moved under
joint control

l 0: robot cannot
be moved under
joint control

22353-000 Rev. B eV+3 Keyword Reference Manual 121

122 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Robot Option Words

The interpretation of the high-order bits in the first option word are described in
the following table.

Table 3-4. First Robot Option Word Details

Bit
Number

Mask Value
Desciption

Decimal Hexadecimal

9 256 100 When this bit is ON,motor limit-stop
testing is enabled.

This should be enabled only for robots
that have excessive motor coupling
and that have motor limit-stop data
allocated.

10 512 200 When this bit is ON, free mode power
OFF is enabled.

Any limit violations during free mode
cause the robot power to be disabled.

11 1024 400 When this bit is ON, the system will
automatically execute a CALIBRATE
monitor command upon boot.

12 Reserved for future use

13 4096 1000 When this bit is ON, the system
checks for collisions with static
obstacles in cartesian space during
joint-interpolatedmotions.

When this bit is ON, joint-interpolated
motions have the same computational
load as straight-line motions.

14 8192 2000 Reserved for future use.

15
 Reserved for future use

16

The interpretation of the bits in the second option word are described in the fol-
lowing table.

Table 3-5. Second Robot Option Word Details

Bit Num-
ber

Mask Value
Description

Decimal Hexadecimal

1 1 1 When this bit is ON, the robot has an

Chapter 3: Keyword Details

Bit Num-
ber

Mask Value
Description

Decimal Hexadecimal

RSC.

2 2 2 When this bit is ON, the robot is
equippedwith an extended-length
quill.

3 4 4 When this bit is ON, the robot is
equippedwith the cleanroom option.

4 8 8 Reserved for future use.

5 16 10 When this bit is ON, the robot is
equippedwith the the high-torque
option.

6 32 20 Reserved for future use.

7 64 40 When this bit is ON, the robot is
equippedwith the EC certification
option.

8 128 80 When this bit is ON, the robot has a
high resolution joint 4.

9 256 100 Reserved for future use.

10 512 200 When this bit is ON, the robot has an
amber LED.

This option is only available with eCo-
bra robot models.

11

 Reserved for future use.

12

13

14

15

16

Related Keywords

ID (monitor command)

$ID (real-valued function)

SELECT (monitor command)

SELECT (program command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 123

124 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

IDENTICAL

Real-valued function that determines whether two location values are exactly the
same.

Syntax

IDENTICAL (location1, location2)

Parameter

location1 Transformation value that defines one of the locations of
interest. This can be a function, a variable, or a compound
transformation.

location2 Transformation value that defines one of the locations of
interest. This can be a function, a variable, or a compound
transformation.

Details

This function returns the value TRUE if the positional and rotational components
of the two specified locations are exactly the same. Even a single-bit difference in
any of the components results in the value FALSE being returned.

Example

The following example sets the value of the real variable x to TRUE if the value
of "loc" relative to the "base.1" frame is exactly the same as the value stored in
the variable "part".

x = IDENTICAL(base.1:loc,part)

Related Keywords

DISTANCE

Chapter 3: Keyword Details

INRANGE

Real-valued function that returns a value that indicates if a specific location can
be reached by the robot and provides additional information when a location can-
not be reached.

Syntax

INRANGE (location)

Usage Considerations

The INRANGE function returns information for the robot selected by the task
executing the function.

Parameter

location Optional transformation function, variable, or compound
that specifies a desired position and orientation for the robot
tool tip. If this parameter is omitted, INRANGE will indicate
if the current location of the selected robot can be reached.

Details

This function returns a value that indicates whether or not the given location can
be reached by the robot. A returned value of 0 indicates that the specified location
can be reached.

If the location cannot be reached, the returned value is a coded binary number
that provides additional information. A bit equal to 1 in the value indicates that
the corresponding robot constraint would be violated, as shown in the table
below.

Bit
Number

Mask Value
Indication if bit set

Hex Decimal

1 1 1 Joint or motor 1 is limiting

2 2 2 Joint or motor 2 is limiting

3 4 4 Joint or motor 3 is limiting

4 8 8 Joint or motor 4 is limiting

5 10 16 Joint or motor 5 is limiting

6 20 32 Joint or motor 6 is limiting

7 40 64 Joint or motor 7 is limiting

22353-000 Rev. B eV+3 Keyword Reference Manual 125

126 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Bit
Number

Mask Value
Indication if bit set

Hex Decimal

8 80 128 Joint or motor 8 is limiting

9 100 256 Joint or motor 9 is limiting

10 200 512 Joint or motor 10 is limiting

11 400 1024 Joint or motor 11 is limiting

12 800 2048 Joint or motor 12 is limiting

13 1000 4096 Collision detected

14 2000 8192 Location is too close in

15 4000 16384 Location is too far out

16 8000 32768 Motor is limiting, rather than joint (see
below)

17 10000 65536 Orientation is out of range for the Quat-
tro platform

18 20000 131072 Kinematic solution not found

If the motion system is configured to return motor-limit as well as joint-limit
errors, bit 16 indicates whether a joint or motor would limit motion to location. If
bit 16 is set, all the joints passed their limit checks and the indicated motor is lim-
iting. Otherwise, the indicated joint is limiting.

The mask values indicated above can be used with the BAND keyword to determ-
ine if a corresponding bit is set.

Example

The following example returns a value of 0 if the robot can reach the location
defined by the compound transformation "pallet:hole". If both joints 2 and 3
would prevent the motion from being made, the value returned would be 6.

INRANGE(pallet:hole)

Related Keywords

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

$INTB

String function that returns a 2-byte string containing the binary representation of
a 16-bit integer.

Syntax

$INTB (value)

Parameter

value Real-valued expression, the value of which is converted to its
binary representation.

Details

The integer part of a real value is converted into its binary representation and the
low 16 bits of that binary representation are packed into a string as two 8-bit char-
acters. Bits 9-16 are packed first, followed by bits 1-8.

This function is equivalent to the following.

$CHR(INT(value/256) BAND ^HFF) + $CHR(INT(value) BAND
^HFF)

The main use of this function is to convert integers to binary representation
within an output record of a data file.

Example

The following example returns the character string "AC".

$INTB(65*256+67)

Related Keywords

$CHR

$DBLB

$FLTB

INTB

$LNGB

22353-000 Rev. B eV+3 Keyword Reference Manual 127

128 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

INT

Real-valued function that returns the integer part of the value.

Syntax

INT (value)

Parameter

value Real-valued expression whose integer part is returned by this
function.

Details

Returns the portion of the value parameter to the left of the decimal point when
the value is written without the use of scientific notation.

The value is not rounded before dropping the fraction.

The sign of the value parameter is preserved unless the result is zero.

Examples

The following example returns 0.0.

INT(0.123)

The following example returns 10.0.

INT(10.8)

The following example returns -5.0.

INT(-5.462)

The following example returns 131.0.

INT(1.3125E+2)

The following example returns the value of "cost" truncated to an integer.

INT(cost)

The following example returns the value of "cost" rounded to the nearest integer.
The sign of the function needs to be included to correctly round negative values
of "cost".

INT(cost+0.5*SIGN(cost))

Chapter 3: Keyword Details

Related Keywords

FRACT

22353-000 Rev. B eV+3 Keyword Reference Manual 129

130 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

INTB

Real-valued function that returns the value of two bytes of a string interpreted as
a signed 16-bit binary integer.

Syntax

INTB ($string, first_char)

Parameters

$string String expression that contains the two bytes to be con-
verted.

first_char Optional real-valued expression that specifies the position
of the first of the two bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first two
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first byte.
For example, a value of 2 establishes that the second byte
contains bits 9 to 16 and the third byte contains bits 1 to 8.
An error is generated if first_char specifies a byte pair that
is beyond the end of the input string.

Details

Two sequential bytes of a string are interpreted as being a 2's-complement 16-bit
signed binary integer. The first byte contains bits 9 to 16, and the second byte con-
tains bits 1 to 8.

The main use of this function is to convert binary numbers from an input data
record to values that can be used internally by eV+.

The twp expression below (INTB vs. ASC) have the same functionality.

value = INTB($string, first_char)

value = ASC($string,first_char)*256 + ASC($string,first_
char+1)
IF value > 32767 THEN

value = value-65536
END

To compute an unsigned integer, use the following statement..

INTB($string) BAND ^HFFFF

Examples

The following example returns the value of 2565.

Chapter 3: Keyword Details

INTB($CHR(10)+$CHR(5))

The following example returns the value of -1.

INTB($CHR(255)+$CHR(255))

Related Keywords

ASC

DBLB

FLTB

$INTB

LNGB

VAL

22353-000 Rev. B eV+3 Keyword Reference Manual 131

132 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

INVERSE

Transformation function that returns the transformation value that is the math-
ematical inverse of the given transformation value.

Syntax

INVERSE (transformation)

Parameter

transformation Transformation-valued expression.

Details

Mathematically, the value from this function is a transformation such that the
value of the compound transformation shown below is the identity trans-
formation (or NULL).

INVERSE(trans):trans

Consider a transformation x that defines the location of object A relative to object
B. Then INVERSE(x) is the transformation that defines the location of object B rel-
ative to A.

Example

The following example will move the robot to the same location when two dif-
ferent end-effectors are present, represented by "offset_tool1" and "offset_tool2".

TOOL NULL
MOVE place_loc:INVERSE(offset_tool1)
MOVE place_loc:INVERSE(offset_tool2)

Related Keywords

HERE

SET

Chapter 3: Keyword Details

IOSTAT

Real-valued function that returns status information for the last input / output
operation for a device associated with a logical unit.

Syntax

IOSTAT (lun, mode)

Usage Considerations

IOSTAT returns information only for the most recent operation. If more than one
operation is performed, the status should be checked after each one.

IMPORTANT: IOSTAT should be used after each I/O operation. If
one I/O operation fails, a subsequent operation may have unex-
pected behavior. For example, if opening a file fails, a write oper-
ation may not be issued. I/O operation errors do not stop program
execution and therefore cannot be handled asynchronously with
REACTE.

When reading a file of unknown length, IOSTAT is the only method to determine
when the end of the file is reached.

Parameters

lun Real-valued expression whose integer value is the logical unit
number for the I/O device of interest. Refer to ATTACH for
information on the logical unit numbers recognized by the
eV+ system and how logical units are associated with I/O
devices.

mode Optional expression that selects the type of I/O status to be
returned for the specified logical unit. The following table
shows the effects of the various mode values. If the mode
value is omitted, the value zero is assumed.

Mode Value returned by IOSTAT

0 Status of the last complete I/O operation.

1 Status of a pending pre-read request.

2 Size in bytes of the last file opened or of
the last record read.

When sequential-access mode is being
used, the byte count returned by IOSTAT
(...,2) includes the carriage-return and
line-feed characters at the end of each

22353-000 Rev. B eV+3 Keyword Reference Manual 133

134 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Mode Value returned by IOSTAT

record.

3 Status of any outstanding write request.

Details

Unlike most eV+ keywords, I/O associated keywords do not force the program to
stop when an error is detected. Instead, the error status is stored internally for
access with the IOSTAT function. This feature allows the program to interpret
and possibly recover from many I/O errors.

The value returned for modes 0, 1, and 3 is shown in the table below.

IOSTAT Value
Returned on EOF Description

1 Normal success - for mode 3, this value indicates that
no write request is outstanding.

0 Operation not yet complete

< 0 Standard eV+ error number.

Refer to the eV+3 User's Manual (Cat. No. I651) for
error number information.

Examples

The following example attempts to open a file for reading and ensures the file
exists. If the file does exist, it will return its size in bytes to the variable "file.size".
If the file does not exist, a message "Error opening file" is returned.

ATTACH (dlun, 4) "DISK"
FOPENR (dlun) "RECORD.DAT"
IF IOSTAT(dlun) < 0 THEN

TYPE "Error opening file"
HALT

END
file.size = IOSTAT(dlun,2)

The following example will read and display records until the end of the file is
reached.

ieeof = -504
READ (dlun) $record
WHILE IOSTAT(dlun) > 0 DO

TYPE $record
READ (dlun) $record

END
IF IOSTAT(dlun) == ieeof THEN

TYPE "Normal end of file"

Chapter 3: Keyword Details

ELSE

TYPE /B, "I/O error ", $ERROR(IOSTAT(dlun))
END
FCLOSE (dlun)
DETACH (dlun)

In the following example, a TCP server program segment performs a no-wait
read and then checks the status to determine whether a client connection or dis-
connection was made.

ATTACH (lun,4) "TCP"
IF IOSTAT (lun) < 0 THEN

TYPE "Attach error: ", $ERROR(IOSTAT(lun))
END
no_wait = 1
READ (lun, handle, no_wait) $in.str
status = IOSTAT(lun)
CASE status OF

VALUE 1:
TYPE "Data received. Handle =", handle

VALUE 100:
TYPE "New connection established. Handle =", handle

VALUE 101:
TYPE "Connection closed. Handle =", handle

VALUE -526:
WAIT

ANY
TYPE "Error during READ: ", $ERROR(status)
GOTO 100

END

Related Keywords

ATTACH

FCLOSE

FCMND

FEMPTY

FOPEN

FSEEK

READ

WRITE

22353-000 Rev. B eV+3 Keyword Reference Manual 135

136 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

LAST

Real-valued function that returns the highest index used for an array (dimen-
sion).

Syntax

LAST (array_name[])

Usage Considerations

If an automatic variable is referenced, this function returns the index specified in
the AUTO statement that declared this array, regardless of which elements have
been assigned values.

Parameter

array_name[] Name of the array to be tested. Any type of eV+
array variable can be specified (real-value, location,
string, or belt). At least one array index must be omit-
ted.

Details

This function can be used to determine which elements of an array have already
been defined. For one-dimension arrays (for example, part[]), this function
returns the largest array index for which an element is defined.

For multiple-dimension arrays (for example, $names[,]), this function returns the
largest array index for which an element is defined for the left-most dimension
that is omitted from the array specification.

NOTE: There cannot be an index specified to the right of an omit-
ted index.

The value returned by this function is an index, not an array element. The value
is not a count of the array elements that are defined. It is the largest index for
which an array element is defined.

The value -1 is returned if the array does not have any elements defined for the
requested dimension. The value of -1 is returned if any of the following situations
occur.

l The array does not exist.

l The array has more or fewer dimensions than the number indicated in the
function call. For example, LAST(a[]) will return -1 if the array "a" has two
dimensions.

l The specified dimension in a multiple-dimension array has not been
defined. For example, LAST(a[20,]) returns -1 if LAST(a[,]) returns 19
because no elements a[20,i] exist.

Chapter 3: Keyword Details

The error *Illegal array index* results if there is not at least one blank index in the
array specification supplied to this function or if there is an index specified to the
right of a blank index.

Examples

If the array part[] has all its elements defined from part[0] through part[10], the
following example returns the value 10 (not 11, the number of elements defined).

LAST(part[])

If the given two-dimension array has elements [2,0], [2,3], and [2,5] defined, the
following example returns the value 5 regardless of the status of elements [i,j] for
i other than 2.

LAST($names[2,])

Related Keywords

AUTO

22353-000 Rev. B eV+3 Keyword Reference Manual 137

138 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

LATCH

Transformation function that returns a transformation value representing the loc-
ation of the robot at the occurrence of the last external trigger.

Syntax

LATCH (select)

Usage Considerations

LATCH(0) returns information for the robot selected by the task executing the
function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Parameter

select Optional integer, expression, or real variable specifying the fol-
lowing values.

l 0: Robot position latch of currently selected robot
(default).

l n: Robot position latch of robot n.

Details

LATCH returns a transformation value that represents the location of the robot
when the last external trigger occurred.

Additional Information: The LATCHEDreal-valued function
should be used to determined when an external trigger has
occurred and a valid location has been recorded.

Operation of the external trigger can be configured from the Sysmac Studio soft-
ware.

Additional Information: The DEVICE function may be used to
read the latched value of an external encoder

Related Keywords

DEVICE

LATCHED

CLEAR.LATCHES

#PLATCH

Chapter 3: Keyword Details

LATCHED

Real-valued function that returns the status of the position latch and which input triggered it.

Syntax

LATCHED (select)

Usage Considerations

A maximum of 8 signals can be associated with a single belt encoder.

Configuration of the position latch signal ranges can be set from the eV+ System Configuration
Editor in the Sysmac Studio software. Refer to Sysmac Studio Robot Integrated System Building
Function with Robot Integrated CPU Unit Operation Manual (Cat. No. W595) for more information.

Parameter

select Integer, expression, or real variable that determines whether any latches
have occurred since the last time the function was executed.

l 0: Returns latch information for currently selected robot
l -n (<0): Returns latch information for belt encoder n
l +n (>0): Returns latch information for robot n

Details

This function returns a non-zero value if a position latch occurred while the robot location or
belt encoder position has been latched since the LATCHED function was last used. The fol-
lowing values are returned where n represents any digital input signal on the controller.

l 0: No latch event has been detected.
l n: A rising edge was detected where n represents the digital input signal on the con-
troller.

l -n: A falling edge was detected where n represents the digital input signal on the con-
troller.

When this function returns a non-zero value, the data for the latch event is made available for
retrieval with the following keywords.

l DEVICE - Returns position information for the external encoder.
l BELT - Returns position information for the external encoder.
l LATCH - Returns robot location information as a transformation value.
l #PLATCH - Returns robot location information as a precision point value.

NOTE: After one or multiple non-zero values are returned by this function and
the latch buffer is empty, subsequent use of the function returns the value FALSE
until the next occurrence of a latch trigger.

Related Keywords

DEVICE

BELT

ENCLATCH

22353-000 Rev. B eV+3 Keyword Reference Manual 139

140 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

LATCH

CLEAR.LATCHES

#PLATCH

Chapter 3: Keyword Details

LEN

Real-valued function that returns the number of characters in the given string.

Syntax

LEN (string)

Parameter

string String constant, variable, or expression whose length is to be
computed.

Example

The following example returns the number of characters in the string "$str" to
variable "str.len" with a value of 5.

$str = "Hello"
str.len = LEN($str)

22353-000 Rev. B eV+3 Keyword Reference Manual 141

142 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$LNGB

String function that returns a 4-byte string containing the binary representation of
a 32-bit integer.

Syntax

$LNGB (value)

Usage Considerations

Real values are rounded and any fractional part is lost. Values must be in the
range ^H7FFFFFFF to -^H80000000

Parameter

value Real value, variable, or expression whose value is to be
converted to its binary representation.

Details

The primary use of this function is to convert integer values to binary rep-
resentation within an output record of a data file.

The integer part of a real value is converted into its binary representation. The
low 32-bits of that binary representation are assembled into a string as four 8-bit
characters. Bits 25 to 32 are assembled into the first byte, followed by bits 17 to 24
in the second byte, and so forth.

The operation performed by this function is equivalent to the following state-
ment.

$CHR(INT(value/^H1000000) BAND ^HFF)+ $CHR(INT(value/^H10000) BAND
^HFF)+ $CHR(INT(value/^H100) BAND ^HFF)+ $CHR(INT(value) BAND ^HFF)

Example

The following example returns the value $INTB(67)+$INTB(12345).

$LNGB(67*65536+12345)

Related Keywords

$CHR

$FLTB

$INTB

LNGB

TRANSB

Chapter 3: Keyword Details

LNGB

Real-valued function that returns the value of four bytes of a string interpreted as
a signed 32-bit binary integer.

Syntax

LNGB ($string, first_char)

Usage Considerations

Single-precision numbers are stored internally with only 24 bits of significance
and input values that contain more than 24 significant bits are converted with
some loss in precision.

Double-precision numbers are stored with 32 bits of significance with the most-
significant bit as the sign bit and are converted with no loss of precision.

The main use of this function is to convert binary numbers from an input data
record to values that can be used internally by eV+.

Parameters

$string String constant, variable, or expression that contains the
four bytes to be converted.

first_char Optional real value, variable, or expression interpreted as
an integer that specifies the position of the first of the four
bytes in the string. An error results if first_char specifies a
series of four bytes that goes beyond the end of the input
string.

If first_char is omitted or has the value 0 or 1, the first four
bytes of the string are extracted. If first_char is greater than
1, it is interpreted as the character position for the first
byte (see below).

Details

Four sequential characters (bytes) of a string are interpreted as being a 2's-com-
plement 32-bit signed binary integer. The first of the four bytes contains bits 25 to
32 of the integer, the second of the four bytes contains bits 17 to 24, and so on.

For example, if first_char has the value 9, then the ninth character (byte) in the
input string contains bits 25 to 32 of the integer, the tenth byte of the string con-
tains bits 17 to 24, and so on.

Example

The following example returns the value 65541.

LNGB($INTB(1)+$INTB(5))

22353-000 Rev. B eV+3 Keyword Reference Manual 143

144 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Related Keywords

ASC

DBLB

FLTB

INTB

$LNGB

TRANSB

VAL

Chapter 3: Keyword Details

MAX

Real-valued function that returns the maximum value contained in the list of val-
ues.

Syntax

MAX (value, ..., value)

Parameter

value Each value in the list can be specified as a real-valued con-
stant, variable, or expression.

Details

The list of values provided is scanned for the largest value and that value is
returned by the function.

The sign of each value is considered. For example, the value -10 is considered lar-
ger than -100.

Example

The following example sets "max.value" to the largest value of the variables x, y,
and z, or to 0 if all three variables have values less than 0.

max.value = MAX(x, y, z, 0)

Related Keywords

MIN

OUTSIDE

22353-000 Rev. B eV+3 Keyword Reference Manual 145

146 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$MID

String function that returns a substring of the specified string.

Syntax

$MID (string, first_char, num_chars)

Parameters

string String variable, constant, or expression from which the sub-
string is extracted.

first_char Optional real-valued expression that specifies the first char-
acter of the substring.

num_chars Real-valued expression that specifies the number of char-
acters to be copied to the substring.

Details

If first_char is omitted or has a value less than or equal to 1, the substring starts
with the first character of string. If first_char is larger than the length of the input
string, the function returns an empty string.

If there are fewer than num_chars characters from the specified starting character
position to the end of the input string, the output string consists of only the char-
acters up to the end of the input string. No error results and the output string is
not extended to the requested length.

Example

The following example result in the string variable "$substring" containing the
string cd. cd is the 2-character string that starts at character position 3 of the
string abcde contained in the string variable "$string".

$string = "abcdef"
$substring = $MID($string, 3, 2)

Related Keywords

$DECODE

$UNPACK

Chapter 3: Keyword Details

MIN

Real-valued function that returns the minimum value contained in the list of val-
ues.

Syntax

MIN (value, ..., value)

Parameter

value Each value in the list can be specified as a real-valued con-
stant, variable, or expression.

Details

The list of values provided is scanned for the smallest value, and that value is
returned by the function.

The sign of each value is considered. Thus, for example, the value -100 is con-
sidered smaller than -10.

Example

The following example sets "min.value" to the smallest value of the variables x,
y, and z, or to the value 1000 if all three variables have values greater than 1000.

min.value = MIN(1000, x, y, z)

Related Keywords

MAX

OUTSIDE

22353-000 Rev. B eV+3 Keyword Reference Manual 147

148 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

NETWORK

Real-valued function that returns network status and IP address information of
the robot controller.

Syntax

NETWORK (component, code)

Parameters

component Real-valued expression that identifies the component of
the network that is of interest.

l 1 = TCP
l 3 = reserved for future use

code Optional real-valued expression that identifies the inform-
ation desired where ADn is the nth byte of the IP address
and NMn is the nth byte of the Network Mask.

This value is only usedwhen component = 1.

0 = Return status value as described below (default).
1 = Return AD1*256 + AD2
2 = Return AD3*256 + AD4
3 = Return NM1*256 + NM2
4 = Return NM3*256 + NM4

11 = Return AD1
12 = Return AD2
13 = Return AD3
14 = Return AD4
15 = Return NM1
16 = Return NM2
17 = Return NM3
18 = Return NM4

Details

This function returns one of the following values if status is requested (code = 0).

Value Meaning

 0 Hardware not present

-1 Hardware present

 1 Driver is running

Chapter 3: Keyword Details

Example

The following example will display the last octet of the robot controller's IP
address in the Monitor Window.

ip[1]=NETWORK(1,14)

$last.octet=$ENCODE(ip[1])

TYPE $last.octet

22353-000 Rev. B eV+3 Keyword Reference Manual 149

150 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

NORMAL

Transformation function that corrects a transformation for any mathematical
round-off errors.

Syntax

NORMAL (transformation_value)

Parameter

transformation_value Transformation, transformation valued func-
tion, or compound transformation whose
value is to be normalized.

Details

The NORMAL function returns a transformation value that is similar to the
input argument but has the orientation portion of the value corrected for any
small accumulation of computational errors that may have occurred.

Use this function after a lengthy series of computations that modifies a trans-
formation value. For instance, a procedural motion that incrementally changes
the orientation of a transformation should occasionally normalize the resultant
value. Within a transformation, the orientation of the robot is represented by
three perpendicular unit vectors. Because of the small inaccuracies that occur in
computer computations after being incrementally modified many times, these vec-
tors can become non-perpendicular or not of unit length.

Example

The following example calculates a local transformation relative to the current
robot location and returns the value to the variable "normal.loc".

SET normal.loc=NORMAL(HERE)

Chapter 3: Keyword Details

NOT

Operator that performs logical negation of a value.

Syntax

... NOT value ...

Details

The NOT operator operates on a single value, converting it from logically true to
false, and vice versa. If the single value is 0, a -1.0 (TRUE) is returned. Otherwise,
a 0.0 (FALSE) value is returned.

Examples

The following example, if the variable "initialized" has a false value, the
keywords in the IF structure will be executed.

IF NOT initialized THEN
CALL appl.setup()
initialized = TRUE

END

In the following example, the value of 40 is interpreted as logically TRUE since it
is nonzero. The statement below returns a value of 0.0 (FALSE).

NOT 40

Related Keywords

COM

22353-000 Rev. B eV+3 Keyword Reference Manual 151

152 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

NULL

Transformation function that returns a null transformation value (one with all
zero components).

Syntax

NULL

Usage Considerations

The trajectory of the robot in the emulation mode is considered to be the same as
the current target position. Therefore, unlike with an actual robot, no positioning
error occurs when the operation is completed.

Details

A null transformation corresponds to a null vector (X = Y = Z = 0) and no rota-
tion (yaw = pitch = roll = 0). A null transformation is useful with a SHIFT func-
tion to create a transformation representing a translation with no rotation for
example.

Examples

The following example will define the new transformation "new.loc" to be the res-
ult of shifting an existing transformation "old.loc" in the world coordinate dir-
ections.

new.loc = SHIFT(NULL BY x.shift,y.shift,z.shift):old.loc

The following example will determine the length of the vector described by the
transformation "test.loc".

dist = DISTANCE(NULL, test.loc)

Related Keywords

CONFIG

NULL

SHIFT

Chapter 3: Keyword Details

OFF

Real-valued function that returns the value used by eV+ to represent a logical
false result.

Syntax

OFF

Details

This named constant is useful for situations where ON and OFF conditions need
to be specified. The value returned is 0.

This function is equivalent to the FALSE function.

Example

The following example executes any statements between the DO and UNTIL
keywords until the system switch POWER turns OFF.

DO
;statement
;statement
;statement

UNTIL SWITCH(POWER) = = OFF

Related Keywords

FALSE

ON

22353-000 Rev. B eV+3 Keyword Reference Manual 153

154 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

ON

Real-valued function that returns the value used by eV+ to represent a logical
true result.

Syntax

ON

Details

This named constant is useful for situations where ON and OFF conditions need
to be specified. The value returned is -1.

This function is equivalent to the TRUE function.

Example

The following example displays "System switch POWER is ON" in the Monitor
Window when the system switch POWER is enabled.

IF(SWITCH(POWER)==ON) THEN
TYPE "System switch POWER is ON"

END

Related Keywords

OFF

TRUE

Chapter 3: Keyword Details

OUTSIDE

Real-valued function that tests a value to determine if it is outside a specified
range.

Syntax

OUTSIDE (low, test, high)

Parameters

low Real value, expression, or variable specifying the lower limit of
the range to be tested.

test Real value, expression, or variable to test against the range.

high Real value, expression, or variable specifying the upper limit of
the range to be tested.

Details

Returns TRUE (-1) if test is less than low or greater than high. Returns FALSE (0)
otherwise.

Example

The following example evaluates the value of "angle" and displays "Angle is out
of reach." if it is outside of the values of 0 to 180.

IF OUTSIDE(0,angle,180) THEN
TYPE "Angle is out of reach."

END

Related Keywords

MAX

MIN

22353-000 Rev. B eV+3 Keyword Reference Manual 155

156 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

PARAMETER

Real-valued function that returns the current setting of the named system para-
meter.

Syntax

PARAMETER (parameter_name)

PARAMETER (parameter_name[index])

Parameters

parameter_name Name of the system parameter whose value is to
be returned.

index For parameters that can be qualified by an index,
this is a required real value, variable, or expression
that specifies the specific parameter element of
interest.

Details

This function returns the current setting of the given system parameter.

Additional Information: The parameter name can be abbreviated
to the minimum length that identifies it uniquely.

Examples

The following example illustrates how the current setting of the BELT.MODE
system parameter can be displayed on the Monitor Window during program exe-
cution:

TYPE "The BELT.MODE parameter is set to", PARAMETER
(BELT.MODE)

Related Keywords

BELT.MODE

NOT.CALIBRATED

PARAMETER

PARAMETER (program command)

Chapter 3: Keyword Details

#PDEST

Precision-point function that returns a precision-point value representing the
planned destination location for the current robot motion.

Syntax

#PDEST

Usage Considerations

The #PDEST function returns information for the robot selected by the task execut-
ing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Details

The #PDEST function can be used to determine the robot's destination before its
motion was interrupted.

The #PDEST function is equivalent to the DEST transformation function and can
be used interchangeably with DEST depending upon the type of location inform-
ation that is desired. Refer to the description of the DEST function for more
information on the use of both the #PDEST and DEST functions.

Example

The following example displays the joint values at the destination location
"point1".

MOVE point1
DECOMPOSE j[]=#PDEST
TYPE j[0],j[1],j[2],j[3],j[4],j[5]

Related Keywords

DEST

HERE

SELECT

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 157

158 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

#PHERE

Precision-point function that returns a precision-point value representing the cur-
rent location of the currently selected robot.

Syntax

#PHERE

Usage Considerations

The #PHERE function is considered to be a precision-point keyword and the "#"
character must precede the function name whenever it is used.

PHERE is a reserved word in eV+ and cannot be used for a variable.

Details

The PHERE real-valued function is equivalent to the HERE.

Example

The following example uses #PHERE to set a precision point value "pp".

SET #pp = #PHERE

Related Keywords

HERE

Chapter 3: Keyword Details

PI

Real-valued function that returns the value of the mathematical constant pi
(3.141593).

Syntax

PI

Usage Considerations

TYPE, PROMPT, and similar commands display the result of the example below
as a single-precision value. However, pi is stored and manipulated as a double-
precision value. The LISTR monitor command displays real values to full pre-
cision.

Example

The following example returns the circumference of a semi-circle using values of
"arc_length" and "radius".

arc_length=PI*radius

22353-000 Rev. B eV+3 Keyword Reference Manual 159

160 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

#PLATCH

Precision-point function that returns a precision-point value representing the loc-
ation of the robot at the occurrence of the last external trigger.

Syntax

#PLATCH(select)

Usage Considerations

The function name #PLATCH is considered to be a precision-point keyword and
the "#" character must precede all uses of the function.

#PLATCH(0) returns information for the robot selected by the task executing the
function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Parameter

select Optional integer, expression, or real variable specifying the fol-
lowing values.

l 0: Robot position latch of currently selected robot
(default)

l n: Robot position latch of robot n

Details

#PLATCH returns a precision-point value that represents the location of the robot
when the last trigger occurred. The LATCHED function should be used to determ-
ine when an external trigger has occurred and a valid location has been recor-
ded.

Operation of the external trigger can be configured from the eV+ System Con-
figuration Editor in the Sysmac Studio software. Refer to the Sysmac Studio Robot
Integrated System Building Function with Robot Integrated CPU Unit Operation
Manual (Cat. No. W595) for more information.

Related Keywords

LATCH

LATCHED

Chapter 3: Keyword Details

POS

Real-valued function that returns the starting character position of a substring in
a string.

Syntax

POS (search_string, sub_string, start)

Parameters

search_string String expression to be searched for the occurrence of a
substring.

sub_string String expression containing the substring to be
searched for within the search string.

start Optional expression indicating the character position
within the search string where searching is to begin.

Details

Returns the character position in search_string where sub_string begins. If the
substring does not occur within the search string, a value of 0 is returned.

If start is provided, it indicates the character position within search_string where
searching will begin (a value of 1 indicates the first character). If start is omitted
or less than 1, searching begins with the first character. If start is greater than the
length of search_string, a value of 0 is returned.

When checking for a matching substring, uppercase and lowercase letters are con-
sidered to be the same.

Examples

The following example returns 5.

POS("file.ext", ".")

The following example returns 0.

POS("file", ".")

The following example returns 4.

POS("abcdefgh", "DE")

The following example returns 6.

POS("1-2-3-4", "-", 5)

22353-000 Rev. B eV+3 Keyword Reference Manual 161

162 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

#PPOINT

Precision- point function that returns a precision-point value composed from the
given components.

Syntax

#PPOINT (j1_value, j2_value, j3_value, j4_value, j5_value, j6_value, j7_value, j8_
value, j9_value, j10_value, j11_value, j12_value)

Usage Considerations

The #PPOINT function name is considered to be a precision-point name. The "#"
character must precede all uses of the function.

If more values are specified than the number of robot joints, the extra values are
ignored.

A 0 value is assumed for any parameter that is omitted.

Parameters

j1_value Optional real-valued expressions for the respective robot
joint positions.

j2_value

j3_value

...

j12_value

Details

Returns a precision-point value composed from the given components, which are
the positions of the first through last robot joints, respectively.

Examples

The following example assumes that you want to perform a coordinated motion
of joints 2 and 3 of a robot with 4 joints, starting from its current location.

The following statements define the current location and fill an array with com-
ponents.

 HERE #ref
 DECOMPOSE x[] = #ref

The following statement moves the robot to the new precision points defined
with modified components.

 MOVE #PPOINT(x[0], x[1]+a, x[2]-a/2, x[3])

Chapter 3: Keyword Details

The following statements lead to the same final location, but robot joints 2 and 3
are not moved simultaneously with this method.

 DRIVE 2, a, 100
 DRIVE 3, -a/2, 100

Related Keywords

DECOMPOSE

TRANS

22353-000 Rev. B eV+3 Keyword Reference Manual 163

164 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

PRIORITY

Real-valued function that returns the current reaction lock-out priority for the pro-
gram.

Syntax

PRIORITY

Usage Considerations

This function returns the reaction lock-out priority, not the program priority of
the executing program.

Details

The PRIORITY function can be used to determine the current setting of the reac-
tion lock-out priority for the task executing the function.

The reaction lock-out priority for each program task is set to 0 when execution of
the task is initiated. The priority can be changed by the program at any time with
the LOCK command, or the priority is set automatically when a reaction occurs
as prescribed by a REACT or REACTI commands.

Example

The following example raises the priority, performs some operation that requires
a reaction routine to be locked out, and then restores it to its previous value.

 save = PRIORITY

 IF save < 10 THEN
LOCK 10

 END

 LOCK save

Related Keywords

LOCK

REACT

REACTI

Chapter 3: Keyword Details

RANDOM

Real-valued function that returns a pseudo-random number.

Syntax

RANDOM

Details

Returns a pseudo-random number in the range 0.0 to 1.0, inclusive. Each time
the RANDOM function is evaluated, it returns a different value.

The numbers generated by this function are pseudo-random because the
sequence repeats after this function has been called 224 (16,777,216) times.

Example

The following example will return a random number between 0.0 and 1.0 to the
variable "random1".

 random1 = RANDOM

22353-000 Rev. B eV+3 Keyword Reference Manual 165

166 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

RX

Transformation function that returns a transformation describing a rotation about
the X-axis.

Syntax

RX (angle)

Parameter

angle Real-valued expression that represents the rotation angle in
degrees.

Details

These functions generate a transformation whose value consists of a rotation
about the X-axis and a 0 displacement (X, Y, Z = 0).

Example

The following example creates a transformation "frame2" equivalent to "frame1"
rotated around the X-axis by 45 degrees.

SET frame1 = TRANS(100,100,-960,0,180,0)
SET frame2 = frame1:RX(45)

Related Keywords

DX

DY

DZ

RY

RZ

Chapter 3: Keyword Details

RY

Transformation function that returns a transformation describing a rotation about
the Y-axis.

Syntax

RY (angle)

Parameter

angle Real-valued expression that represents the rotation angle in
degrees.

Details

These functions generate a transformation whose value consists of a rotation
about the Y-axis and a 0 displacement (X, Y, Z = 0).

Example

The following example creates a transformation "frame2" equivalent to "frame1"
rotated around the Y-axis by 45 degrees.

SET frame1 = TRANS(100,100,-960,0,180,0)
SET frame2 = frame1:RY(45)

Related Keywords

DX

DY

DZ

RX

RZ

22353-000 Rev. B eV+3 Keyword Reference Manual 167

168 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

RZ

Transformation function that returns a transformation describing a rotation about
the Z-axis.

Syntax

RZ (angle)

Parameter

angle Real-valued expression that represents the rotation angle in
degrees.

Details

These functions generate a transformation whose value consists of a rotation
about the Z-axis and a 0 displacement (X, Y, Z = 0).

Example

The following example creates a transformation "frame2" equivalent to "frame1"
rotated around the Z-axis by 30 degrees.

SET frame1 = TRANS(0,0,0,0,0,30)
SET frame2 = frame1:RZ(30)

Related Keywords

DX

DY

DZ

RX

RY

Chapter 3: Keyword Details

SCALE

Transformation function that returns a transformation value equal to the trans-
formation parameter with the position scaled by the scale factor.

Syntax

SCALE (transformation BY scale_factor)

Parameters

transformation Transformation expression that is to be scaled.

scale_factor Real-valued expression that is used to scale the trans-
formation parameter value.

Details

The value returned is equal to the value of the input transformation parameter
value except that the X, Y, and Z position components are multiplied by the scale
factor parameter. The rotation components have their values unchanged.

Example

The following example will result in the transformation y receiving the value of
(250, 187.5, 125, 10, 20, 30) if the original transformation x has the value (200,
150, 100, 10, 20, 30).

SET y = SCALE(x BY 1.25)

Related Keywords

SHIFT

22353-000 Rev. B eV+3 Keyword Reference Manual 169

170 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SELECT

Real-valued function that returns information about the device specified for the
currently selected task. .

Syntax

SELECT (device_type, mode)

Parameters

device_type Parameterd that identifies the type of device that is to be
selected. The only valid device_type is ROBOT.

mode Optional real value, variable, or expression interpreted as
an integer that specifies the device_type number for the
function.

If this parameter is omitted or has the value 0, the func-
tion returns the number of the device_type currently
selected or 0 if no device_type is selected.

NOTE: If a previously selected robot
becomes disconnected from the
EtherCAT network, the statement SELECT
(ROBOT) will return a 2 even if the Ether-
CAT connection has been restored. The pre-
viously selected robot is not updated
automatically.

If mode has the value -1, the function returns the total
number of units available and communicating on
the EtherCAT network.

Details

This function returns either the number of the specified device that is currently
selected or the total number of devices connected to the system controller. It also
can be used to retrieve the state of a specified robot.

If the eV+ system is not configured to control a robot, the selected robot is always
1 and the total number of robots is 0.

SELECT(ROBOT) returns the number of the currently selected robot.

SELECT(ROBOT,-1) returns the number of robots that are communicating with
EtherCAT.

SELECT(ROBOT, rob_num), where "rob_num" represents a specific robot, returns
one of the following values to represent the state of the robot.

l 0: Not Configured - the robot is not in the NJ-seriesNJ-series Robot Integ-
rated CPU Unit configuration.

Chapter 3: Keyword Details

l 1: Not Synchronized - the EtherCAT configuration of the robot and the NJ-
series Robot Integrated CPU Unit does not match. The robot did not con-
nect during normal startup.

l 2: Not Connected - The robot is not connected to the EtherCAT network.
l 3: Ready - The robot is configured, synchronized, and connected.

Additional Information: Refer to the eV+3 User's Manual (Cat. No.
I651) for information about associated errors -622, -508, and -315.

Examples

The following example returns the unit number of the robot selected for the cur-
rent task to the variable "our.robot".

our.robot = SELECT(ROBOT)

The following example returns the total number of robots connected to the con-
troller to the variable "num.robots".

num.robots = SELECT(ROBOT,-1)

Related Keywords

SELECT (monitor command)

SELECT (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 171

172 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

#SET.POINT

Precision point function that returns the commanded joint-angle positions com-
puted by the trajectory generator during the last trajectory-evaluation cycle.

Syntax

#SET.POINT

Usage Considerations

The name "set.point" cannot be used as a program.

Details

For each trajectory-evaluation cycle, joint-angle positions are computed, con-
verted to encoder counts, and sent to the servos as the commanded motor pos-
itions. You can use this function to capture these positions.

Example

The following example will save the robot joint values every 100 milliseconds to
the array "set.points".

MOVE point2
i = 0
WHILE STATE(2) == 1 DO

DECOMPOSE angles[i,] = #SET.POINT
i = i+1
WAIT.EVENT , 0.1

END

Chapter 3: Keyword Details

SHIFT

Transformation function that returns a transformation value resulting from shift-
ing the position of the transformation parameter by the given shift amounts.

Syntax

SHIFT (transformation BY x_shift, y_shift, z_shift)

Parameters

transformation Transformation expression that is to be shifted.

x_shift Optional real-valued expressions that are added to the
respective position components of the transformation
parameter.y_shift

z_shift

Details

The value returned is equal to the value of the input transformation parameter
value except that the three shift parameter values are added to the X, Y, and Z
position components. If any shift parameter is omitted, its value is assumed to be
0.

Example

The following example will result in the transformation y receiving the value
(205, 145, 110, 10, 20, 30) if the original transformation x has the value of (200,
150, 100, 10, 20, 30).

SET y = SHIFT(x BY 5,-5,10)

Related Keywords

SCALE

TRANS

22353-000 Rev. B eV+3 Keyword Reference Manual 173

174 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SIG.INS

Real-valued function that returns an indication of whether a digital I/O signal is
installed in the system or whether a software signal is available in the system.

Syntax

SIG.INS (signal_num)

Usage Considerations

The SIG.INS function keyword will return TRUE if the host signal is available
and FALSE if it is not available (not mapped).

If the SIG.INS function is used to determine the status of digital I/O associated
with an IOBlox unit that is either not configured or does not physically exist,
errors will occur as described in the details section below.

Parameter

signal_num Real-valued expression that defines the number of the
digital I/O or software signal to check. The absolute value is
used and negative signal numbers are allowed.

Details

This function returns TRUE (-1) if the specified digital I/O or software signal is
available for use by the system. Otherwise, FALSE (0.0) is returned. The function
always returns TRUE if signal_number is 0.

This function can be used to ensure the digital I/O signals are installed as expec-
ted by the application program.

Executing this function for an IOBlox signal that does not physically exist will
cause a -508 *Device not ready* error.

Executing this function for an IOBlox signal that is not configured will cause a -
405 *Illegal digital signal* error.

NOTE: When using the Emulator, executing this function for an
IOBlox signal that is not configured will cause a -405 *Illegal digital
signal* error.

Example

The following example checks whether digital I/O signal 12 is installed as an
input signal (referenced as signal 1012). A message is displayed on the Monitor
Window if the signal is not configured correctly

in.sig = 1012
IF NOT SIG.INS(in.sig) THEN

TYPE "Digital I/O signal ", in.sig, "is not
installed"
END

Chapter 3: Keyword Details

Related Keywords

BITS (monitor command)

BITS (program command)

BITS (real-valued function)

IO

RESET

RUNSIG

SIGNAL

SIGNAL (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 175

176 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SIGN

Real-valued function that returns the value 1, with the sign of the value para-
meter.

Syntax

SIGN (value)

Parameter

value Real-valued expression.

Details

This function returns -1.0 if the value of the parameter is less than zero. If the
parameter value is greater than or equal to zero, +1.0 is returned.

Example

The following example returns 1.0.

SIGN(0)

The following example returns 1.0.

SIGN(0.123)

The following example returns -1.0.

SIGN(-5.462)

The following example returns 1.0.

SIGN(1.3125E+2)

Chapter 3: Keyword Details

SIG

Real-valued function that returns the logical AND of the states of the indicated
digital signals.

Syntax

SIG (signal_num, ..., signal_num)

Parameter

signal_num Real-valued expression that evaluates to a digital I/O or
internal signal number. A negative value indicates neg-
ative logic for that signal.

Details

Returns a TRUE (-1) or FALSE (0) value obtained by performing a logical AND of
the states of all the indicated digital signals. SIG will return TRUE if all the spe-
cified signal states are TRUE. Otherwise, SIG will return FALSE.

Refer to the appropriate robot user's guide and the eV+3 User's Manual (Cat. No.
I651) for more information about signal numbers for your particular robot.

Only digital signals that are present on the system can be used. You can use the
IO monitor command or the SIG.INS function to check the current digital I/O con-
figuration. Signals 3001 and 3002 refer to the robot selected by the current task.
Signal 3001 is the state of the hand-close solenoid. Signal 3002 is the state of the
hand-open solenoid.

If the sign of a signal_num parameter is positive, the signal is interpreted as
being TRUE if it has a high value. If the sign of a signal_num parameter is neg-
ative, the signal is interpreted as being TRUE if it has a low value.

NOTE: SIG(0) returns a value of TRUE.

Examples

The examples below it is assumed that the following digital I/O signals are
installed and have the indicated values.

l Input signal 1001 is On

l Input signal 1004 is Off

l Input signal 33 is Off

The following example returns -1.0 (TRUE).

SIG(1001)

The following example returns 0.0 (FALSE).

22353-000 Rev. B eV+3 Keyword Reference Manual 177

178 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SIG(1004)

The following example returns -1.0 (TRUE).

SIG(-1004)

The following example returns 0.0 (FALSE).

SIG(1001,1004)

The following example returns -1.0 (TRUE).

SIG(1001,-1004)

Related Keywords

BITS

BITS

BITS (real-valued function)

IO

RESET

RUNSIG

SIGNAL (program command)

SIGNAL (monitor command)

Chapter 3: Keyword Details

SIN

Real-valued function that returns the trigonometric sine of a given angle.

Syntax

SIN (value)

Usage Considerations

The angle parameter must be measured in degrees.

The parameter is interpreted as modulo 360 degrees, but excessively large values
may cause a loss of accuracy in the returned value.

Parameter

value Real-valued expression that defines the angular value to be
considered.

Details

Returns the trigonometric sine of the argument, which is assumed to have units
of degrees. The resulting value is always in the range of -1.0 to +1.0, inclusive.

Examples

The following example returns 2.146753E-03.

SIN(0.123)

The following example returns -0.09518556.

SIN(-5.462)

The following example returns .5.

SIN(30)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LISTR monitor command will display real values to full pre-
cision.

Related Keywords

ASIN

COS

ACOS

22353-000 Rev. B eV+3 Keyword Reference Manual 179

180 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

TAN

ATAN2

Chapter 3: Keyword Details

SOLVE.FLAGS

Real-valued function that returns bit flags representing the robot configuration
specified by an array of joint positions.

Syntax

SOLVE.FLAGS (joints[index])

Usage Considerations

The SOLVE.FLAGS function returns information for the robot selected by the task
executing the function.

If the eV+ system is not configured to control a robot, use of the SOLVE.FLAGS
function causes an error.

Parameters

joints Real array that contains the robot joint positions. The first spe-
cified element of the array must contain the position for joint
1, the second element must contain the value for joint 2, etc.
For rotating joints, the joint positions are assumed to have
units of degrees. For translational joints, the joint positions
are assumed to have units of millimeters.

index Optional real value, variable, or expression interpreted as an
integer that identifies the array element that contains the pos-
ition for joint 1. If no index is specified, element 0 must con-
tain the position for joint 1.

Details

This function returns bit flags that indicate the configuration of the robot (for
example, righty or lefty) for a given set of joint positions. This function is useful
for providing the configuration data required by the SOLVE.ANGLES program
command.

The bits of the value returned by this function are interpreted as described below.

Bit 1 (LSB) RIGHTY (mask value = 1)

If this bit is set, the position has the robot in a right-arm configuration. Other-
wise, the position is for a left-arm configuration.

Bit 2 BELOW (mask value = 2)

If this bit is set, the position has the robot configured with the elbow below the
line from the shoulder to the wrist. Otherwise, the robot elbow is above the
shoulder-wrist line.

NOTE: This bit is always 0 when a SCARA robot is in use.

Bit 3 FLIP (mask value = 4)

22353-000 Rev. B eV+3 Keyword Reference Manual 181

182 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

If this bit is set, the position has the robot configured with the pitch axis of the
wrist set to a negative angle. Otherwise, the wrist pitch angle has a positive
value.

NOTE: This bit is always 0 when the robot does not have a three-
axis wrist, as is the case for a four-axis SCARA robot.

Related Keywords

ABOVE

BELOW

DECOMPOSE

LEFTY

RIGHTY

FLIP

NOFLIP

SELECT

SELECT

SOLVE.ANGLES

SOLVE.TRANS

Chapter 3: Keyword Details

SPEED

Real-valued function that returns one of the system motion speed factors.

Syntax

SPEED (select)

Usage Considerations

The SPEED function returns information for the robot selected by the task execut-
ing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Parameter

select Real-valued expression whose value determines which speed
factor should be returned.

Details

This function returns the system motion speed factor corresponding to the select
parameter value. The acceptable parameter values and the corresponding speed
values returned are described below.

Select Speed value returned

1 Monitor speed.

2 Permanent program speed (set by a SPEED program command).

3 Temporary program speed for the last or current motion.

4 Temporary program speed to be used for the next motion.

5 Permanent program rotation speed.

6 Temporary program rotation speed for the last or current straight-
line motion.

7 Temporary program rotation speed to be used for the next
straight-line motion.

8 The maximum allowable setting for program speed.

NOTE: The value returned should be interpreted as a percentage
of normal speed even if the program speed was set by a SPEED pro-
gram command that specified a speed setting.

22353-000 Rev. B eV+3 Keyword Reference Manual 183

184 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Examples

The following example makes one motion at 1/2 of the permanent program speed

new.speed = SPEED(2)/2
SPEED new.speed
MOVE pick.up

The following example has same operation as the example above.

SPEED SPEED(2)/2
MOVE pick.up

Related Keywords

ACCEL

DURATION

SELECT (real-valued function)

SELECT (program command)

SPEED (monitor command)

SPEED (program command)

Chapter 3: Keyword Details

SQRT

Real-valued function that returns the square root of the parameter.

Syntax

SQRT (value)

Parameter

value Real-valued expression defining the value whose square root
is to be computed.

Details

Returns the square root of the argument if the argument is greater than 0. An
error results if the argument is less than 0.

Examples

The following example returns 0.3507136.

SQRT(0.123)

The following example returns 2.0.

SQRT(4)

The following example returns *Negative square root*.

SQRT(-5.462)

The following example returns 11.45644.

SQRT(1.3125E+2)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LISTR monitor command will display real values to full pre-
cision.

Related Keywords

SQR

22353-000 Rev. B eV+3 Keyword Reference Manual 185

186 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

SQR

Real-valued function that returns the square of the parameter.

Syntax

SQR (value)

Parameter

value Real-valued expression whose value is to be squared.

Details

This function computes the square of a value. The result is equal to (value *
value).

Examples

The following example returns 0.015129.

SQR(0.123)

The following example returns 16.

SQR(4)

The following example returns 29.8334.

SQR(-5.462)

The following example returns 17226.56 .

SQR(1.3125E+2)

NOTE: TYPE, PROMPT, and similar commands output the results
of the above examples as single-precision values. However, they
are actually stored and manipulated as double-precision values.
The LISTR monitor command will display real values to full pre-
cision.

Related Keywords

SQRT

Chapter 3: Keyword Details

STATE

Real-valued function that returns a value to provide information about the robot
system state.

Syntax

STATE (select)

Usage Considerations

The STATE function returns information for the robot selected by the task execut-
ing the function.

Additional Information: Refer to the eV+eV+3 User's Manual
(Cat. No. I651) for more information about robot states.

Parameter

select Real value, variable, or expression interpreted as an integer
that selects the category of state information returned. The
information categories are listed below.Refer to Details below
for more information.

l 1: Overall robot state
l 2: Current or previous motion
l 3: Current manual control mode
l 4: Controller interface panel settings
and hardware status

l 5: Front Panel operatingmode selection
l 6: Alter mode status for current motion
l 7: Alter mode status for next motion
l 8: Robot connected to pendant
l 9: Time until completion of robot motion
l 10: Percentage of current motion completed
l 11:Which portion of the acceleration profile is currently
being generated

l 12: ALTER command status
l 13: Trajectory generator execution rate in Hz
l 14: Reserved for future use
l 15: Number of the motion being executed
l 16 to 18: Reserved for future use
l 19: Reserved for future use (returns
Invalid argument -407)

l 20: Acceleration ramp up time
l 21: Constant acceleration time
l 22: Acceleration ramp down time
l 23: Constant velocity time
l 24: Deceleration ramp up time
l 25: Constant deceleration time
l 26: Deceleration ramp down time
l 27: Total motion time
l 28 to 29: Reserved for future use

22353-000 Rev. B eV+3 Keyword Reference Manual 187

188 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

l 30: State of Front Panel indicator
l 31 to 29: Reserved for future use
l 40: Belt tracking status

Details

When select = 1, the function returns information about the overall robot state as
follows.

Value Description

0 Resetting system after robot power has been turned OFF.

1 A fatal error has occurred and robot power cannot be turned
ON.

2 Waitingr to turn ON robot power.

3 Robot power was turned ON and initialization is occurring.

4 Indicates that Manual control mode is active. Refer to select =
3.

5 A CALIBRATE command is executing.

6 Reserved for future use.

7 Robot is under program control.

8 Robot power is ON and robot is not calibrated and cannot be
moved.

9 Reserved for future use.

10 Front panel power light is blinking slowly (1 Hz) andwaiting to
be pressed. Robot power will be turned ON when the blinking
button is pressed.

11 Front panel power light is blinking rapidly (4 Hz). Robot power
will be turned ON when the COMP/PWR button on the pendant
is pressed.

NOTE: Pressing the front panel power light
when it is blinking rapidly will cause robot power
to be turned OFF. The normal process will be
required to turn power back ON.

Chapter 3: Keyword Details

When select = 2, the function returns information about the current or previous
robot motion as follows. These modes can change only when the robot is under
program control (when STATE(1) = 7).

Value Description

0 Nomotion operations executed yet.

1 Normal trajectory evaluation is in progress (including normal
acceleration, deceleration and segment transitions).

2 Motion stopped at a planned location. A RETRY command has
no effect.

3 Position error is being nulled at unplanned final location.

4 Motion stopped at an unplanned location due to a belt window
violation. A RETRY command completes the previous motion.

5 Decelerating due to a triggered REACTI or BRAKE operation.

6 Stopped due to a triggered REACTI or BRAKE command. A
RETRY command completes the previous motion.

7 Decelerating due to a hardware error or ESTOP operation.

8 Stopped due to a hardware error or ESTOP operation. A RETRY
command completes the previous motion.

9 Decelerating due to a stop-on-force condition.

10 Stopped due to a stop-on-force condition.

When select = 3, the function returns information about the current manual con-
trol mode as follows (refer to the JOG program command for more information).

Value Description

0 Manual mode without selection.

1 Free-joint mode.

2 Individual joint control.

3 World coordinates control.

4 Tool coordinates control.

22353-000 Rev. B eV+3 Keyword Reference Manual 189

190 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Value Description

5 Computer control enabled.

6 Reserved for future use.

7 JogTomode.

8 Align mode.

9 Framemode.

When select = 4, the returned value returns information about the hardware
status to be read by programs. Interpret the value as a set of bit flags, each of
which indicates a corresponding condition.

Value Description

^H1 Reserved for future use.

^H2 Reserved for future use.

^H4 ESTOP circuit is open (see note below).

^H8 HIGH POWER button is pushed (see note below).

^H10 ESTOP channel 1 relay is open.

^H20 ESTOP channel 2 is open.

^H40 Front Panel keyswitch is in manual state.

^H80 Reserved for future use.

^H100
to

^HF00

ESTOP source:

0x0 = No ESTOP or pending (waiting for 120 ms settling
period)

0x1 = ESTOP from loss of ESTOP source

0x2 = ESTOP from Front Panel

0x3 = ESTOP from Pendant

0x4 = ESTOP from User ESTOP

0x5 = ESTOP from Line ESTOP Input

Chapter 3: Keyword Details

Value Description

0x6 = ESTOP from Muted Safety Gate (automode only)

0x7 = ESTOP from AUTO to Manual change

0x8 = ESTOP from Manual to AUTO change

0x9 - 0xE = Reserved for future use

0xF = Unresolved ESTOP source

^H1000 3-position Enable switch is closed (reported only in manual
mode).

When select = 5, the returned value indicates the settings of the switch on the
Front Panel.

Value Description

1 Automatic mode.

2 Manual mode.

When select = 6, the function returns an indication of whether or not the real-
time path-modification facility (alter mode) is enabled. If zero is returned, alter
mode is disabled for the current motion. If a nonzero value is returned, alter is
enabled, and the low byte of this value contains bits that correspond to the mode
specified in the ALTON command that initiated the path modification.

When select = 7, the function returns an indication of whether or not the real-
time path-modification facility (alter mode) is enabled for the next planned
motion. If zero is returned, alter mode is disabled for the next motion. If a
nonzero value is returned, alter is enabled, and the low byte of this value con-
tains bits that correspond to the mode specified in the ALTON command that ini-
tiated the path modification.

When select = 8, the number of the robot connected to the manual control
pendant is returned.

When select = 9, the function returns the time in seconds left until completion of
the current motion. A returned value of 0 indicates that no motion is in progress.
For continuous-path motions, the value of STATE(9) decreases during each
motion until the transition to the next motion, and then the value changes to the
time left in the next motion. STATE(9) does not reach 0 before it is reset to reflect
the next motion.

When select = 10, the function returns the percentage of the current motion that
has completed. The value 100 indicates that no motion is in progress. For con-
tinuous-path motions, the value of STATE(10) increases during each motion until
the transition to the next motion, and then the value changes to reflect the start of

22353-000 Rev. B eV+3 Keyword Reference Manual 191

192 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

the next motion. STATE(10) does not reach 100 before it is reset to reflect the next
motion.

Additional Information: The percentage will be returned with an
accuracy of 0.8%.

When select = 11, the function returns detailed information on which portion of
the acceleration profile is currently being generated for the selected robot.

Value Description

0 Idle (not evaluating trajectory).

1 Ramping up acceleration for new segment.

2 Constant acceleration section.

3 Ramping down acceleration.

4 Constant velocity section.

5 Ramping up acceleration during the transition section
between motions.

6 Constant acceleration during the transition section between
motions.

7 Ramping down acceleration during the transition section
between motions.

8 Ramping up deceleration.

9 Constant deceleration.

10 Ramping down deceleration.

11 Nulling final errors.

When select = 12, the function returns a flag that is set to nonzero when an
ALTER program command is executed for the currently selected robot, and
cleared after the trajectory generator processes the posted ALTER data. This flag
can be used to coordinate the execution of ALTER commands with the pro-
cessing of the data by the trajectory generator.

When select = 13, the function returns the trajectory generator execution rate in
Hertz. If the trajectory generator is executed,, this function returns the value 62.5.

When select = 15, the function returns the number of the motion that is being
executed by the selected robot. This number is 0 when a program that is attached

Chapter 3: Keyword Details

to the robot first begins executing. The counter is reset to 1 at the start of each
EXECUTE cycle. The value is incremented each time the trajectory generator
begins evaluating a new motion (or transitions to a new continuous-path
motion). The value of STATE(15) ranges from 0 to ^HFFFF. After reaching
^HFFFF, the value resets to 0.

The following program commands affect the value of STATE(15):

ALIGN, APPRO, APPROS, DEPART, DEPARTS, DRIVE, JMOVE,
MOVE, MOVES, MOVEF, READY

Commands that affect one or more subsequent motions (e.g., ACCEL, AMOVE,
ABOVE, BELOW, DURATION, FLIP, LEFTY, NOFLIP, MULTIPLE, RIGHTY,
SINGLE, SPEED, SPIN, TOOL, UNIDIRECT, ...) do not affect the value of STATE
(15), because they do not actually initiate a motion.

NOTE: Function keywords do not affect the value of STATE(15),
because these do not cause a motion. Location-valued functions
(e.g., DEST, FRAME, INVERSE, SCALE, SHIFT, TRANS, etc.) simply
compute location values.

When select is 20 through 27, the function returns detailed information on the
planned execution time of the current motion (or the previously executed motion
if the robot is stopped).

Unlike STATE(9) that returns the remaining motion execution time corrected for
the monitor speed setting, the values returned by STATE(20) through STATE(27)
are the planned values and are not affected by the setting of the monitor speed
value. The values returned by these functions (in units of seconds) are:

select Information returned

20 Acceleration ramp up time.

21 Constant acceleration time.

22 Acceleration ramp down time.

23 Constant velocity time.

24 Deceleration ramp up time.

25 Constant deceleration time.

26 Deceleration ramp down time.

27 Total motion time (sum of STATE(20) through STATE(26)).

When select = 30, the function returns the state of the Front Panel power light.
The possible values returned by this function are described below.

22353-000 Rev. B eV+3 Keyword Reference Manual 193

194 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Value Description

0 Light is OFF.

1 Light is ON.

2 Light is blinking at 4 Hz.

3 Light is blinking at 1 Hz.

When select = 40, the function returns a flag that is set to nonzero when the cur-
rently selected robot is tracking a belt.

Example

The following example shows how the STATE function can be used to determine
whether or not a REACTI was triggered during a robot motion:

REACTI 1001
MOVES final
BREAK
CASE STATE(2) OF

VALUE 2:
TYPE "Motion completed normally"

VALUE 6:
TYPE "Motion stopped by REACTI"

VALUE 8:
TYPE "Motion stopped by panic button"

END

Related Keywords

SELECT (program command)

SELECT (real-valued function)

STATUS (monitor command)

STATUS (real-valued function)

Chapter 3: Keyword Details

STATUS

Real-valued function that returns status information for an application program.

Syntax

STATUS (program_name)

Parameter

program_name String constant, variable, or expression that specifies
the name of the application program of interest. Let-
ters in the name can be uppercase or lowercase. The
string can be empty () in order not to specify a pro-
gram name, but the parameter cannot be omitted.

Details

This function returns information about the execution status of the specified pro-
gram.

If no program name is specified (the parameter string is empty []), the task num-
ber of the program containing the function call is returned. This allows a pro-
gram to determine which system task it is executing as. Refer to the eV+3
User's Manual (Cat. No. I651) for more information about tasks and task numbers.

If a program name is specified as the function parameter, the status of that pro-
gram is returned as described below

Value
Returned Program Status

-1 Not executing.

-2 Not defined.

-3 Write-interlockedwhen the program is being
copied, deleted, renamed, or edited in read-write
mode.

-4 Not executable when the program contains a struc-
ture error or bad syntax.

-5 Read-interlockedwhen the program is executing by
one or more tasks or is being edited in read-only
mode.

NOTE: If a program is being executed by multiple tasks, the
STATUS function returns -5. There is no way to use the STATUS
function to determine when the program ceases to be executed by

22353-000 Rev. B eV+3 Keyword Reference Manual 195

196 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

one of those tasks. The STATUS function does not return -1 until all
the tasks stop executing the program.

The function returns a not defined status if an invalid program name is specified
(for example, if the name does not start with a letter).

Example

The following example demonstrates how the STATUS function can be used to
decide whether or not to initiate execution of an application program.

IF STATUS("pc.main") == -1 THEN
EXECUTE 1 pc.main

END

NOTE: The STATUS function does not return -1 if the program is
being executed by any program task. This example may not be
appropriate for some situations. Refer to the example shown for the
EXECUTE program command for another technique for initiating
execution of another program task.

Related Keywords

DEFINED

STATE

STATUS

TESTP

Chapter 3: Keyword Details

STRDIF

Real-valued function that compares two strings byte-by-byte for the purpose of
sorting.

Syntax

STRDIF ($a, $b)

Usage Considerations

This function always compares bytes exactly. It ignores the setting of the
UPPERsystem switch.

Parameters

$a A string constant, variable, or expression that contains the
bytes to be compared with those in $b.

$b A string constant, variable, or expression that contains the
bytes to be compared with those in $a.

Details

This function compares strings byte-by-byte using the unsigned byte values
without any case conversion regardless of the UPPER system switch setting. The
two strings can have different lengths. The returned values and their meanings
are described below.

Returned Value Description

-1 $a is less than $b.

0 $a is exactly the same as $b.

1 $a is greater than $b.

Example

The following example will sort two string variables in alphabetical order and
then display the results with the TYPE command.

$name[0] = "Michael"
$name[1] = "MARK"
CASE STRDIF($name[0],$name[1]) OF

VALUE -1, 0:
$list[0] = $name[0]
$list[1] = $name[1]

VALUE 1:
$list[0] = $name[1]
$list[1] = $name[0]

END
TYPE "Names in alphabetic order: ", $list[0], " ", $list
[1]

22353-000 Rev. B eV+3 Keyword Reference Manual 197

198 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Related Keywords

UPPER

Chapter 3: Keyword Details

SWITCH

Real-valued function that returns information about the setting of a system
switch.

Syntax

SWITCH (switch_name)

SWITCH (switch_name[index])

Parameters

switch_name Name of the system switch of interest.

index For switches that can be qualified by an index, this is a
required real value, variable, or expression that spe-
cifies the specific switch element of interest.

Details

This function returns FALSE (0.0) if the specified switch is disabled. Otherwise,
TRUE (-1) is returned.

The switch name can be abbreviated to the minimum length that identifies it
uniquely.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about system
switches.

Example

The following example checks whether the DRY.RUN switch is enabled. If it is, a
message is displayed in the Monitor Window.

IF SWITCH(DRY.RUN) THEN
TYPE "DRY RUN mode is enabled"

END

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 199

200 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

TAN

Real-valued function that returns the trigonometric tangent of a given angle.

Syntax

TAN (value)

Usage Considerations

The angle parameter must be measured in degrees.

The parameter is interpreted as modulo 360 degrees, but excessively large values may cause a
loss of accuracy in the returned value.

Parameter

value Real-valued expression that defines the angular value to be considered.

Details

Returns the trigonometric tangent of the argument, which is assumed to have units of degrees.

Examples

The following example returns 0.5773503.

TAN(30)

The following example returns 1.

TAN(45)

NOTE: TYPE, PROMPT, and similar commands output the results of the above
examples as single-precision values. However, they are actually stored and
manipulated as double-precision values. The LISTR monitor command will dis-
play real values to full precision.

Related Keywords

ASIN

COS

ACOS

SIN

TAN

ATAN2

Chapter 3: Keyword Details

TAS

Real-valued function that returns the current value of a real-valued variable and
assigns it a new value. The two actions are done indivisibly so that no other pro-
gram task can modify the variable at the same time.

Syntax

TAS (variable, new_value)

Usage Considerations

The eV+ system does not enforce any protection scheme for global variables that
are shared by multiple program tasks. It is the programmer's responsibility to
manage the usage of such global variables. The TAS function can be used to
implement logical interlocks on access to shared variables.

This function can also be used to manage a restriction on the simultaneous
access of global arrays by multiple program tasks. Program execution can fail if
two or more tasks attempt to increase the size of an array at the same time. Refer
to the eV+3 User's Manual (Cat. No. I651) for more information.

Parameters

variable Name of the real-valued variable to be evaluated and
assigned the new value given. If the variable is not
definedwhen the function is executed, the function
returns the value 0.

new_value Real value, variable, or expression that defines the new
value to be assigned to the specified variable.

Details

Different program tasks execute simultaneously which causes time sharing of the
system processor, so it is possible for any task to be interrupted by another in the
middle of performing some computation or storing data into variables. When
data is shared by two or more tasks, the programs must implement an interlock
scheme to prevent the data from being accessed when it is only partially
updated.

The TAS function can be used to allow multiple eV+ tasks to modify shared data
structures. This function provides a way for a task to lock out others while the
locking task modifies the data structures. Without the TAS function, a much
more complicated polling scheme would be needed to administer the control vari-
able, to prevent more than one program from setting the control variable sim-
ultaneously for example.

As an example of the use of shared variables, consider this eV+ program that
increments and decrements a global variable:

.PROGRAM tas_test()
AUTO i

22353-000 Rev. B eV+3 Keyword Reference Manual 201

202 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

FOR i = 1 TO 1E+06
counter = counter+1
counter = counter-1

END
.END

If the variable "counter" starts at 0, and the program "tas_test" is run sim-
ultaneously in tasks 1 and 2, you might expect that counter will have the value 0
after execution completes but this is normally not correct. Since the two tasks are
modifying the same variable at the same time, the value becomes corrupted.

This can be addressed by modifying the program to employ an interlock as
shown below.

.PROGRAM tas_test()
AUTO i
FOR i = 1 TO 1E+06

WHILE TAS(locked,TRUE) DO
WAIT

END

counter = counter+1
counter = counter-1

locked = FALSE
END

.END

When the program is executed simultaneously in two or more tasks, the value of
the variable "counter" will always be the same as before the program starts
because each task blocks the other task(s) while accessing the shared variable.

The global variable locked does not need to be initialized before the program is
executed because the TAS function returns FALSE if the variable is not defined.
The lock implicitly beins in the OFF state.

NOTE: The lock should be released as soon as possible because
the other task could be waiting for it to be released.

Take care to make sure the lock is always released after it gets
applied. Otherwise the other task could be blocked forever, and the
current task would also be blocked the next time it tries to acquire
the lock.

Example

The following example demonstrates the key aspects of using the TAS function to
ensure exclusive access by an application program to data that is also used by
another program task. The same command sequence must be used in any other
application program that needs to access the data.

The real-variable "data.locked" has the value FALSE when the data is not inter-
locked and the value TRUE when the data is interlocked. This variable is set to
TRUE with the TAS function, to detect if the other program task has already set it

Chapter 3: Keyword Details

to TRUE. Since TAS evaluates and sets the value indivisibly, both programs will
not set "data.locked" to TRUE simultaneously without detecting a conflict.

Use of the semaphore variable "data.locked" involves the three steps shown
below.

1. Look for the lock variable to have the "unlocked" setting (FALSE) and sim-
ultaneously apply the "lock" setting (TRUE). This loop will cycle con-
tinuously until another task sets the lock variable to the "unlocked" setting
(FALSE), at which time this task asserts the lock for itself as shown below.

WHILE TAS(data.locked,TRUE) DO
WAIT

END

2. Perform desired operations accessing the shared data
3. Release the lock on the shared data structure.

data.locked = FALSE

The WHILE loop causes program execution to be blocked until the variable "data.-
locked" is found to have the value FALSE. The program is blocked if the other
program has locked the semaphore variable in order to access the shared data.
The TAS function will set the variable "data.locked" to TRUE each time the func-
tion is executed, but that will have no effect if the variable already has that value.

Once the program gains exclusive access to the shared data, it can safely access
the data.

The last statement in step 3 above releases the data for access by the application
executing as the other program task.

Related Keywords

CAS

22353-000 Rev. B eV+3 Keyword Reference Manual 203

204 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

TASK

Real-valued function that returns information about a program execution task.

Syntax

TASK (select, task_num)

Parameters

select Optional real-valued expression that has a value of 0, 1, or 2
and selects the category of task information returned. The
value 0 is assumed if the parameter is omitted.

task_num Optional integer value that specifies which system program
task is to be accessed.

Details

This function returns various information about the system program execution
tasks. Refer to the eV+3 User's Manual (Cat. No. I651) for more information about
task execution.

The select parameter determines the type of information that is returned as
described below.

select = 0 Task number: The function returns the number of the
task executing the current program.

select = 1 Task run state: Returns the run state for the task spe-
cified by the task_num parameter. The value returned
should be interpreted as described below.

Value Interpretation

-1 Invalid task number.

0 Idle

1 Stopped due to program completion.

2 Stopped due to program execution
error (for example, undefined value).

3 Stopped due to ABORT , panic button
pressed, robot, or error.

4 Executing

Chapter 3: Keyword Details

Value Interpretation

5 Stopped due to PAUSE or breakpoint.

7 Stopped due to single-step execution.

select = 2 Task status bits: Returns an integer value that should be
interpreted as a set of bit flags that indicate the following
information about the task specified by the task_num para-
meter.

Bit Num-
ber

Bit
mask Indication if bit is ON

1 1 Reserved for future use.

2 2 Task has robot attached.

Examples

The following example will display the task number the program is running in
the Monitor Window.

TYPE "This program is running as task number :", TASK()

The following example demonstrates how the TASK function can be used to
decide whether to initiate execution of a program "named pc.job.2" with task 2

IF TASK(1,2) <> 4 THEN
IF STATUS("pc.job.2") == -1 THEN

EXECUTE 2 pc.job.2()
ELSE

TYPE /B, "Can't start task 2"
END

END

The following example checks if the current task has a robot attached and types a
message in the Monitor Window based on the outcome.

IF (TASK(2,TASK(0))<>2)THEN
TYPE "robot not attached"

END
IF (TASK(2,TASK(0))==2)THEN
TYPE "robot is attached"

END

Related Keywords

ERROR

STATE

22353-000 Rev. B eV+3 Keyword Reference Manual 205

206 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

STATUS

STATUS (real-valued function)

Chapter 3: Keyword Details

$TIME

String function that returns a string value containing either the current system
date and time or the specified date and time.

Syntax

$TIME (date, time)

Parameters

date Optional integer value representing the year, month, and day.
The value is interpreted as shown below where the month
ranges from 1 to 12.

date = (year-1980)*512 + month*32 + day

time Optional integer value representing the hour, minutes, and
seconds past midnight. The value is interpreted as shown
below where the hour ranges from 0 to 23.

time = hour*2048 + minute*32 + second/2

NOTE: This function always returns a string containing both the
date and the time. This can result in an erroneous date string if the
date parameter is omitted when the time parameter is specified.

Details

If both the date and time parameters are omitted, this function returns the current
system date and time in the format described below. An empty string is returned
if the system clock has not been initialized.

If the date and time parameters are specified, their values are converted to an
ASCII string in the format described below and the string is returned. This oper-
ation is used to decode the output values generated by the TIME function.

The date and time are output in the format dd-mmm-yy hh:mm:ss in which the
individual elements are defined as described below.

Element Description

dd The day of the month (1 to 31).

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC).

yy The year where 80 to 99 represent 1980 through 1999 and 00
to 79 represent 2000 through 2079.

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59)

22353-000 Rev. B eV+3 Keyword Reference Manual 207

208 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

NOTE: The $TIME function converts passed arguments instead of
the system time when either the date or the time parameter is sup-
plied. However, the function attempts to generate a string rep-
resentation of both parameters. It returns the date 01-Jan-80 if you
do not provide a date value. It returns the time substring 00:00:00 if
you do not specify a time value. The following statements can be
used to return only the date and the time.

$date = $MID($TIME(date,),1,9)

$time = $MID($TIME(,time),11,8)

Example

The following example displays time in the Monitor Window based on a bit-
mask.

TYPE $TIME(10333,41472)

The following example displays the current system time in the Monitor Window.

$current_time=$TIME()
TYPE $current_time

Related Keywords

TIME (monitor command)

TIME (program command)

TIME (real-valued function)

$TIME4 (string function)

Chapter 3: Keyword Details

$TIME4

String function that returns a string value containing either the current system
four-digit date and time or the specified four-digit date and time.

Syntax

$TIME4 (date, time)

Parameters

date Optional integer value representing the year, month, and day.
The value is interpreted as shown below where month ranges
from 1 to 12.

date = (year-1980)*512 + month*32 + day

time Optional integer value representing the hour, minutes, and
seconds past midnight. The value is interpreted as shown
below where hour ranges from 0 to 23.

time = hour*2048 + minute*32 + second/2

NOTE: This function always returns a string containing both the
date and the time. That can result in an erroneous date string if the
date parameter is omitted when the time parameter is specified.

Details

If both the date and time parameters are omitted, this function returns the current
system date and time in the format described below. An empty string is returned
if the system clock has not been initialized.

If the date and time parameters are specified, their values are converted to an
ASCII string in the format described below and the string is returned. This oper-
ation is used to decode the output values generated by the TIME function.

The date and time are output in the format dd-mmm-yyyy hh:mm:ss in which
the individual elements are defined as described below.

Additional Information: Using values that are not within the
ranges below may cause unexpected values to be returned.

Element Description

dd The day of the month (1 to 31).

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB, MAR,
APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC).

yyyy The year (1980 to 2079).

hh The hour of the day (0 to 23).

mm Minutes past the hour (0 to 59).

22353-000 Rev. B eV+3 Keyword Reference Manual 209

210 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Element Description

ss Seconds past the minute (0 to 59).

NOTE: The $TIME4 function converts passed arguments instead
of the system time when either the date or the time parameter is
supplied. However, the function attempts to generate a string rep-
resentation of both parameters. It returns the date 01-Jan-80 if you
do not provide a date value. It returns the time substring 00:00:00 if
you do not specify a time value. The following statements can be
used to return only the date and the time.

$date = $MID($TIME4(date,),1,11)

$time = $MID($TIME4(,time),13,8)

Example

The following example will display "31-Jan-2020 20:16:00" in the Monitor Win-
dow.

AUTO REAL date, year, month
AUTO REAL day, time, hour, minute, second

date = (year-1980)*512 + month*32 + day
time = hour*2048 + minute*32 + second/2
TYPE $TIME4(20543,41472)

Related Keywords

TIME (monitor command)

TIME (program command)

TIME (real-valued function)

$TIME (string function)

Chapter 3: Keyword Details

TIME

Real-valued function that returns an integer value representing either the date or
the time specified in the given string parameter.

Syntax

TIME (string, select)

Parameters

string Optional string variable, constant, or expression that spe-
cifies the date and time in the format described below. (See
below for details.)

select Real value, variable, or expression (interpreted as an integer)
that selects the value to be returned. An error results if select
is not one of the following:

select Returned Defined ss

1 date (year-1980)*512 + month*32
+ day

2 time hour*2048 + minute*32 +
second/2

3 seconds time past the minute

Details

This function can be used to encode the date and time into compact (unsigned
16-bit) integer formats. After the integer date and time values are obtained, they
can be arithmetically compared to other date and time values to determine before
and after conditions.

NOTE: You should not try to manipulate the encoded integer val-
ues to perform date or time arithmetic. For example, you should not
attempt to add days to an encoded date value.

If the string parameter is supplied, both the date and the time must be specified
in the string. The value of the string must have one of the following formats:

dd-mmm-yy hh:mm:ss dd-mmm-yyyy hh:mm:ss
dd-mmm-yy hh:mm dd-mmm-yyyy hh:mm

The function returns the value -1 if the input string does not have an acceptable
format (see the example below).

The individual date and time elements are defined as follows:

22353-000 Rev. B eV+3 Keyword Reference Manual 211

212 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Additional Information: Using values that are not within the
ranges below may cause unexpected values to be returned.

Element Description

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yy The year, where 80 to 99 represent 1980 through 1999,
respectively, and 00 to 79 represent 2000 through 2079,
respectively.

yyyy The year (1980 to 2079)

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0 assumed if :ss omitted)

If the string parameter is not supplied and the select parameter is 1, the current
date of the system clock is returned. In addition, the current time of the system
clock is stored in the (internal) administrative data for the program task. If the
string parameter is not supplied and the select parameter is 2 or 3, the selected
time value is returned for the system-clock time previously saved.

Example

The following example demonstrates how the TIME real-valued function can be
used to make sure you enter a valid date and time after a prompt:

PROMPT "Enter the date and time (dd-mmm-yy hh:mm:ss): ", $time

WHILE (TIME($time,1) == -1) DO
TYPE /B, " Cannot interpret date/time."
PROMPT "Try again (dd-mmm-yy hh:mm:ss): ", $time

END
TIME $time

Related Keywords

TIME (monitor command)

TIME (program command)

$TIME (string function)

$TIME4

Chapter 3: Keyword Details

TIMER

Real-valued function that returns the current time value of the specified system
timer.

Syntax

TIMER (timer_number)

Usage Considerations

The accuracy and resolution of the timers vary according to which timer is selec-
ted. Double variables should be used to achieve maximum resolution.

Parameter

timer_number Real value, variable, or expression interpreted as an
integer that specifies the number of the timer to be
read. The value must be in the range -4 to 15.

Value Description

 1-15 Timers with a resolution of one mil-
lisecond and amaximum count of >
2.E+009. They can be used tomeas-
ure an interval of up to 596 hours
from when they were set by the
TIMER keyword.

0 Returns the number of seconds since
the eV+ system was started with a res-
olution of 1 millisecond and amax-
imum count of about 2.E+009. It is
valid only during the first 596 hours of
system operation and should generally
not be used.

 -1 Returns the low 24 bits of the time
since the eV+ system was started, in
counts of 16 milliseconds. It can be
used to compute time intervals of up
to 74 hours.

 -2 Returns the low 24 bits of the time
since the eV+ system was started, in
counts of 1 millisecond. It can be used
to compute time intervals of up to 4.6
hours.

22353-000 Rev. B eV+3 Keyword Reference Manual 213

214 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

Value Description

 -3 Returns the time in seconds since eV+
was started as a 52-bit double-pre-
cision value. This timer has a res-
olution of 1 millisecond and a
maximum count of > 4.E+015. It can
be used to compute intervals of >
100,000 years. It is used like timers -1
and -2 except that double variables are
required and no BAND operation or
scale factors are used.

AUTO DOUBLE start_time, interval
start_time = TIMER(-3)
...
interval = TIMER(-3)-start_time

 -4 Returns the double-precision time of
the current robot-position or belt-
encoder latch for this task. The timer
resolution is 1 microsecond. This time
will only be valid for 128 seconds.

Details

Timers -1 and -2

If you do not want to use timers 1 through 15 or need more than 15 timers,
Timers -1 and -2 may be used as follows.

AUTO DOUBLE start_time, interval, scale
scale = 62.5)
start_time = TIMER(-1)
...
interval = ((TIMER(-1)-start_time) BAND ^HFFFFFF)/scale

The timer_number = -3 setting provides a preferred method for computing such
intervals provided that a double value can be used.

The type of eV+ variable used in time computations affects the maximum inter-
val that can be computed with full resolution with the following considerations.

l Standard real variables have only 24 bits of resolution which limits the
time interval to 16,777,216 (224) counts. This limit corresponds to about
4.6 hours for millisecond timers and 74 hours for 16-millisecond timers.

l Double real variables have 52 bits of precision, which stores the full res-
olution of the various timers. This is the default type used when none is
explicitly specified.

Chapter 3: Keyword Details

Example

The following example shows how the TIMER program command and the
TIMER function can be used to time the execution of a subroutine.

TIMER 1 = 0
CALL test.routine()
TYPE "Elapsed time =", TIMER(1)," seconds"

Related Keywords

TIMER

22353-000 Rev. B eV+3 Keyword Reference Manual 215

216 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

TOOL

Transformation function that returns the value of the transformation specified in
the last TOOL operation.

Syntax

TOOL

Usage Considerations

The TOOL function returns information for the robot selected by the task execut-
ing the function.

NOTE: If the task executing this function does not have a robot
selected, the output of this function is invalid.

Additional Information: The monitor command statement LISTL
TOOL can be used to display the current tool setting.

Examples

The following example displays the value of the current TOOL transformation in
the Monitor Window.

LISTL TOOL

The following example saves the value of the current TOOL.

SET save.tool = TOOL

Related Keywords

TOOL (program command)

Chapter 3: Keyword Details

TPS

Real-valued function that returns the number of ticks of the system clock that
occur per second (Ticks Per Second).

Syntax

TPS

Example

The following example shows how an event can be tested each system clock tick,
with a time-out of 5 seconds using the TPS function and the WAIT keyword.

FOR ticks = 1 TO 5*TPS
IF SIG(1001) THEN

TYPE "Signal ON"
HALT

END
WAIT

END
TYPE "Time-out while waiting for signal 1001"

22353-000 Rev. B eV+3 Keyword Reference Manual 217

218 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

TRANS

Transformation function that returns a transformation value computed from the
given X, Y, Z position displacements and y, p, r orientation rotations.

Syntax

TRANS (X_value, Y_value, Z_value, y_value, p_value, r_value)

Usage Considerations

If any parameter is omitted, its value is taken to be zero.

Parameters

X_value

Y_value

Z_value

Optional expressions for the X, Y, and Z displacement com-
ponents, respectively.

y_value

p_value

r_value

Optional expressions for the yaw, pitch, and roll orientation
components, respectively.

Details

The input parameter values are used to compute a transformation value that can
be assigned to a location variable or used in a compound transformation or
motion request.

Examples

The following example returns points on a circle where "r" is the radius and
"angle" is the angle of rotation about the circle.

TRANS(r*COS(angle), r*SIN(angle), 0, 0, 0, 0)

The following example moves the robot tool point around the circle in steps of 1
degree. "frame" is a transformation defining the position of the center of the circle
and the plane in which it lies, "r" is the radius of the circle and "angle" is the
angle of rotation about the circle.

FOR angle = 0 TO 360-1
MOVE frame:TRANS(r*COS(angle), r*SIN(angle), 0, 0, 0,

0)
END

Related Keywords

DECOMPOSE

DX

Chapter 3: Keyword Details

DY

DZ

FRAME

#PPOINT

SET

SHIFT

TRANSB

22353-000 Rev. B eV+3 Keyword Reference Manual 219

220 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$TRANSB

String function that returns a 48-byte string containing the binary representation
of a transformation value.

Syntax

$TRANSB (transformation type)

Parameter

transformation Transformation variable or function (or compound
transformation) that defines the value to be converted
to a string value.

type Optional real expression which specifies the type of the
position coordinates (0 = float, 1 = double).

Details

The primary use of this function is to convert a transformation value to its binary
representation in an output record of a data file.

This function converts the given transformation value to the binary rep-
resentation of its twelve internal components. The twelve values defining the
transformation are the components of a 3 x 4 transformation matrix, stored by
column. Each of the twelve 32-bit values is assembled as four successive 8-bit
characters in a string, resulting in a total of 48 or 96 characters.

The IEEE single-precision or double-precision standard floating-point format is
used for the conversion. Refer to the FLTB and DBLB real-valued functions for
details of the IEEE floating-point format.

Related Keywords

$FLTB

FLTB

TRANSB

Chapter 3: Keyword Details

TRANSB

Transformation function that returns a transformation value represented by a 48-
byte or 96-byte string.

Syntax

TRANSB (string, first_char, type)

Parameters

string String expression that contains the 48 or 96 bytes to
be converted.

first_char Optional real-valued expression that specifies the pos-
ition of the first of the 48 bytes in the string.

If first_char is omitted or has a value of 0 or 1, the
first 48 or 96 bytes of the string are extracted. If first_
char is greater than 1, it is interpreted as the character
position for the first byte. For example, a value of 2
means that the second through 49th or 97th bytes are
extracted. An error is generated if first_char specifies
48 or 96 bytes that are beyond the end of the input
string.

type Optional real expression which specifies the type of
the position coordinates (0 = float, 1 = double).

Details

The main use of this function is to convert the binary representation of a trans-
formation value from an input data record to values that can be used internally
by eV+.

48 or 96 sequential bytes of the given string are interpreted as being a set of
twelve single-precision (32-bit) or double-precision (64-bit) floating-point numbers
in the IEEE standard format. Refer to the description of the DBLB and FLTB func-
tions for details of the floating-point format. The twelve values are interpreted as
the components of a 3-by-4 transformation matrix stored by column.

Related Keywords

DBLB

FLTB

TRANS

$TRANSB

22353-000 Rev. B eV+3 Keyword Reference Manual 221

222 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

TRUE

Real-valued function that returns the value used by eV+ to represent a logical
true result.

Syntax

... TRUE

Details

This named constant is useful for situations where true and false conditions need
to be specified. The value returned is –1.

Example

The following example executes continuously until the subroutine process
returns a TRUE value for the real variable error.

DO
CALL process(error)

UNTIL error == TRUE

The following example will execute indefinitely.

WHILE TRUE DO
CALL move.part()

END

Related Keywords

OFF

ON

FALSE

Chapter 3: Keyword Details

$TRUNCATE

String function that returns all characters in the input string until an ASCII NUL
(or the end of the string) is encountered.

Syntax

$TRUNCATE (string)

Parameter

string String variable, constant, or expression that specifies the
string to be truncated.

Details

This function is similar to performing a $DECODE function with an ASCII NUL
(^H00) specified as the break character. $TRUNCATE differs from the $DECODE
function in the following ways.

l The input can be a string expression.

l The input string is not modified.

Usage Consideration

Because of its simplicity, the $TRUNCATE function executes much faster than
the $DECODE function.

Example

The example below sets the value of the string variable "$substring" equal to
"abcdef". This is an artificial situation, since you would not want to perform a
$TRUNCATE operation when the result is apparent from the input. However, it
is presented to illustrate that this function can scan an arbitrary string expression
and return the first substring delimited by a NUL.

$substring = $TRUNCATE("abcdef"+$CHR(0)+"ghijk")

Related Keywords

$DECODE

22353-000 Rev. B eV+3 Keyword Reference Manual 223

224 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

$UNPACK

String function that returns a substring from an array of 128-character string vari-
ables.

Syntax

$UNPACK (string_array[index], first_char, num_chars)

Parameters

string_array String array variable from which the substring is to be
extracted. It is assumed that each string within the array
is defined and is 128 characters long.

index Optional integer value(s) that identifies the first array
element to be considered. The first_char value is inter-
preted relative to the element specified by this index.

If no index is specified, element 0 is assumed.

first_char Real-valued expression that specifies the position of the
first character of the substring within the string array. A
value of 1 corresponds to the first character of the spe-
cified string array element. This value must be greater
than 0.

The value of first_char can be greater than 128. In this-
case, the array element accessed follows the element spe-
cified in the function call. For example, a value of 130
corresponds to the second character in the array element
following that specified by index.

num_chars Real-valued expression that specifies the number of
characters to be returned by the function. This value can
range from 0 to 128.

Details

This function extracts a substring from an array of strings. Substrings are per-
mitted to overlap two string array elements. For example, a 10-character sub-
string whose first character is the 127th character in element [3] is composed of
the last two characters in element [3] followed by the first eight characters of ele-
ment [4].

In order to efficiently access the string array, this function assumes that all of the
array elements are defined and are 128 characters long. For multidimensional
arrays, only the right-most array index is incremented to locate the substring. For
example, element [2,3] is followed by element [2,4].

Chapter 3: Keyword Details

Example

The following examle sets the value of the string variable "$substring" equal to a
substring extracted from the string array "$list[]". The substring is specified as
starting in element "$list[3]". However, because the first character is to be number
130, the 11-character substring actually consists of the second through 12th char-
acters of "$list[4]".

$substring = $UNPACK($list[3], 130, 11)

Related Keywords

$MID

PACK

22353-000 Rev. B eV+3 Keyword Reference Manual 225

226 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

VAL

Real-valued function that returns the real value represented by the characters in
the input string.

Syntax

VAL (string)

Usage Considerations

The input string can be a number in scientific notation.

The input string can contain leading number base indicators (^H).

The input string can contain a + or - sign before the numeric part of the string,
but after any optional base indicator.

Any character that cannot be interpreted as part of a number or as a base indic-
ator marks the end of the characters that are converted.

Parameter

string String constant, variable, or expression.

Examples

The following example returns the real value 123.

VAL("123 Elm Street")

The following example returns the real value 0.012.

VAL("1.2E-2")

The following example returns the real value 255 .

VAL("^HFF")

Related Keywords

ASC

$ENCODE

FLTB

INTB

LNGB

Chapter 3: Keyword Details

VLOCATION

Transformation function that returns a cartesian transformation result of the execution of the
specified vision sequence. The returned value is a transform result as x, y, z, yaw, pitch, and
roll.

Syntax

VLOCATION($ip, sequence_id, tool_id, instance_id, result_id, index_id, frame_id)

Usage Considerations

Refer to the ACE Sight Reference Guide (Cat. No. I609) for additional information.

Parameters

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager is running and uses a standard IP address format
(192.168.1.120 for example).

sequence_
id

Index of the vision sequence. The first sequence is 1.

tool_id Optional index of the tool in the vision sequence. The first tool is 1.

instance_id Optional index of the instance in the specified result frame. If no result
frame is specified, it is the index for all instances returned by the tool.

result_id Optional identifier (ID) of the result.

Typically this value is 1311. For gripper offset location, this value can be
set to 1400 and incremented by 1 for each additional gripper offset. The
maximum value is 1499.

index_id Reserved for internal use (value is always 1).

frame_id Optional index of the frame for which you want to retrieve the result con-
tained in the specified instance.

Details

If no value is provided for optional parameters, they default to 1.

To retrieve global values, use the following parameter settings.

l sequence_id: -1
l tool_id: -1

To retrieve camera values, use the following parameter settings.

l sequence_id: -1
l tool_id: cameraIndex

To retrieve camera-relative-to robot values, use the following parameter settings.

22353-000 Rev. B eV+3 Keyword Reference Manual 227

228 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

l sequence_id: -1
l tool_id: cameraIndex
l index_id: robotIndex

To retrieve sequence values, use the following parameter settings.

l sequence_id: sequenceIndex
l tool_id: -1

To retrieve belt calibration-related values, use the information in the table below.

Property sequence_
id tool_id instance_

id
result_
id index_id frame_

id

Frame

-1 cameraindex n/a

10000

robotindex n/a

UpstreamLimit 10001

DownstreamLimit 10002

NearsideLimit 10003

VisionOrigin 10050

To retrieve belt latch calibration offsets, use the values provided below.

l Property: LatchCalibrationOffset
l sequence_id: -1
l tool_id: Reference number as defined in keyword mapping parameter of Robot Vision
Manager Latch Calibration in Sysmac Studio.

l instance_id: n/a
l result_id: 10010
l index_id: robotIndex
l frame_id: n/a

Examples

The following example retrieves the location of a found instance where the 1311 result_id
indicates using the first gripper offset. This is equivalent to using the 1400 result_id.

SET location = VLOCATION($ip, 1, 2, 1, 1311)

The following example sets 1 to 6 gripper offset locations where the first gripper offset location
is 1400.

SET location = VLOCATION ($ip, 1, 2, 1, 1400)
SET location = VLOCATION ($ip, 1, 2, 1, 1401)
SET location = VLOCATION ($ip, 1, 2, 1, 1402)
SET location = VLOCATION ($ip, 1, 2, 1, 1403)
SET location = VLOCATION ($ip, 1, 2, 1, 1404)
SET location = VLOCATION ($ip, 1, 2, 1, 1405)

The following example retrieves the location of the belt frame where the BeltCalibrationFrame
index is 1000.

VLOCATION ($ip, -1, cameraIndex, , 10000, robotIndex)

Chapter 3: Keyword Details

The following example retrieves the location of the vision origin where the VisionOrigin index
is 10050.

VLOCATION ($ip, -1, cameraIndex, , 10050, robotIndex)

Related Keywords

VPARAMETER

VRESULT

VSTATE

22353-000 Rev. B eV+3 Keyword Reference Manual 229

230 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

VPARAMETER

Transformation function that returns the current value of a vision tool parameter.

Syntax

VPARAMETER ($ip, sequence_id, tool_id, parameter_id, index_id, object_id)

Usage Considerations

Refer to the ACE Sight Reference Guide (Cat. No. I609) for additional information.

Parameters

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager software is running and uses a standard IP
address format (192.168.1.120 for example).

sequence_
id

Index of the vision sequence. The first sequence is 1.

tool_id Optional index of the tool in the vision sequence. The first tool is 1.

parameter_
id

Optional identifier (ID) of the parameter.

index_id Reserved for internal use. Value is always 1.

object_id Some parameters require an object index to access specific values in an
array.

Details

If no value is provided for optional parameters, they default to 1.

To retrieve global values, use the following parameter settings.

l sequence_id: -1
l tool_id: -1

To retrieve camera values, use the following parameter settings.

l sequence_id: -1
l tool_id: cameraIndex

To retrieve sequence values, use the following parameter settings.

l sequence_id: sequenceIndex
l tool_id: -1

To retrieve belt calibration-related values for Scale (10004), use the following parameter set-
tings.

l sequence_id = -1
l tool_id = cameraIndex

Chapter 3: Keyword Details

l index_id = robotIndex
l object_id = n/a

To retrieve sequence-related values for Mode (10200), use the following parameter settings.

l sequence_id = sequenceIndex
l tool_id = -1
l index_id = n/a
l object_id = n/a

Example

The following example will retrieve the scale value for the belt calibration.

scalevalue = VPARAMETER ($ip, -1, cameraIndex, 10004, robotIndex)

Related Keywords

VLOCATION

VRESULT

VSTATE

22353-000 Rev. B eV+3 Keyword Reference Manual 231

232 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

VRESULT

Real-valued function that returns a specified result of a vision tool, or returns the status of a
specified tool.

Syntax

VRESULT ($ip, sequence_id, tool_id, instance_id, result_id, index_id, frame_id)

Usage Considerations

Refer to the ACE Sight Reference Guide (Cat. No. I609) for additional information.

Parameters

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager software is running and uses a standard IP
address format (192.168.1.120 for example).

sequence_
id

Index of the vision sequence. The first sequence is 1.

tool_id Optional index of the tool in the vision sequence. The first tool is 1.

instance_id Optional index of the instance in the specified result frame. If no result
frame is specified, it is the index for all instances returned by the tool.

result_id Optional identifier (ID) of the result.

index_id Reserved for internal use. Value is always 1.

frame_id Optional index of the frame for which you want to retrieve the result con-
tained in the specified instance.

Details

If no value is provided for optional parameters, they default to 1.

When a VRESULT function is issued for a specific tool, it checks to see if that tool supports the
VRESULT code. If the specified tool does not support the code, the VRESULT function moves
to the parent tool to see if it supports the code. This process continues until it finds a tool that
supports the code. If no valid tool is found, an invalid vision result error is generated.

For example, suppose an Arc Finder tool is placed relative to a Blob Analyzer tool. In the
application, the Blob Analyzer tool locates many blobs objects and adds an Arc Finder tool at
each instance. If you make a request for the blob area associated with an arc finder instance,
the VRESULT function will recognize that the Arc Finder tool does not support that code, so it
moves to the parent tool (the Blob Analyzer tool) and finds the blob instance associated with
the specified arc result. It validates that the blob result supports the VRESULT code and
returns the data.

Some vision tools are considered Frame Sources. The Blob Analyzer and Locator tool are the
most commonly used Frame Sources. When these tools execute, it will mark each result as a

Chapter 3: Keyword Details

separate frame or grouping. Any vision tools relative to a Frame Source will associacte each of
its results with the frame it is relative to. In this case, you may want to use the frame_id para-
meter to extract the results.

Using the Arc Finder tool relative to the Blob Analyzer tool described above for example, if the
Blob Analyzer locates 5 different results, then the Arc Finder tool will execute 5 different Arc
Finder operations, one relative to each result returned by the Blob Analyzer. The Arc Finder
will associate each result with a frame number that correlates with the index of the result
returned by the Blob Analyzer. If you want to request an Arc Finder result associated with the
4th result of the Blob Analyzer, you would reference index_id =1 in frame_id = 4 (requesting
the first instance in result frame 4). In this situation, you can still access all the Arc Finder res-
ults using frame_id = -1.

NOTE: Some child vision tools may have multiple results within each frame
and might have no results within a frame.

Example

The following example retrieves the number of instances found by a Locator tool where
instance count = 1310.

instance_count = VRESULT($ip, 1, 2, 1, 1310)

Related Keywords

VLOCATION

VPARAMETER

VSTATE

22353-000 Rev. B eV+3 Keyword Reference Manual 233

234 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

VSTATE

Real-valued function that returns the state of the execution of a sequence.

Syntax

VSTATE ($ip, sequence_id)

Usage Considerations

Refer to the ACE Sight Reference Guide (Cat. No. I609) for additional information.

Parameters

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager software is running and uses a standard IP
address format (192.168.1.120 for example).

sequence_
id

Index of the vision sequence. The first sequence is 1.

Details

Details for the values returned are provided below.

Value Description

0 Idle

1 Running

2 Paused

3 Done

4 Error

5 Starting

Examples

The following example will wait until the vision sequence has completed.

DO
WAIT

UNTIL VSTATE($ip, 1) == 3

Related Keywords

VLOCATION

VPARAMETER

VRESULT

Chapter 3: Keyword Details

WINDOW

Real-valued function that returns a value to indicate where the location described
by the belt-relative transformation value is relative to the predefined boundaries
of the working range on a moving conveyor belt.

Syntax

WINDOW (transformation, time, mode)

Usage Considerations

The belt variable referenced in the compound transformation must have already
been defined using a DEFBELT keyword.

Parameters

transformation Compound transformation value that is defined rel-
ative to a belt. The compound transformation must
begin with a belt variable.

time Optional real-valued expression that specifies the time
to anticipate when the transformation is evaluated.
The result of the function is the value predicted to
apply time seconds in the future, based on the current
belt position and speed. This parameter is used to eval-
uate if a motion can be correctly completed within an
anticipated time period.

A time of zero (default) evaluates the instantaneous
value of the location. Negative times are converted to
0 and times greater than 32,768/60 seconds are set
equal to 32,768/60.

mode Optional real-valued expression that specifies whether
the result of the function represents a distance inside
or outside the belt window.

Details

The value returned is a distance in millimeters and should be interpreted as
described below.

NOTE: The definitions of upstream and downstream depend on
the value of the BELT.MODE system parameter.

l If the value of the mode expression is less than or equal to zero (default),
the value returned is interpreted as described below.

0 The location is outside the window.

<0 The location is inside the window, closest to the down-

22353-000 Rev. B eV+3 Keyword Reference Manual 235

236 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.1 Function Keywords

stream window boundary. The distance is ABS (value_
returned).

>0 The location is inside the window, closest to the
upstream window boundary. The distance to the bound-
ary is the returned value.

“distance” = 0

“distance” > 0 “distance” < 0

Upstream
Window
Boundary

Downstream
Window
Boundary

Figure 3-3. WINDOW Function for Mode < or = 0

l If the value of the mode expression is greater than zero, the value returned
is interpreted as described below.

0 Indicates the location is within the window.

<0 Indicates the location is upstream of the upstream win-
dow boundary. The distance is ABS(value_returned).

>0 Indicates the location is downstream of the downstream
window boundary. The distance is the value returned.

Chapter 3: Keyword Details

“distance” = 0

“distance” < 0 “distance” > 0

Upstream
Window
Boundary

Downstream
Window
Boundary

Figure 3-4. WINDOW Function for Mode > 0

NOTE: The value returned by the WINDOW function always
becomes more positive as the test location moves downstream,
except for the discontinuity at the middle of the window when the
mode value is less than or equal to zero.

Example

The following example sets the variable "distance" to a nonzero value if the loc-
ation will be outside the operating window for "%belt1" in 2 seconds. The vari-
able "distance" will be 0 if th elocation is within the window.

distance = WINDOW(%belt1:pick.up, 2, 1)

The distance is nonzero if, in two seconds, the location will be outside the oper-
ating window for %belt1. Otherwise, distance is zero if the location is within the
window.

Related Keywords

BELT (real-valued function)

BELT.MODE

BSTATUS

DEFBELT

SETBELT

22353-000 Rev. B eV+3 Keyword Reference Manual 237

238 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

3.2 Monitor Command Keywords
Use the information in this section to understand monitor command keywords and their use
with the eV+ system.

ABORT

Monitor command that terminates execution of an executable program.

Syntax

ABORT task

Usage Considerations

ABORT does not force DETACH or FCLOSE operations on the disk or network
communication logical units. If the program has one or more files open and you
decide not to resume execution of the program, you should use a KILL command
to close all the files and detach the logical units.

Parameters

task Optional real value, variable, or expression interpreted as an
integer that specifies which program task is to be ter-
minated.

Details

Terminates execution of the specified active program after completion of the step
currently being executed. If the task is controlling a robot, robot motion ter-
minates at the completion of the current motion. Program execution can be
resumed with the PROCEED command.

If the task number is not specified, the ABORT command accesses task number 0.

If the task being aborted was initiated with a monitor command keyword, a com-
pletion message in the following form is displayed:
Program task # stopped at program_name, step step_number date time

However, if the task was initiated from another task with an EXECUTE program
command keyword, the completion message is not displayed.

Related Keywords

ABORT (program command)

CYCLE.END (monitor command)

CYCLE.END (program command)

ESTOP (monitor command)

ESTOP (program command)

Chapter 3: Keyword Details

EXECUTE (monitor command)

EXECUTE (program command)

KILL (monitor command)

KILL (program command)

PANIC (monitor command)

PANIC (program command)

PROCEED

RETRY

STATUS

22353-000 Rev. B eV+3 Keyword Reference Manual 239

240 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

BASE

Monitor command that translates and rotates the world reference frame relative
to the robot.

Syntax

BASE X_shift, Y_shift, Z_shift, Z_rotation

Usage Considerations

The BASE command applies to the robot selected with the SELECT keyword. This
command can be used while programs are executing. An error will result if the
robot is attached by any executing program.

If the eV+ system is not configured to control a robot, use of the BASE command
causes an error.

Parameters

X_shift Optional real-valued expression describing the X com-
ponent in the normal world coordinate system of the
origin point for the new coordinate system. A zero
value is assumed if no value is provided.

Y_shift Optional real-valued expression describing the Y com-
ponent in the normal world coordinate system of the
origin point for the new coordinate system. A zero
value is assumed if no value is provided.

Z_shift Optional real-valued expression describing the Z com-
ponent in the normal world coordinate system of the
origin point for the new coordinate system. A zero
value is assumed if no value is provided.

Z_rotation Optional real-valued expression describing the rotation
about the Z-axis component in the normal world
coordinate system of the origin point for the new
coordinate system. A zero value is assumed if no value
is provided.

Details

When the eV+ system is initialized, the origin of the reference frame of the robot
is defined in the kinematic model. For SCARA robots, the X-Y plane is at the
robot mounting surface, the X axis is in the direction defined by joint 1 equal to
zero, and the Z axis coincides with the joint-1 axis. Refer to the Robot
User's Guide for the default location of the reference frame for your robot.

The BASE command offsets and rotates the reference frame as specified above.
This is useful if the robot is moved after the locations have been defined for an
application. This command can be used to compensate for the location

Chapter 3: Keyword Details

differences that occur when a robot is moved to locations that have been defined
by transformations relative to a robot reference frame (to a point translated by dX,
dY, dZ, and rotated by Z_degrees). This ensures motions to the previously
defined locations will still work properly.

Additionally, the BASE command can be used to realign the X and Y coordinate
axes so that SHIFT functions cause displacements in desired, nonstandard dir-
ections.

NOTE: The BASE command has no effect on locations defined as
precision points. The parameters for the BASE command describe
the displacement of the robot relative to its normal location. The
BASE function can be used with the LISTL command to display the
current BASE setting (with the statement "LISTL BASE").

Examples

The following example will redefine the world reference frame because the robot
has been shifted "xbase" millimeters in the positive X direction, 50.5 millimeters
in the negative Z direction, and rotated 30 degrees about the Z axis.

BASE xbase,, -50.5, 30

The following example will redefine the world reference frame to effectively shift
all locations 100 millimeters in the negative X direction and 50 millimeters in the
positive Z direction from their nominal location. The arguments for this state-
ment describe movement of the robot reference frame relative to the robot and
have an opposite effect on locations relative to the robot.

BASE 100,, -50

Related Keywords

BASE (transformation function)

BASE (program command)

SELECT (monitor command)

SELECT (program command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 241

242 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

BITS

Monitor command that sets or clears a group of digital signals based on a value.

Syntax

BITS first_sig, num_sigs = value

Usage Considerations

External, digital output, or internal software signals can be referenced. The spe-
cified signals must not include any that are configured for input.

No more than 32 signals can be set at one time.

Any group of up to 32 signals can be set, providing that all the signals in the
group are configured for use by the system.

Parameters

first_sig Real-valued expression defining the lowest-numbered sig-
nal to be affected.

num_sigs Optional real-valued expression specifying the number of
signals to be affected. A value of 1 is assumed if none is spe-
cified. The maximum valid value is 32.

value Real-valued expression defining the value to be set on the
specified signals. If the binary representation of the value
has more bits than "num_sigs," only the lowest "num_
sigs" signals will be affected.

Details

Sets or clears one or more external, output signal, or internal software signal
based on the value on the right of the equal sign. The effect of this operation is to
round value to an integer, and then set or clear a number of signals based on the
individual bits of the binary representation of the integer.

Examples

The following example sets external output signals 1-4 (4 bits) to the binary rep-
resentation of the BCD digit "7".

BITS 1,4 = BCD(7)

The following example sets external output signals 9-16 (8 bits) to the binary rep-
resentation of the current monitor speed setting. If the monitor speed were cur-
rently set to 50% (110010 binary), then signals 9-16 would be set as shown after
the command:

BITS 9,8 = SPEED(1)

Chapter 3: Keyword Details

9 → 0 (off) 13 → 1 (ON)

10 → 1 (on) 14 → 1 (ON)

11 → 0 (off) 15 → 0 (OFF)

12 → 0 (off) 16 → 0 (OFF)

The following example sets external output signals 1-8 (8 bits) to the binary rep-
resentation of the constant 255, which is 11111111. Signals 1-8 will all be turned
ON.

BITS 1,8 = 255

Related Keywords

BITS (program command)

BITS (real-valued function)

RESET

SIG (real-valued function)

SIG.INS (real-valued function)

SIGNAL (monitor command)

SIGNAL (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 243

244 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

CALIBRATE

Monitor command that initializes the robot positioning system.

Syntax

CALIBRATE mode, robot

Usage Considerations

This keyword is typically issued with no mode specified.

The CALIBRATE operation has no effect if the DRY.RUN system switch is
enabled.

If the robot is to be moved, the CALIBRATE program command or monitor com-
mand keywords must be processed every time system power is turned ON and
the eV+ system is booted from disk. Many robot models are configured to auto-
matically invoke calibration when the system is powered up.

Some robot models cannot be moved with the manual control pendant or under
program control if the robot is not calibrated until the CALIBRATE program com-
mand or monitor command keyword has been processed. It may be possible to
move other robot models with the manual control pendant (but only in JOINT
mode) when the robot is not calibrated.

If multiple robots are connected to the system controller and the "robot" para-
meter is omitted (or 0), this keyword attempts to calibrate all the robots in
sequence unless they are disabled with the ROBOT system switch. All of the
enabled robots must be calibrated before any of them can be moved under pro-
gram control.

NOTE: If the optional front panel or a remote front panel is
installed, the controller keyswitch must be set to AUTOMATIC
mode for this command to be processed.

The CALIBRATE keyword may operate differently for each type of robot. The
CALIBRATE keyword generally causes all the robot joints to move. The positions
from which the CALIBRATE keyword can be issued depend on the type of robot
being controlled. The only restriction is that the robot must be far enough from
the limits of the working range that it will not move out of range during the cal-
ibration process.

Chapter 3: Keyword Details

Parameters

mode A real-valued expression that indicates what part of calibration
is to be performed:
Value of
mode Interpretation

0 (or omit-
ted)

Perform a normal calibration of all the robots
controlled by the system. Tthe following oper-
ations are performed.

l Load the main calibration program if it is
not already in memory.

l Execute the main calibration program
with the load, execute, delete, andmon-
itor flags set, which causes the robot-spe-
cific routines to be loaded, the robots to
be calibrated, and the robot routines to
be deleted.

l Delete the main calibration program if it
was loaded. Regardless of whether or not
the main calibration program is deleted
at the end of the process, the robot-spe-
cific routines will have been deleted by
the main program.

1 Load the main calibration program if it is not
already in memory, and execute the main cal-
ibration program with the load andmonitor
flags set. This causes the main program to load
the applicable robot-specific routines. Note that
the actual calibration process is not performed.

2 Execute the main calibration program which
must already be in memory with the execute
andmonitor flags set. This causes the system
robot(s) to be calibrated, and all the calibration
programs to be left in memory.

3 Execute the main calibration program (which
must already be in memory) with the delete
andmonitor flags set. This causes all the robot-
specific calibration routines to be deleted from
memory. Then the main calibration program is
deleted from memory. Note that the actual cal-
ibration process is not performed.

Details

When the calibration operation is started, the eV+ system proceeds as if the robot
is not calibrated and does not let you execute a robot-control program. The

22353-000 Rev. B eV+3 Keyword Reference Manual 245

246 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

pendant COMP mode light does not come on when the robot is not calibrated.

The robot becomes uncalibrated whenever system power is switched OFF. As a
safety measure, robots also become uncalibrated whenever certain servo errors
occur.

In the cases that involve loading the main calibration program, the CALIBRATE
operation loads the disk file "cal_util.v2". For convenience, the loading operation
searches for the file in the following directories and in the following order:

1. The current default directory

2. \CALIB\ on the local disk from which the eV+ system was booted
(skipped when the system was booted from the TFTP device)

3. DISK>D:\CALIB\

The calibration program is executed in task 0. If task 0 is already active, the
CALIBRATE operation fails.

The procedure for using the CALIBRATE operation is described below.

1. Turn ON the robot high power.

2. If the robot joints are near the extremes of their ranges of motion, move the
joints toward the center of their working range.

3. You must manually position the robot links if this is an initial calibration.
You can use the manual control pendant if the robot is already calibrated.
You may be able to use the manual control pendant, if the robot is not cal-
ibrated.

4. Type calibrate at the Monitor Window.

5. Type y to confirm the operation.

NOTE: The system does not ask "Are you sure (Y/N)?". The
CALIBRATE operation has no effect if the DRY.RUN system switch
is enabled for a particular robot.

Related Keywords

CALIBRATE (program command)

NOT.CALIBRATED

Chapter 3: Keyword Details

CD

Monitor command that displays or changes the default path for disk access.

Syntax

CD path

Parameter

path Optional string specifying the disk-directory path of
interest. Normally, this parameter contains directory
names and backslash (\) characters. The eV+ system
adds a backslash if one is not included at the end of
a path specification.

If the path parameter is omitted, the current directory
path is displayed.

Details

This command is a synonym for typing the following.

default disk = path

Refer to the DEFAULT command for information about specifying the path for a
disk directory.

Examples

Type the following to display the default path.

cd

Type the following to change the default path to C:\TEST\JOBS\. The path must
already exist to change the default path as specified in this example. The trailing
backslash can be omitted.

cd c:\test\jobs\

Type the following to move up the directory path one level.

cd ..

Type the following to move back down one level for this example (return to
c:\TEST\JOBS from c:\TEST).

cd jobs

Related Keywords

DEFAULT

22353-000 Rev. B eV+3 Keyword Reference Manual 247

248 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

COMMANDS

Monitor command that initiates processing of a Monitor Command program.

Syntax

COMMANDS program

Usage Considerations

The COMMANDS command can be issued when program task 0 is executing,
but the system keyboard will not respond to input until either the program com-
pletes or CTRL+C is pressed to abort the COMMANDS command.

Every command line in a Monitor Command program must begin with "MC".

The Front Panel keyswitch must be set to AUTOMATIC mode for this command
to be processed.

Parameter

program Name of the Monitor Command program to be pro-
cessed.

Details

COMMANDS initiates processing of the specified Monitor Command program,
which must already be in memory. Processing of the program will continue until
one of the following occurs.

l The end of the Monitor Command program is reached.

l A CTRL+C sequence is pressed on the system keyboard.

l A COMMANDS command is encountered in the program.

l An error occurs.

If a COMMANDS command is included in a Monitor Command program, the
new Monitor Command program will be invoked and any remaining lines in the
first Monitor Command program will be ignored. Monitor Command programs
can be linked from one to another, but no return path can be made to occur as
with executable programs. Any executable program invoked by a Monitor
Command program (with an EXECUTE command) can utilize all of the control
keywords available in the eV+ language.

The autostart feature provides a method to automatically issue a COMMANDS
command when the controller is powered ON and the eV+ system is loaded from
disk. Refer to the eV+3 User's Manual (Cat. No. I651) for more information.

Example

The following example begins processing of the Monitor Command program
named "setup".

Chapter 3: Keyword Details

commands setup

Related Keywords

CYCLE.END

DO

22353-000 Rev. B eV+3 Keyword Reference Manual 249

250 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

COPY

Monitor command that creates a new program as a copy of an existing program.

Syntax
COPY new_program = old_program

Usage Considerations

The COPY command can be used to copy a program that is executing. COPY
does not copy disk files, only programs resident in system memory (refer to the
FCOPY command to copy disk files).

Parameters

new_program Name to be given to the program created.

old_program Name of the program to be copied.

Details

Creates a new program as an exact copy of an existing program. The new copy of
the program is placed in the GLOBAL program module. After the COPY oper-
ation, either the new or the old program can be edited as desired.

NOTE: If there is already a program in the system memory with
the specified new name, the COPY operation is not performed and
an error message is displayed. In this case, you must first delete or
rename the conflicting program before copying, or use a different
name for the copy.

Example

The following example makes a copy of program "test" and assigns the name
"test.cpy" to the new copy.

COPY test.cpy = test

Related Keywords

FCOPY (monitor command)

FCOPY (program command)

RENAME

Chapter 3: Keyword Details

CYCLE.END

Monitor command that terminates the specified executable program the next time
it executes a STOP operation or its equivalent. It will suspend processing of a
command program until a program completes execution.

Syntax

CYCLE.END task, stop_flag

Usage Considerations

The CYCLE.END command has no effect if the specified program task is not act-
ive.

The CYCLE.END command blocks all keyboard input until the specified task
completes execution. Pressing CTRL+C releases the keyboard. In that case the
CYCLE.END command will still terminate the program if the "stop_flag" is
TRUE.

Parameters

task Optional real value, variable, or expression inter-
preted as an integer that specifies which program
task is to be monitored or terminated.

If the task number is not specified, the CYCLE.END
command accesses task number 0.

stop_flag Optional real value, variable, or expression interpreted
as a logical (TRUE or FALSE) value. If the parameter is
omitted or has the value 0, the specified task is not
stopped, but the CYCLE.END has all its other effects. If
the parameter has a nonzero value, the selected task
will stop at the end of its current cycle.

Details

If the "stop_flag" parameter has a TRUE value, the specified program task will ter-
minate the next time it executes a STOP operation or its equivalent, regardless of
how many program cycles are left to be executed.

NOTE: CYCLE.END does not terminate a program with con-
tinuous internal loops. Such a program must be terminated with
the ABORT operation.

Regardless of the "stop_flag" parameter, this command waits until the program
actually is terminated. If the program being terminated loops internally, so that
the current execution cycle never ends, the CYCLE.END command waits forever.

To release the system keyboard from a CYCLE.END command that is waiting for
a program to terminate, press CTRL+C.

22353-000 Rev. B eV+3 Keyword Reference Manual 251

252 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Example

The following portion of a command program shows how to make a command
program wait for execution of one program to complete before issuing the next
command.

MC EXECUTE 1 setup)
MC CYCLE.END 1
MC EXECUTE 1 main.1
MC EXECUTE main
MC CYCLE.END

Related Keywords

ABORT (monitor command)

ABORT (program command)

EXECUTE (monitor command)

EXECUTE (program command)

HALT

KILL (monitor command)

KILL (program command)

PROCEED

RETRY

STATUS (monitor command)

STATUS (real-valued function)

STOP

Chapter 3: Keyword Details

DEFAULT

Monitor command that defines the default relationship between the eV+ disk
logical device and the physical device to be accessed. This also displays the cur-
rent default.

Syntax

DEFAULT DISK = physical_device>unit:directory_path

Usage Considerations

The simpler CD command can be used instead of the DEFAULT command.

Parameters

physical_device Optional name of the physical device to be asso-
ciated with the disk logical device. An acceptable
device name is "DISK", which must be specified
(without quotes) and can be abbreviated to "DI".

The ">" character must be omitted if the physical
device is omitted, in which case the previous
default physical device is not changed.

When the physical device is specified, the default
unit is canceled if no unit is specified.

unit Optional string specifying the desired default
unit.

l For the DISK physical device (i.e., a con-
troller-based disk), this parameter is the
letter name of the disk drive of interest.

l For the TFTP device, this is the name or
IP address (in dotted decimal format) of
the TFTP server that will be accessed.

The ":" character must not be entered if the unit
is not specified. In that case, the previous default
unit is not changed (except as noted above).

directory_path Optional string specifying the directory path of
interest. Normally, this parameter will contain
file names and backslash (\) characters. For disk
devices, eV+ adds a "\" if one is not included at
the end of a path specification.

When the current or specified physical device is
not a disk device, a leading "\" specifies that the
directory path starts at the top-level directory.
The path replaces any default path currently

22353-000 Rev. B eV+3 Keyword Reference Manual 253

254 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

defined (absolute path). The absence of a leading
"\" indicates that the path is to be appended to
the current default path (relative path).

NOTE: If the"unit" and "directory_
path" parameters are omitted, the
unit and the directory path will be
canceled in the default. If all para-
meters are omitted, the current dir-
ectory path is displayed.

If the "unit" parameter specifies a
unit different from the current
default, the directory path specified
is always started at the top-level
directory.

As a special case, nonstandard directories (for
example, "[...]" or "/.../") are accepted to assist
with referencing other systems.

Details

In the following description, the term "directory specification" is used to refer to
the combination of physical device and/or disk unit and/or directory path.

When a disk-related eV+ operation (for example, FDIRECTORY , LOAD , STORE ,
and FOPEN_) is processed, the eV+ system automatically combines the current
"default" directory specification with the directory specification supplied to the
command or function. The DEFAULT command can be used to set the directory
specification that is to be used in such situations (see the examples below).

NOTE: The DEFAULT command does not verify that the specified
default device, unit, and directory can actually be accessed.

The DEFAULT command can be entered without any parameters to have the cur-
rent default directory specification displayed on the Monitor screen.

When the eV+ system is booted from disk, the initial default disk relationship is
set according to the configuration stored on the system disk.

NOTE: OMRON delivers eV+ system boot disks with the default
disk unit set to "DISK>D". The default unit and directory path can
be changed using Sysmac Studio. Refer to the Sysmac Studio Robot
Integrated System Building Function with Robot Integrated CPU Unit
Operation Manual (Cat. No. W595) for more information.

After a DEFAULT command is processed, subsequent disk operations (and
DEFAULT commands) will use the new default directory specification as
required. The following rules determine the directory specification that will result
from a combination of the default specification and the directory specification
that is included in any command or function.

Chapter 3: Keyword Details

1. If no unit is specified, the current default unit will be used. Any directory
path specified is appended to the default directory path if the specified
path does not start with a backslash (\). Otherwise, the default directory
path is ignored. However, the DEFAULT command cancels both the
default unit and directory path if both the unit and directory path are omit-
ted.

2. If the unit specified is the same as the current default unit, the specified
directory path (if any) is appended to the default directory path if the spe-
cified path does not start with a backslash (\). Otherwise, the default dir-
ectory path is ignored.

3. If the unit specified is different from the current default unit, any directory
path specified is always started at the top-level directory of the specified
unit. The default directory path is ignored.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information disk dir-
ectories.

Examples

The following examples illustrate how the DEFAULT command can be used to
display or set the default directory specification.

DEFAULT Displays the current default for DISK.

DEFAULT = A: Changes the default disk drive to unit
"A".

DEFAULT = DI>D:\ROB1 Changes the default subdirectory to be
the subdirectory "ROB1" on disk unit "D",
on the (local) physical device "DISK".

DEFAULT = TEST\DEMO When used after the previous command,
this changes the default directory path to
"\ROB1\TEST\DEMO\" (on disk unit
"D").

The following examples show how the default directory specification is applied
in certain situations. In each case, the current default directory specification is
assumed to be "DISK>D:\ROB1\".

In the following example, the whole default directory specification is used.

l Command as entered by user: FDIRECTORY *.V2
l Command as processed: FDIRECTORY DISK>D:\ROB1*.V2

The following example, the device, disk, and root directory are taken from the
default directory specification.

l Command as entered by user: FDIRECTORY JOB1\FEED*.*
l Command as processed: FDIRECTORY DISK>D:\ROB1\JOB1\FEED*.*

In the following example, the device and disk are taken from the default directory
specification and the default root directory is ignored because the specified path
starts with a backslash.

22353-000 Rev. B eV+3 Keyword Reference Manual 255

256 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

l Command as entered by user: FDIRECTORY \JOB1\FEED*.*
l Command as processed: FDIRECTORY DISK>D:\JOB1\FEED*.*

Related Keywords

CD

$DEFAULT

FDIRECTORY

FSET

LOAD

STORE

FOPEN

FOPENA

FOPEND

FOPENR

FOPENW

Chapter 3: Keyword Details

DELETE

Monitor command that deletes the specified programs from the system memory.

Syntax

DELETE program, ..., program

Usage Considerations

A program cannot be deleted while it is executing or is present on an execution
stack, as shown by the STATUS function.

DELETE does not delete disk files, but removes programs from system memory.
Deleted programs can be reloaded with a LOAD command if the programs have
previously been stored to disk. The FDELETE command deletes disk files from a
storage disk.

Additional Information: It is good programming practice to group
programs into modules, so the DELETEM command would nor-
mally be used instead of DELETE.

Parameter

program Name of a program to be deleted.

Details

The DELETE command completely deletes the named programs. This command
deletes the programs themselves (like the DELETEP command) and it also
deletes all the following items that are used exclusively by the named programs.

l

NOTE: Programs and their referenced items are not deleted if they
are in an active program execution stack as shown by the STATUS
function. A KILL command should be used to clear the appropriate
program execution stack before deleting programs referenced in the
stack.

Example

The following example deletes the program named assembly.

DELETE assembly

Related Keywords

DELETEL

DELETEM

22353-000 Rev. B eV+3 Keyword Reference Manual 257

258 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

DELETEP

DELETER

DELETES

FDELETE (monitor command)

FDELETE (program command)

Chapter 3: Keyword Details

DELETEL

Monitor command that deletes the named location variables from the system
memory.

Syntax

DELETEL @task:program loc_variable, ..., loc_variable

Usage Considerations

If an array element is specified, that element is deleted.

If an array name is specified without explicit index(es) (for example, "DELETEL a
[]"), the entire array is deleted.

If one or more of the right-most indexes of a multiple-dimension array are omit-
ted, all the elements defined for those indexes are deleted. The following
examples demonstrate this.

This example deletes the elements a[3,2,0] to a[3,2,last].

DELETEL a[3,2,]

This example deletes all the elements a[3,i,j] for all i and j.

DELETEL a[3,,]

This example deletes the entire array.

DELETEL a[,,]

Parameters

@task:program These optional parameters specify the context
for the location variables. The location vari-
ables will be treated as though they are ref-
erenced from the specified context. If no context
is specified, the location variables will be con-
sidered global. Refer to the eV+3 User's Manual
(Cat. No. I651) for information about variable
context.

loc_variable Name of a location variable to be deleted.

Details

Deletes an arbitrary number of location variables (transformations and/or pre-
cision points). This operation can be used to recover the memory storage space
occupied by location variables that are no longer needed.

22353-000 Rev. B eV+3 Keyword Reference Manual 259

260 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Once a location variable is deleted, it cannot be referenced by any eV+ operation
or function. An attempt to reference a deleted variable will result in an error mes-
sage just as if the variable had never been defined.

Examples

The following example deletes the transformation "pick" and the precision point
"#park" from memory.

DELETEL pick, #park

The following example deletes the transformation variable "temp" which is a
local variable in the program "main".

DELETEL @main temp

Related Keywords

DELETE

DELETER

DELETES

FDELETE

Chapter 3: Keyword Details

DELETEM

Monitor command that deletes the named program module from the system
memory.

Syntax

DELETEM module

Usage Considerations

A module will not be deleted if any of its programs are interlocked (see below).

The programs in the module are deleted even if they are referenced by other pro-
grams in memory.

DELETEM removes program modules from system memory. It does not erase the
associated disk file.

Parameter

module Name of a program module to be deleted.

Details

Deletes a program module and all of its programs from the system memory. This
operation can be used to recover the memory storage space occupied by pro-
grams that are no longer needed.

Unlike the DELETE command, DELETEM does not delete subroutines that are ref-
erenced by the programs deleted, except when the subroutines are also contained
in the specified module. Variables referenced by the deleted programs are not
deleted.

If any of the programs in the module are interlocked (see the STATUS real-valued
function), those programs are not deleted and the module is not deleted. A KILL
command should be used to clear the appropriate program execution stack before
deleting a module containing programs referenced in an execution stack.

Refer to the eV+3 User's Manual (Cat. No. I651) for information about program
modules.

Example

The following example deletes the program module named "main.package" and
all the programs it contains (assuming that none of the programs are inter-
locked).

DELETEM main.package

Related Keywords

DELETE

DELETEP

22353-000 Rev. B eV+3 Keyword Reference Manual 261

262 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

FDELETE

MDIRECTORY

MODULE

STOREM

Chapter 3: Keyword Details

DELETEP

Monitor command that deletes the named programs from the system memory.

Syntax

DELETEP program, ..., program

Usage Considerations

A program cannot be deleted while it is executing or is present on an active exe-
cution stack, as shown by the STATUS function.

Subroutines and variables referenced by the deleted programs are not deleted.
Refer to the DELETE command for more information.

DELETEP removes a program from memory. It does not erase the associated disk
file.

Additional Information: It is good programming practice to group
programs into modules, so the DELETEM command would nor-
mally be used instead of DELETEP.

Parameter

program Name of a program to be deleted.

Details

Deletes an arbitrary number of programs from the system memory. This oper-
ation can be used to recover the memory storage space occupied by programs
that are no longer needed.

Unlike the DELETE command, DELETEP does not delete subroutines or variables
referenced by the named programs.

NOTE: Programs are not deleted if they are in an active program
execution stack as shown by the STATUS function. A KILL com-
mand should be used to clear the appropriate program execution
stack before deleting programs referenced in the stack.

Example

The follwoing example deletes the program named "test.one".

DELETEP test.one

Related Keywords

DELETE

DELETEM

FDELETE

22353-000 Rev. B eV+3 Keyword Reference Manual 263

264 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

KILL

STATUS

Chapter 3: Keyword Details

DELETER

Monitor command that deletes the named real-valued variables from the system
memory.

Syntax

DELETER @task:program real_variable, ..., real_variable

Usage Considerations

DELETER does not delete External variables.

Parameters

@task:program These optional parameters specify the context for the
real variables. The real variables will be treated as
though they are referenced from the specified context. If
no context is specified, the real variables will be con-
sidered global. Refer to the eV+3 User's Manual (Cat. No.
I651) for information about variable context.

real_variable Name of a real-valued variable to be deleted.

Details

Deletes an arbitrary number of real-valued variables. This operation can be used
to recover the memory storage space occupied by real-valued variables that are
no longer needed.

Once a real-valued variable is deleted, it cannot be referenced by any eV+ oper-
ation or function. An attempt to reference a deleted variable will result in an error
message just as if the variable had never been defined.

If an array element is specified, that element is deleted. The entire array is
deleted, however, if an array name is specified without explicit index(es) (for
example, "DELETER a[]").

If one or more of the right-most indexes of a multiple-dimension array are omit-
ted, all the elements defined for those indexes are deleted. The following
examples demonstrate this.

This example deletes the elements a[3,2,0] to a[3,2,last].

DELETER a[3,2,]

This example deletes all the elements a[3, i, j] for all i and j.

DELETER a[3, ,]

This example deletes the entire array.

22353-000 Rev. B eV+3 Keyword Reference Manual 265

266 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

DELETER a[, ,]

Examples

The following example deletes the real variable "count" and the real array ele-
ment "x[2]".

DELETER count, x[2]

The following exampe deletes the real array "part", which is a local variable in
the program "insert".

DELETER @insert part[]

Related Keywords

DELETE

DELETEL

DELETES

FDELETE

Chapter 3: Keyword Details

DELETES

Monitor command that deletes the named string variables from the system
memory.

Syntax

DELETES @task:program string_var, ..., string_var

Parameters

@task:program These optional parameters specify the context for the
location variables. The location variables will be treated
as though they are referenced from the specified context.
If no context is specified, the location variables will be
considered global. Refer to the eV+3 User's Manual
(Cat. No. I651) for information about variable context.

string_var Name of a string variable to be deleted.

Details

Deletes an arbitrary number of string variables. This operation can be used to
recover the memory storage space occupied by string variables that are no longer
needed.

Once a string variable is deleted, it cannot be referenced by any eV+ operation or
function. An attempt to reference a deleted variable will result in an error mes-
sage just as if the variable had never been defined.

If an array element is specified, that element is deleted. The entire array is
deleted, however, if an array name is specified without explicit index(es) (for
example, "DELETES $a[]").

If one or more of the right-most indexes of a multiple-dimension array are omit-
ted, all the elements defined for those indexes are deleted. The following
examples demonstrate this.

(For example, the command "DELETES $a[3,2,]" deletes the elements "$a[3,2,0]" to
"$a[3,2,last]". The command "DELETES $a[3, ,]" deletes all the elements "$a[3, i,
j]" for all "i" and "j". The command "DELETES $a[, ,]" deletes the entire array).

This example deletes the elements $a[3,2,0] to $a[3,2,last].

DELETES $a[3,2,]

This example deletes all the elements $a[3, i, j] for all i and j.

DELETES $a[3, ,]

This example deletes the entire array.

22353-000 Rev. B eV+3 Keyword Reference Manual 267

268 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

DELETES $a[, ,]

Examples

The following example deletes the string variable "$input".

DELETES $input

The following example deletes the string variable "$response", which is a local
variable in the program "menu".

DELETES @menu $response

Related Keywords

DELETE

DELETEL

DELETER

FDELETE

Chapter 3: Keyword Details

DIRECTORY

Monitor command that displays the names of some or all of the programs in the
system memory.

Syntax

DIRECTORY /switch wildcard_spec

Usage Considerations

This command lists the programs resident in system memory. It does not list the
files on a disk drive (refer to the FDIRECTORY command).

Parameters

switch Optional qualifier with the following switch values.

Switch Value Purpose

/S Suppress protected programs

/? Display only non-executable pro-
grams

/M Display only modified programs

wildcard_spec Optional character string that can include wildcards
using either the "?" or "*" character. Both wildcards
operate identically and can match 0, 1, or multiple
characters.

Details

The following information can be displayed for each program listed:

l A question mark ("?") is shown at the left if the program cannot be
executed. This usually indicates that the program contains a programming
error.

l For any program name that is displayed, if the copy in memory has been
modified since last being loaded or stored, an "M" is displayed before the
program name.

l If the program has restricted access, a code letter for the type of restriction
is shown at the left.

l A "P" is shown if the program is protected. That means the pro-
gram cannot be displayed, edited, or stored.

22353-000 Rev. B eV+3 Keyword Reference Manual 269

270 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

l An "R" is shown if the program is read-only. That means the pro-
gram cannot be edited or stored.

l The name of the program is displayed.

l If the program is not protected, the entire .PROGRAM command for the
program is displayed. Any parameters required by the program are dis-
played, as is any comment on the .PROGRAM line.

l If the program is protected, the .PROGRAM command is truncated after
the program name.

Example

The following example will display all unexecutable programs in the controller
memory including protected programs.

DIRECTORY /?

Related Keywords

FDIRECTORY

MDIRECTORY

Chapter 3: Keyword Details

DISABLE

Monitor command that turns OFF one or more system switches.

Syntax

DISABLE switch, ..., switch

Usage Considerations

The DISABLE command can be used while a program is executing.

If a specified switch accepts an index qualifier and the index is 0 or omitted with
or without the brackets, all the elements of the switch array are disabled.

Parameter

switch Name of a system switch to be turned OFF.

The name can be abbreviated to the minimum length that
uniquely identifies the switch. For example, the MESSAGES
switch can be referred to as "ME" since there is no other
switch with a name beginning with the letters "ME".

Details

System switches control various aspects of the operation of the eV+ system. Refer
to the eV+3 User's Manual (Cat. No. I651) for available system switches and their
functions.

When a switch is turned OFF, the feature it controls is no longer functional or
available for use. Turning a switch ON with the ENABLE command or program
command makes the associated feature functional or available for use.

NOTE: The system switches are shared by all the program tasks.
Consideration should be exercised when multiple tasks are dis-
abling and enabling switches, otherwise the switches may not be
set correctly for one or more of the tasks.

Disabling the DRY.RUN switch does not have effect until the next
EXECUTE monitor command or program command is processed
for task 0, an ATTACH program command is executed for the
robot, or a CALIBRATE monitor command or program command is
processed.

The SWITCH monitor command or the SWITCH function can be used to determ-
ine the status of a switch at any time. The SWITCH program command can be
used like the DISABLE program command to disable a switch.

Example

The following example will turn OFF the CP (Continuous Path) switch.

22353-000 Rev. B eV+3 Keyword Reference Manual 271

272 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

DISABLE CP

Related Keywords

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH

SWITCH (real-valued function)

Chapter 3: Keyword Details

DO

Monitor command that executes a keyword(s) as though it were the next step in
an executable program or the next step in the specified task / program context.

Syntax

DO @task:program instruction

Usage Considerations

The specified program task cannot be currently executing.

Refer to the eV+3 User's Manual (Cat. No. I651) for information about keywords
that can be used with the DO command.

Parameters

program
instruction

Optional eV+ keyword(s) to be executed. If no keyword is
specified, the last keyword executed with a DO command
is repeated (regardless of the context specified or
assumed).

!
WARNING: Typing a DO command
with no program instruction specified can
result in unexpected motion of the robot,
because the previous DO operation is
executed again.

task Optional integer that specifies the program task that is to
execute the operation.

This parameter is also used to determine the context for
any variables referenced in the operation.

If "task" is omitted, the colon (":") must also be omitted.
Then, the main program task (0) or the current debug task
is used.

program Optional program name that specifies the context for any
variables or statement labels referenced in the operatoin. If
"program<" is omitted, the colon (":") must also be omit-
ted. Then, the program on top of the stack specified by
"task" (or the current debug program) is used. Refer to the
eV+3 User's Manual (Cat. No. I651) for information about
variable context.

The last context specified will be used if all the command
parameters are omitted. Global context or the current
debug program is the initial default.

22353-000 Rev. B eV+3 Keyword Reference Manual 273

274 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Details

eV+ language keywords can be processed only if they are included in a program
and that program is executed. The DO command provides the ability to execute a
single keyword without creating a program.

The DO monitor command executes a single operation as though it were con-
tained within a program. This command can be used to move the robot (for
example, "DO READY") or to alter the sequence of program step execution (for
example, "DO @ 2 GOTO 100").

A new global variable can be created with a DO command only if the program is
null. That occurs when no "@" is present or when there is no program on the top
of the stack for the specified task.

When a DO command is processed, the following behavior can occur.

l Any temporary robot-configuration or trajectory-control parameter settings
for the referenced program task are canceled by a motion performed with a
DO command.

l If any REACT, REACTE, REACTI, or RUNSIG commands were active in a
program that has been interrupted with a PAUSE command, the com-
mands(s) are re-enabled during execution of the operation in the DO com-
mand.

Examples

The following example performs a straight-line motion to the location defined by
the transformation "safe.location".

DO MOVES safe.location

The following example executes an operation in program task 1 to assign the
value 5 to the variable i which is a local variable in the program "io.check".

DO @1:io.check i = 5

Related Keywords

DOS

DO (program command)

EXECUTE

EXECUTE

SSTEP

XSTEP

Chapter 3: Keyword Details

ENABLE

Monitor command that turns ON one or more system switches.

Syntax

ENABLE switch, ..., switch

Usage Considerations

The ENABLE monitor command can be used when a program is executing.

If a specified switch accepts an index qualifier and the index is 0 or omitted with
or without the brackets, all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned ON.

The name can be abbreviated to the minimum length that
uniquely identifies the switch. For example, the MESSAGES
switch can be referred to with "ME", because there is no other
switch name that begins with the letters "ME".

Details

System switches control various aspects of the operation of the eV+ system.
When the high-power enable operation is issued, all robots are checked for out-of-
range errors. A message is displayed on the Monitor Window for each robot in
error. Refer to the eV+3 User's Manual (Cat. No. I651) for available system switches
and their functions.

When a switch is turned ON, the feature it controls is functional and available
for use. Turning a switch OFF with the DISABLE monitor command or program
command makes the associated feature not functional or available for use.

NOTE: The system switches are shared by all the program tasks.
Consideration should be exercised when multiple tasks are dis-
abling and enabling switches, otherwise the switches may not be
set correctly for one or more of the tasks.

Disabling the DRY.RUN switch does not have effect until the next
EXECUTE monitor command or program command is processed
for task 0, an ATTACH program command is executed for the
robot, or a CALIBRATE monitor command or program command is
processed.

The SWITCH monitor command or the SWITCH function can be used to determ-
ine the status of a switch at any time.

22353-000 Rev. B eV+3 Keyword Reference Manual 275

276 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Example

The following example will turn ON the MESSAGES system switch.

ENABLE MESSAGES

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

Chapter 3: Keyword Details

ESTOP

Monitor command that stops the robot in the same manner as if an emergency
stop signal was received.

Syntax

ESTOP robot_num

Parameters

robot_num Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, the operation for all robots are
altered. Otherwise, only the operation for the specified robot is
affected.

Details

This command immediately initiates an emergency-stop, power-down sequence.
Depending on the system configuration, this may or may not include a controlled
stop before engaging the brakes and de-asserting high power.

No error will be generated if the specified robot_num is not connected.

Example

The following example initiates an emergency-stop, power down sequence for
robot 2.

ESTOP 2

Related Keywords

ABORT (monitor command)

ABORT (program command)

BRAKE

ESTOP (program command)

PANIC (monitor command)

PANIC (program command)

STATE

22353-000 Rev. B eV+3 Keyword Reference Manual 277

278 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

EXECUTE

Monitor command that begins execution of a control program.

Syntax

EXECUTE /C task program(param_list), cycles, step

Usage Considerations

No program can already be active as the specified program task.

Parameters

/C Optional qualifier that conditionally attaches the selected
robot. The qualifier has an effect only when starting the
execution of task 0.

task Optional integer specifying which program task is to be
activated.

program Optional name of the program to be executed. If the
name is omitted, the last program name specified in an
EXECUTE monitor command, program command, or
PRIME monitor command for the selected task is used.

!
WARNING: Entering an EXECUTE
command with no program specified
could result in unexpected motion of
the robot, since the previous program
is executed again.

param_list Optional list of constants, variables, or expressions sep-
arated by commas that must correspond in type and num-
ber to the arguments in the .PROGRAM statement for the
program specified. If no arguments are required by the
program, the list is blank and the parentheses may be
omitted.

Program parameters may be omitted as desired using
commas to skip omitted parameters. No commas are
required if parameters are omitted at the end of the list.
Omitted parameters are passed to the called program as
"undefined" and can be detected with the DEFINED func-
tion.

The parameters are evaluated in the context of the new
task that is started as described below.

Chapter 3: Keyword Details

cycles Optional real value, variable, or expression interpreted as
an integer that specifies the number of program exe-
cution cycles to be performed. If omitted, the cycle count
is assumed to be 1. For unlimited cycles, specify any neg-
ative value. The maximum loop count value allowed is
32767.

step Optional real value, variable, or expression interpreted as
an integer that specifies the step at which program exe-
cution is to begin. If omitted, program execution begins
at the first executable statement in the program (after
the initial blank and comment lines and all the AUTO,
GLOBAL, and LOCAL statements).

Details

This command initiates execution of the specified control program. The program
will be executed the number of times specified with the cycles parameter, starting
at the specified program step. If no program is specified, the system reexecutes
the last program executed by the selected program task.

NOTE: A program can initiate execution of other related programs
with the EXECUTE program command. After a program initiates
execution of another program, the initiating program can use the
STATUS and ERROR functions to monitor the status of the other
program.

If the task number is not specified, the EXECUTE command accesses task num-
ber 0.

The optional /C qualifier has an effect only when starting execution of task 0.
When /C is not specified, an EXECUTE command for task 0 fails if the robot can-
not be attached. Attachment requires that the robot is calibrated and that arm
power is enabled or that the DRY.RUN system switch is enabled. When /C is spe-
cified, an EXECUTE command for task 0 attempts to attach the robot but allows
execution to continue without any indication of error if the robot cannot be
attached.

Certain default conditions are assumed whenever program execution is initiated.
This is equivalent to the following program commands.

CPON ALWAYS
DURATION 0 ALWAYS
FINE 100 ALWAYS
LOCK 0
MULTIPLE ALWAYS
NULL ALWAYS
OVERLAP ALWAYS
SPEED 100,100 ALWAYS
SELECT ROBOT = 1

The robot configuration is saved for subsequent motions.

22353-000 Rev. B eV+3 Keyword Reference Manual 279

280 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

An execution cycle is terminated when a STOP program command is executed, a
RETURN program command is executed in the top-level program, or the last
defined step of the program is encountered. The value of can range from -32768
to 32767. The program is executed one time if cycles is omitted or has the value 0
or 1. Any negative value for cycles causes the program to be executed con-
tinuously until a HALT program command is executed, an error occurs, or the
user (or another program) aborts execution of the program.

NOTE: Each time an execution cycle is initiated, the execution
parameters are reset to their default values. This includes motion
speed, robot configuration, and servo modes. The robot currently
selected is not changed.

If step is specified, the program begins execution at that step. Subsequent cycles
always begin at the first executable step of the program.

Examples

The follwoing example initiates execution (as task 0) of the program named
"assembly" with execution to continue indefinitely until execution is aborted, a
HALT program command is executed, or a run-time error occurs.

EXECUTE assembly,-1

The following example initiates execution with program task 2, of the program
named "test". The parameter values 1 and 2 are passed to the program.

EXECUTE 2 test(1,2)

The following example initiates execution of the last program executed by pro-
gram task 0 or by the current debug task. No parameters are passed to the pro-
gram.

EXECUTE

Related Keywords

ABORT

ABORT (program command)

CALL

CYCLE.END (monitor command)

CYCLE.END (program command)

EXECUTE (program command)

KILL (monitor command)

KILL (program command)

PRIME

PROCEED

RETRY (monitor command)

Chapter 3: Keyword Details

SSTEP

STATUS

STATE

XSTEP

22353-000 Rev. B eV+3 Keyword Reference Manual 281

282 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

FCOPY

Monitor command that copies the information in an existing disk file to a new
disk file.

Syntax

FCOPY new_file = old_file

Parameters

new_file File specification for the new disk file to be created. If the
period (".") and filename extension are omitted, the
default is a blank extension. The current default device,
unit, and directory path are considered as appropriate.
Refer to the DEFAULT command for more information.

old_file Specification of an existing disk file. If the period (".") and
filename extension are omitted, the default is a blank
extension. The current default device, unit, and directory
path are considered as appropriate.

Details

If the new file already exists or the old file does not exist, an error is reported and
no copying takes place. You cannot overwrite an existing file. The existing file
must first be deleted with an FDELETE command.

If the file to be copied has the read-only attribute, the new file will also have that
attribute. Files with the protected attribute cannot be copied. Refer to
FDIRECTORY for a description of file protection attributes.

When a file is copied, the file creation date and time are preserved along with the
standard file attributes. The only attribute that is affected is the archived bit,
which is cleared to indicate that the file is not archived.

In general, a file specification consists of the following six elements.

1. An optional physical device (for example, DISK>)

2. An optional disk unit (for example, D:)

3. An optional directory path (for example, DEMO\)

4. A file name (for example, NEWFILE)

5. A period character (".")

6. A file extension (for example, V2)

Chapter 3: Keyword Details

Example

The following example creates a file named "newfile.v2" on disk device "D" that
is an exact copy of the existing file named "oldfile.v2" on disk device "D".

FCOPY D:\newfile.v2 = D:\oldfile.v2

Related Keywords

COPY

DEFAULT

FCOPY (program command)

FRENAME

22353-000 Rev. B eV+3 Keyword Reference Manual 283

284 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

FDELETE

Monitor command that deletes one or more disk files matching the given file spe-
cification.

Syntax

FDELETE file_spec

Usage Considerations

If a file is deleted, the information in it cannot be recovered.

This command can also delete subdirectory files. Subdirectory files can also be
deleted with the FDIRECTORY command.

Parameter

file_spec File specification for the file(s) to be deleted. This may
contain an optional physical device, an optional disk
unit, and an optional directory path. A file name and
a file extension must be specified. The file name or
extension may contain wildcard matching characters
(see below).

The current default disk unit and directory path are
considered as appropriate. Refer to the DEFAULT
command.

If the file specification does not include a period and
a file extension, a blank name extension is assumed.

Details

Wildcard characters (asterisks, "*") can be used in file names and extensions. A
wildcard character within a name or extension indicates that any character
should be accepted in that position. A wildcard character at the end of a name or
extension indicates that any trailing characters are acceptable.

All files that match a wildcard specification will be deleted. When using the wild-
card feature, it is a good idea to issue an FDIRECTORY command with the same
file specification first. After verifying that the files listed are the ones you intend
to delete, you can issue an FDELETE command with the same file specification.

Examples

The following examples will require the user to respond "Y" to the verification
prompt.

The following example deletes the disk file named "f3.lc" from the default device.

Chapter 3: Keyword Details

FDELETE f3.lc

The following example deletes all disk files with the extension "V2" from disk
"D".

FDELETE D:*.v2

The following example deletes all disk files with a file name starting with the let-
ters "abc" and file extension starting with the letter "b" from disk "A".

FDELETE A:abc*.b*

Related Keywords

DEFAULT

DELETE

FDELETE

FDIRECTORY

22353-000 Rev. B eV+3 Keyword Reference Manual 285

286 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

FDIRECTORY

Monitor command that displays information about the files on a disk and the
amount of space remaining for storage as well as creates and delete sub-
directories on disks.

Syntax

FDIRECTORY /qualifier file_spec

Usage Considerations

When the parameter /qualifier is specified, no space is allowed between the
keyword and the slash (/).

Subdirectories can be nested to a maximum depth of 16. The total length of a dir-
ectory path specification cannot exceed 80 characters including any defaults.

Subdirectories cannot be deleted if they contain files or if they are being accessed
(for example, after an FOPEND operation).

Parameters

/qualifier Optional qualifier "/C" or "/D", which specifies that a sub-
directory is to be created or deleted, respectively. If omitted,
a directory listing is generated.

file_spec Optional file specification string that selects the file(s) to be
displayed, or the subdirectory to be created or deleted.

If a directory is being displayed, the file specification may con-
tain a physical device, a disk unit, a directory path, a file
name, and a file extension. The file name or extension can be
omitted or can contain wildcardmatching characters (see
item 6 under details below).

If a subdirectory is being created or deleted, the file name
and extension must be omitted. A directory must be spe-
cified, and it must be terminated with a "\" character.

For either function of the command, the default directory
specification (set with the DEFAULTmonitor command) is
used to supply any missing portion of the file specification.

Details

The directory information for the entire default directory is displayed if no file
specification or qualifier is entered. The optional file specification can be used to
specify the physical device, disk drive, and directory path, and to select the files
to be displayed.

Chapter 3: Keyword Details

When displaying directory information, the command initially displays the dir-
ectory path used, including any portion obtained from the default directory spe-
cification. Then the following information is displayed for each file that satisfies
the given file specification.

l The file name

l The file extension

l The number of kilobytes occupied by the file

l Codes for any special attributes for the file

l The date and time the file was written (this may not be present)

The display can be aborted by typing CTRL+C at the Monitor Window.

The qualifier "/C" (create) or "/D" (delete) can be appended to the keyword to cre-
ate or delete a subdirectory . The specific subdirectory to be considered is the last
subdirectory that appears in the directory specification resulting from a com-
bination of the current default and the input on the command line. The user is
asked for confirmation when deleting a subdirectory.

NOTE: When creating and deleting subdirectories, all the inter-
mediate subdirectories in the directory specification must already
exist. They are not created or deleted. Subdirectories cannot be
deleted if they contain any disk files.

IMPORTANT: The statement "FDELETE *.*" can be used to delete
all files in a subdirectory. Use the DEFAULT command to make
sure you are in the correct subdirectory before issuing this com-
mand.

A complete file specification consists of the following elements.

1. An optional physical device name followed by a ">" character. An accept-
able device name is "DISK" which can be abbreviated to "D".

The ">" character must not be entered if the physical device is not
specified.

2. An optional disk unit designation followed by a colon (":"). If no disk unit
is specified, the current default disk is assumed. For normal eV+ disk files,
the unit is the letter name of the disk drive of interest such as "A" or "C".

A colon (":") must terminate the unit if it is specified.

3. An optional directory path which specifies the subdirectory of interest.
This parameter should contain file names and backslash (\) characters.

A leading slash (\) specifies that the directory path starts at the top-
level directory. Any default path currently defined is not used. A dir-
ectory path specified as a single slash (\) character indicates that
the top-level directory is to be accessed.

22353-000 Rev. B eV+3 Keyword Reference Manual 287

288 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

The absence of a leading slash (\) usually indicates that the path is
to be appended to the current default path. I the unit specified is dif-
ferent from the current default unit, the directory path is assumed to
start at the top-level directory-even if no leading slash (\) is spe-
cified.

4. An optional file name with one to eight characters.

5. A period character (.).

NOTE: This can be omitted if no extension is entered.
Omitting the period is equivalent to specifying "*" for
the file extension.

6. An optional file extension with up to three characters.

File names and extensions can include wildcard characters (*). A wildcard char-
acter within a file name or extension indicates that any character should be accep-
ted in that position. A wildcard character at the end of a file name or extension
indicates that any trailing characters are acceptable. Wildcard characters cannot
be used in specifications of directory paths.

Disk files can have special attributes to restrict their use. The attributes listed
below are used with eV+ program packages. When an attribute has been applied
to a file, the corresponding letter is displayed by the FDIRECTORY command.

P Protected file.

The file can be loaded into the system memory and the pro-
grams contained in the file can be executed. The programs can-
not be edited, displayed, or traced during execution. The
programs cannot be stored from memory onto a disk.

Protected files cannot be copied from one disk to another with
the FCOPYmonitor command nor can they be displayedwith
the FLISTmonitor command or accessed by application pro-
grams.

R Read-only file.

The file can be loaded into the system memory and the pro-
grams contained in the file can be executed and displayed. The
programs cannot be edited or stored from memory onto a disk.

Read-only files can be copied from one disk to another with the
FCOPYmonitor command and they can be displayedwith the
FLISTmonitor command. Application programs cannot over-
write them.

Examples

The following example will display directory information for all the files on the
default disk in the current default directory.

Chapter 3: Keyword Details

FDIRECTORY

The following example will display information for all the files with the name
"demo" in subdirectory "v1" on disk "A".

FDIRECTORY A:\v1\demo

The following example will display all the files in the default directory that have
three-character names beginning with "f" and ending with "n".

FDIRECTORY f*n

The following example will display all the files in the default directory with
names beginning with "f".

FDIRECTORY f*

The following example will display all the files in the default directory with the
extension "lc".

FDIRECTORY .lc

The following example will display all the files with the extension "v2" in the
top-level directory on the default disk.

FDIRECTORY \.v2

The following example will create subdirectory "v1" in the top-level directory on
disk "C".

FDIRECTORY/C C:\v1\

The following example will create subdirectory "t" within subdirectory "v1" on
disk "C".

FDIRECTORY/C C:\v1\t\

The following example will delete subdirectory "t" from the current default dir-
ectory path on disk "A" (or from the top-level directory if the current default unit
is not "A").

FDIRECTORY/D A:t\

Related Keywords

FCOPY

FLIST

FDELETE

FOPEND

22353-000 Rev. B eV+3 Keyword Reference Manual 289

290 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

DEFAULT

Chapter 3: Keyword Details

FLIST

Monitor command that lists the contents of the specified disk file on the Monitor
Window.

Syntax

FLIST file_spec

Usage Considerations

To abort the listing operation, press CTRL+C.

The listing operation does not affect programs and data in the system memory.

Parameter

file_spec File specification for the file(s) to be listed. This may contain
an optional physical device, an optional disk unit, an
optional directory path, a file name, and an optional file
extension.

The current default device, unit, and directory path are con-
sidered as appropriate. Refer to the DEFAULT command for
more information.

Details

This command lists the contents of any disk file on the Monitor Window that
contains standard ASCII text. This command is useful for examining an eV+
application program stored on the disk without loading it into memory. All disk
files generated by the eV+ "STORE_" commands can be read using this com-
mand.

Disk files with the protected attribute cannot be listed. Protected files are indic-
ated by a "P" in the output from the FDIRECTORY command.

Example

The following example lists the contents of the disk file "test.v2" on the Monitor
Window.

FLIST test.v2

Related Keywords

DEFAULT

FDIRECTORY

LISTP

22353-000 Rev. B eV+3 Keyword Reference Manual 291

292 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

FREE

Monitor command that displays the percentage of available system memory not
currently in use.

Syntax

FREE

Details

This command displays information about the status of system memory usage.
This information provides the percentage of the memory available for application
programs and variables that is not currently utilized.

The information returned from the FREE command appears as follows where
"nn.nn" represents the percentage value.

% unused program memory = nn.nn

All system program memory that does not contain eV+ system software is avail-
able to store application programs and data. If vision or servo tasks are running
on the CPU, their programs are considered program memory.

Some operations may result in the error message, "Not enough storage area" even
though the FREE operation indicates that a small percentage of program memory
is available. This can happen because the unused memory is fragmented into
pieces that are too small to store application information. If this happens, store
the entire contents of memory onto disk, ZERO memory, and reload your pro-
grams and variables from disk.

If you receive any other error messages, memory may be corrupted. Save your
programs and issue another FREE command. If the error persists, restart your
controller. If the error persists after a restart, contact your local Omron Robotics
and Safety Technologies, Inc. representative.

Additional Information: Refer to the eV+3 User's Manual (Cat. No.
I651) for error information.

Example

The following example will return the percentage of available system memory
not currently in use.

FREE

The following information will be returned (as an example).

% unused program memory = 67.03

Related Keywords

FREE

ZERO

Chapter 3: Keyword Details

FRENAME

Monitor command that changes the name of a disk file.

Syntax

FRENAME new_file = old_file

Parameters

new_file New name of the disk file.

If it is necessary to locate the file, this parameter can
include an optional physical device, an optional disk
unit, and an optional directory path in addition to the file
name and extension.

The current default device, unit, and directory path are
considered as appropriate (refer to the DEFAULT com-
mand for more information). An error will occur if this
name is already in use.

old_file Name of the file that is to be renamed.

If the file does not exist, an error will occur. No device,
disk unit, or directory path may be specified.

Details

Only the name of the file is changed. The file contents and size are not affected.

The disk unit (if specified) must be on the left as shown in the example below.

Example

The following example changes the name of the existing file "data.v2" on disk
"D" to the name "parts.v2".

FRENAME D:\parts.v2 = data.v2

Related Keywords

DEFAULT

FCOPY

RENAME

22353-000 Rev. B eV+3 Keyword Reference Manual 293

294 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

FSET

Monitor command that sets or modifies attributes of a network device.

Syntax

FSET device attribute_list

Parameters

device Name of the physical device whose attributes
are to be changed.

The name can be abbreviated. Refer to the
ATTACH program command for a description of
unit numbers and names.

attribute_list List of keywords and arguments which specify
attributes for this device.

Refer to the description of the FSET program
command for detailed information on valid
keywords.

Details

Using FSET with TCP

You may define new nodes on the network using the FSET command to access
the TCP device.

You can use the attributes listed below when accessing this device with the
FSET command.

l /ADDRESS

IP Address

l /NODE

Node name

Examples

User the following example to define a new network node called "SERVER2"
with the IP address 192.9.200.22.

fset tcp /node 'SERVER2' /address 192 9 200 22

Related Keywords

ATTACH

FSET (program command)

Chapter 3: Keyword Details

HERE

Monitor command that defines the value of a transformation or precision-point
variable to be equal to the current robot location.

Syntax

HERE @task:program loc_variable

Usage Considerations

If no task is specified, the HERE command returns information for the robot selec-
ted by the eV+ monitor (with the SELECT monitor command). If a task is spe-
cified, the command returns the location of the robot selected by that task (with
the SELECT program command).

If the eV+ system is not configured to control a robot, use of the HERE command
will cause an error.

Parameters

@task:program These optional parameters specify the context for the loc-
ation variable. The location variable will be treated as
though it is referenced from the specified context. If no
context is specified, the location variable will be con-
sidered global.

loc_variable Transformation, precision point, or a compound trans-
formation that ends with a transformation variable.

Details

This command defines the value of a transformation or precision-point variable
to be equal to the current robot location.

Normally, the robot location is determined by reading the instantaneous values
of the joint encoders. If the robot has either backlash or linearity compensation
enabled, the commanded robot location is used instead..

If a compound transformation is specified, only the rightmost element of the com-
pound transformation will be given a value by this command. An error message
results if any other transformation in the compound transformation is not
already defined.

Examples

The following example defines the transformation "place" to be equal to the cur-
rent robot location.

HERE place

The following example assigns the current location of the robot to the precision
point "#pick", which is treated as a local variable in the program "test".

22353-000 Rev. B eV+3 Keyword Reference Manual 295

296 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

HERE @test #pick

Related Keywords

HERE (program command)

HERE (transformation function)

SELECT

SELECT (real-valued function)

WHERE

Chapter 3: Keyword Details

ID

Monitor command that displays identity information about components of the
system.

Syntax

ID

Usage Considerations

If this command is issued when there is no robot connected, the robot section is
not displayed.

Details

The option words contain coded information about the system (formatted as hexa-
decimal values). This information is useful to support personnel when
troubleshooting the system.

If a user-defined startup message has been defined, that message is displayed in
the Monitor Window when an ID monitor command is issued.

Use the example below to understand the information that is returned when the
ID monitor command is issued.

Software: 3.0 87-1000 (Edit C8, 14-Jun-2019, Production Release)
Controller: 000-0000000

eV+ Emulator
Security ID: 0000-0000-0000
Robot 1: 571-0 1000-0-0 6

Adept eCobra 800 Robot (Professional).

The software information returned is described below.

Software: <version>.<revision> <opt1>-<opt2> (<ID message>)

version the eV+ version number, which is the same value that
is returned by the real-valued function statement ID
(3).

revision the eV+ revision number, which is the same value
that is returned by the real-valued function statement
ID(4).

opt1 the system option word 1, which is the same value
that is returned by the real-valued function statement
ID(5).

opt2 the system option word 2, which is the same value
that is returned by the real-valued function statement
ID(6).

ID message the identifying string, which is the same value that is
returned by the real-valued function statement $ID(-
1).

22353-000 Rev. B eV+3 Keyword Reference Manual 297

298 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

The controller information returned is described below.

Controller: <model>-<serial><revision> <opt>

model the controller model number, which is the same value
that is returned by the function ID(1).

serial the controller serial number, which is the same value
that is returned by the function ID(2).

revision the controller hardware revision/ID, displayed as a
hexadecimal value. (This value is returned by the func-
tion ID(10).)

options the controller option word, which is the same value
that is returned by the function ID(8).

The Security ID information returned is described below.

SecurityID: <aaaa-bbbb-cccc>

aaaa-bbbb-cccc the 12-character hexadecimal card security code
used to associate option licenses with specific con-
trollers.

The Processor information returned is described below.

Processor n: <version>.<revision> <type>-<opt> <Memory>Mb

n the CPU number, which is the same value that is
returned by the function ID(1,4, n).

version the CPU hardware version code, which is the same
value that is returned by the function ID(3,4, n).

revision the CPU hardware revision code, which is the same
value that is returned by the function ID(4,4, n).

type the CPU type, which is the same value that is returned
by the function ID(5,4, n).

opt indicates active system software components on this
processor, which is the value that is returned by ID
(6,4, n).
Bit 1 = eV+
Bit 2 = Vision
Bit 3 = Servo

Memory the RAM size, in megabytes, which is the same value
that is returned by the expression ID(7,4, n) / 1024.

Robot n: <model>-<serial> <opt1-opt2> <cat> <module> <module name>

model the robot model number, which is the value that is
returned by the function ID(1,10+n).

Chapter 3: Keyword Details

serial the robot serial number, which is the value that is
returned by the function ID(2,10+n).

opt1 robot option word 1, which is the value that is
returned by the function ID(8,10+n).

opt2 robot option word 2, which is the value that is
returned by the function ID(11,10+n).

cat a single digit indicating the robot safety level that is
returned by the function ID(13,10+n):

module
module name

These values are the kinematic device module number
[returned by the function ID(5,10+n)] and name (which is
not available from a function).

Example

The following information is displayed in the Monitor Window when the ID
monitor command is issued under the following conditions.

l The system is operating in Emulation Mode.
l There is one eCobra 800 configured in the system.
l The eV+ software version is 3 and the revision is 0.
l System Option 1 = 87^H (10000111)

Software: 3.0 87-1000 (Edit C8, 14-Jun-2019, Production Release)
Controller: 000-0000000

eV+ Emulator
Security ID: 0000-0000-0000
Robot 1: 571-0 1000-0-0 6

Adept eCobra 800 Robot (Professional).

Related Keywords

ID (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 299

300 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

IO

Monitor command that displays the current states of external digital input / out-
put signals or internal software signals.

Syntax

IO signal_group

Usage Considerations

This monitor command will return the value of signals that are mapped in the
host and returns "-" for signals that are not mapped.

Parameter

signal_group Optional integer value that selects which digital signals are to
be displayed.

Details

The IO command can be used to monitor the system digital signals. If no signal
group is specified, all the input and output signals are displayed.

If a signal group is specified, the value must be a value from 0 to 3. Displaying a
single group is useful when the system has many signals installed.

Signal group Signals displayed

0 Digital output signals

1 Digital input signals

2 System software signals

3 The 3000 series of digital output
signals

4 Signals mapped in the Host

A "1" is displayed for each signal that is ON, a "0" is displayed for each signal
that is OFF, and a "-" is displayed for each signal that does not have a hardware
configuration.

Example

The following example is a sample display from an IO 0 command.

0032-0001 ---- ---- ---- ---- ---- ---- 0000 0110
0064-0033 0000 0000 0000 0000 0100 0000 0000 0000

This display indicates that signals 2, 3, and 47 are ON. All others are OFF or not
installed.

Chapter 3: Keyword Details

Related Keywords

RESET

SIG

SIG.INS

SIGNAL (monitor command)

SINGLE (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 301

302 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

JOG

Monitor command that moves the specified joint of the robot, or moves the robot
tool along the specified Cartesian axis. Each time JOG is executed, the robot
moves for up to 300 ms.

Syntax

JOG (status) robot, mode, axis, speed, location, appro_dist

Usage Considerations

Each time JOG is executed, the robot moves for the time specified with
the JOG.TIME system parameter

The specified robot cannot be attached by any task when using a mode other
than COMP. Otherwise, the error message *Robot interlocked* is generated.

After the robot is moved with the JOG command, the system is left in MANUAL
mode (i.e., as though a manual mode had been selected on the pendant). JOG
mode 5 (or the pendant) can be used to restore COMP mode. Otherwise, an error
COMP mode disabled will be returned when a task attempts to attach the robot.

If a joint is out of range, the JOG command can be used to return the joint back
into range. Refer to the details section below for more information.

Parameters

status An optional status variable (returns 1 for success, otherwise
contains an eV+ error code)

robot Specifies the robot number.

mode Specifies the jog mode, as follows:

-1 Keep-alive mode. Continues the previous command
for the time specified with the JOG.TIME system para-
meter.

1 Free joint mode. A positive speedwill put the specified
joint(s) in Free mode. A negative speedwill put the
specified joint(s) out of Free mode.

2 Individual joint control.
3World coordinates control.
4 Tool coordinates control.
5 Restore COMPmode.
6 Reserved for future use.
7 Jogs towards the specified location using the specified
speed.

8 Jog toward alignment of the robot tool-Z axis with the
nearest World axis.

9 Cartesian control relative to a frame defined by the
specified location.

Chapter 3: Keyword Details

axis Specifies the joint number or Cartesian coordinate (X=1, Y=2,
...), depending on the specified jog mode for the desired
motion (see above).

This parameter is ignored for modes 7 and 8, but a value
must always be specified.

speed Specifies the speed and direction of the motion. This is inter-
preted as a percentage of the speed in manual mode. Values
above 100 are interpreted as 100%, values below -100 are
interpreted as -100%.

If Free mode is specified, a positive speed will put the given
joint in free mode and a negative speed will put the joint out
of free mode.

location Optional transformation, precision point, location function, or
compound transformation that specifies the destination to
which the robot is to move. This parameter is ignored and can
be omitted for all modes except 7 and 9.

appro_
dist

Optional real-valued expression that specifies the distance
along the robot tool Z axis between the specified location and
the actual desired destination.

A positive distance sets the tool back (negative tool-Z) from
the specified location. A negative distance offsets the tool for-
ward (positive tool-Z). This parameter is used only for mode
7.

Details

When the status variable is supplied and there is an error, the JOG command
does not directly return an error. The error is simply returned in the status vari-
able.

Each time the JOG command is executed, the robot moves for the time specified
with the JOG.TIME system parameter. Another JOG can be executed before the
previous motion is completed. For extended smooth motion, subsequent JOG com-
mands should be executed within the JOG.TIME value of the previous JOG com-
mand. The keep-alive mode can be used for that purpose. The keep-alive mode
will have no effect after the timeout of the JOG.TIME value. It has an effect only
before the robot stops.

The following error conditions can be reported when the command is processed:

l Mode 1: The error *Illegal joint number* (-609) is returned if FREE mode is
not permitted for the specified joint.

l Mode 2: The error *Joint control of robot not possible* (-938) is returned if
the robot does not support joint control.

l Modes 3, 4, 8, 9: The error *Cartesian control of robot not possible* (-635) is

22353-000 Rev. B eV+3 Keyword Reference Manual 303

304 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

returned if the robot does not support Cartesian control.

l Mode 7: If the location cannot be reached, the motion stops at the limit of
possible motion and the error *Location out of range* (-610) is returned
when the motion stops. If any other motion error occurs during the motion
(e.g., an obstacle is encountered), the associated error is reported.

l Modes 7 and 9: The error *Missing argument* (-454) is returned if a loc-
ation is not specified. For mode 7, a straight-line motion is performed
toward the specified location if the location is specified with a trans-
formation. A joint-interpolated motion is performed if the location is spe-
cified with a precision point. However, if the robot does not permit the
type of motion associated with how the location is specified (e.g., the robot
does not permit joint-interpolated motion), the motion is performed in the
manner that is permitted by the robot.

When a robot joint is out of range, it can be driven into range in either of these
methods:

l Enter MAN mode on the pendant and manually control the joint.

l Put the pendant in COMP mode and use the JOG command to move the
joint back into range (JOG is allowed only in pendant COMP mode).

NOTE: Use of COMP mode when a joint is out of range is
very restricted. All motion commands (except JOG) return a
Position out of range error in that situation. In addition,
JOG can move the joint only in the direction that moves the
joint back into range.

Additional Information: Refer to the eV+3 User's Manual
(Cat. No. I651) for error information.

Examples

The following example will jog joint 3 in a negative direction in joint mode.

JOG 1, 2, 3, -10

The following example will jog the X-axis in World mode.

JOG 1, 3, 1, 10

The following example will jog the Y-axis in Tool mode.

JOG 1, 4, 2, 10

The following example will jog towards the location defined as "loc1".

JOG 1, 7, 1, 10,loc1

The following example will jog to a position 50 mm above the location defined
as "loc1".

JOG 1, 7, 1, 10, loc1, 50

Chapter 3: Keyword Details

Related Keywords

DRIVE

JMOVE

JOG (program command)

JOG.TIME

MOVE (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 305

306 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

KILL

Monitor command that clears a program execution stack and detaches any I/O
devices that are attached.

Syntax

KILL task

Usage Considerations

The KILL monitor command cannot be used while the specified program task is
executing.

The KILL monitor command has no effect if the specified task execution stack is
empty.

Parameter

task Optional real value, variable, or expression interpreted as
an integer that specifies which program task is to be
cleared.

Details

This operation clears the selected program execution stack, closes any open files,
and detaches any I/O devices that may have been left attached by abnormal pro-
gram termination.

This situation can occur if a program executes a PAUSE program command or is
terminated by an ABORT monitor command or program command, or an error
condition while an I/O device is attached or a file is open. If a limited access I/O
device is left attached, no other program task can use that device until it is
detached.

When the task number is not specified, the KILL command accesses task number
0.

Example

The following example will remove any program from task 10 if the program is
not executing.

KILL 10

Related Keywords

ABORT

EXECUTE

STATUS

Chapter 3: Keyword Details

LIST

Monitor command that displays the value of the expression.

Syntax
LIST @task:program expression, ..., expression

Parameters

@task:program These optional parameters specify the context for any
location variables specified. The location variables are
treated as though they are referenced from the spe-
cified context. If no context is specified, the location vari-
ables are considered global. Refer to the eV+3
User's Manual (Cat. No. I651) for more information
about variable context.

If global context is used and the BASE , DEST , HERE , or
TOOL keywords are referenced, the functions return
information for the robot selected by the eV+ monitor
(refer to the SELECTmonitor command for more inform-
ation).

expression Optional real-valued constant, function, variable, or
expression whose value is to be displayed.

Details

This command allows expressions of any type to be displayed. Unlike the LISTx
commands, it does not display multiple array elements if the right-hand index is
left blank.

If an error occurs, a line containing the error message is displayed for the cor-
responding expression.

If no error occurs, the value of the expression is displayed in the following format
where type is one of the data types shown below, and the value format depends
on the type.

type = value

Data
Type Value

REAL A single numeric value

TRANS Six numeric values for X, Y, Z, y, p, r

PPOINT N numeric values for J1 to Jn of the precision point

STRING A quoted string

22353-000 Rev. B eV+3 Keyword Reference Manual 307

308 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Data
Type Value

UNKNOWN An error string that begins with *

Related Keywords

FLIST (monitor command)

LISTL (monitor command)

LISTP

LISTR (monitor command)

LISTS (monitor command)

SELECT (monitor command)

SELECT (real-valued function)

SELECT

Chapter 3: Keyword Details

LISTL

Monitor command that displays the values of the listed locations.

Syntax

LISTL /N @task:program location, ..., location

Parameters

/N If /N is specified, only the names of the variables are dis-
played and not the values. Only a single line is displayed
for each array with empty brackets to show the array
dimensions.

If the argument list contains a location parameter, the
/N is ignored.

@task:program These optional parameters specify the context for any
location variables specified. The location variables are
treated as though they are referenced from the spe-
cified context. If no context is specified, the location vari-
ables are considered global. Refer to the eV+3
User's Manual (Cat. No. I651) for more information
about variable context.

If global context is used and the BASE , DEST , HERE , or
TOOL functions are referenced, the functions return
information for the robot selected by the eV+ monitor
(refer to the SELECTmonitor command for more inform-
ation).

location Optional transformation, precision point, location func-
tion, or compound transformation whose value is to be
displayed.

Details

If no parameters are specified, the values of all global location variables are dis-
played in alphabetical order. If a program context is specified but no variables
are listed, all the location variables local to that program are displayed.

Each location parameter can include any number of wildcard characters and
each wildcard can match 0, 1, or multiple characters.

If an array element is specified, that element is displayed. The entire array is dis-
played if an array name is specified without explicit index(es). If one or more of
the right-most indexes of a multiple-dimension array are omitted, all the ele-
ments defined for those indexes are displayed. For example, the statement
"LISTL a[3,2,]" displays the elements a[3,2,0] to a[3,2,last].

22353-000 Rev. B eV+3 Keyword Reference Manual 309

310 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Examples

The following example will display the values of transformation "pick", com-
pound transformation "hold:part", and the current tool transformation on the
Monitor Window.

LISTL pick,hold:part,TOOL

The following example will display the values of all location variables defined as
local to program "test".

LISTL @test

Related Keywords

LISTL (monitor command)

LISTP

LISTR (monitor command)

LISTS (monitor command)

SELECT (monitor command)

SELECT (real-valued function)

Chapter 3: Keyword Details

LISTP

Monitor command that displays all the steps of the listed user programs.

Syntax

LISTP program, ..., program

Usage Considerations

Protected programs cannot be displayed.

The programs must be resident in system memory.

Parameters

program Optional name of an application program to be displayed.

Details

If one or more programs are specified on the command line, those programs are
displayed on the Monitor Window. If no program names are specified, this com-
mand displays all programs in the system memory that are not protected from
access.

Additional Information: When a program reports that it is not
executable and no errors are displayed in the V+ Editor, executing
this monitor command will expose program lines with problems
by displaying a question mark (?) in the left margin.

Related Keywords

FLIST

LIST

LISTL

LISTR

LISTS

22353-000 Rev. B eV+3 Keyword Reference Manual 311

312 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

LISTR

Monitor command that displays the values of the real expressions specified.

Syntax

LISTR /N @task:program expression, ..., expression

Parameters

/N If /N is specified, only the names of the variables are dis-
played and not the values. Only a single line is displayed
for each array with empty brackets to show the array
dimensions.

If the argument list contains an expression parameter,
the /N is ignored.

@task:program These optional parameters specify the context for any
real-valued variables or task-specific functions specified.
The real-valued variables and functions are treated as
though they are referenced from the specified context.
If no context is specified, global context is used. Refer to
the eV+3 User's Manual (Cat. No. I651) for more
information about variable context.

If global context is used and the BASE , DEST , HERE , or
TOOL functions are referenced, the functions return
information for the robot selected by the eV+ monitor
(refer to the SELECTmonitor command for more inform-
ation).

expression Optional real-valued constant, function, variable, or
expression whose value is to be displayed.

Details

If no parameters are specified, the values of all global real-valued variables are
displayed. If a program context is specified, but no expressions are listed, all of
the real-valued variables local to that program are displayed.

Each expression parameter can include any number of wildcard characters and
each wildcard can match 0, 1, or multiple characters.

If an array element is specified, that element is displayed. The entire array is dis-
played if an array name is specified without explicit index(es). If one or more of
the right-most indexes of a multiple-dimension array are omitted, all the ele-
ments defined for those indexes are displayed. For example, the statement "LISTR
b[3,2,]" displays the elements b[3,2,0] to b[3,2,last]. The statment "LISTR b[, ,]" dis-
plays the entire array.

Chapter 3: Keyword Details

NOTE: Some functions return information associated with a spe-
cific eV+ program task (for example, IOSTAT and PRIORITY).
When referenced by a LISTR command, such functions return val-
ues for the program task specified by the context parameter (@task).
If no task context is specified, such functions return values for task
0.

Example

The following example displays the value of the real variable "loop.count" and
the current value of system TIMER number 2 on the Monitor Window.

LISTR loop.count, TIMER(2)

Related Keywords

LIST (monitor command)

LISTL (monitor command)

LISTP

LISTS (monitor command)

SELECT (monitor command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 313

314 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

LISTS

Monitor command that displays the values of the specified strings.

Syntax

LISTS /N @task:program string, ..., string

Parameters

/N If /N is specified, only the names of the variables are dis-
played and not the values. Only a single line is displayed
for each array without index(es), with brackets and 0 to
2 commas displayed to show the array dimensions.

The /N option has no effect on a string argument that is
specified as a string constant, function, or expression.

@task:program These optional parameters specify the context for any
string variables specified. The string variables are
treated as though they are referenced from the spe-
cified context. If no context is specified, the string vari-
ables are considered global. Refer to the eV+3
User's Manual (Cat. No. I651) for more information
about variable context.

string Optional string constant, function, variable, or expres-
sion whose value is to be displayed.

Details

If no parameters are specified, the values of all global string variables are dis-
played in alphabetical order. If a program context is specified, but no variables
are listed, all the string variables local to that program are displayed.

Each string parameter can include any number of wildcard characters and each
wildcard can match 0, 1, or multiple characters.

If an array element is specified, that element is displayed. The entire array is dis-
played if an array name is specified without explicit index(es) (for example,
"$line[]"). If one or more of the right-most indexes of a multiple-dimension array
are omitted, all the elements defined for those indexes are displayed. For
example, the command "LISTS $c[3,2,]" displays the elements $c[3,2,0] to $c
[3,2,last].

The LISTS command uses the following special methods to display certain char-
acters in string values.

l ASCII control characters (values 0 to 31 decimal) are displayed as two-
character sequences, each consisting of a circumflex character ("^", 94
decimal) followed by the character with ASCII value equal to the actual
control character plus 96 (decimal). For example, a carriage-return

Chapter 3: Keyword Details

character (13 decimal) is converted to "^m" (13 + 96 = 109, which is the
ASCII value for "m").

l A double quote character ("", 34 decimal) is displayed as "^".

l A circumflex character ("^", 94 decimal) is displayed as "^^".

l A byte with the parity bit set (high-order bit of the 8-bit byte) is not dis-
tinguished by the LISTS command. LISTS will display both $CHR
(^B11000001) and $CHR(^B01000001) as "A".

Example

The following example displays the value of the string variable "$message" and
the text of the last error message in the Monitor Window.

LISTS $message, $ERROR(ERROR(0))

Related Keywords

LIST (monitor command)

LISTL (monitor command)

LISTP

LISTR (monitor command)

SELECT (monitor command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 315

316 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

LOAD

Monitor command that loads the contents of the specified disk file into the sys-
tem memory.

Syntax

LOAD /qualifier file_spec

Usage Considerations

When a file is loaded in read-only mode, only the first program in the file is lis-
ted on the monitor screen (if /Q was not specified to suppress all program
names).

Parameters

/qualifier Optional qualifier whose possible values are shown below.
Switch Value Purpose

/Q Suppress the listing of program names to
the monitor screen when the file is
loaded.

/S Squeeze programs as they are loaded into
memory in much the same way that the
SQUEEZE utility program operates on
program files.

All in-line comments and full-line com-
ments are deleted with the exception of
full-line comments that begin with the
character sequence ";*".

/R Force all of the loaded programs to be in
read-only mode except when other con-
siderations dictate that a more secure
mode be utilized.

!
CAUTION: When a file is loaded with the /S
switch, you should also use /R to prevent oth-
ers from mistakenly editing the squeezed ver-
sion of a file and possibly overwriting the
unsqueezed version when the changes are
saved.

file_spec File specification for the disk file from which programs and
variables are to be loaded. This consists of an optional phys-
ical device, an optional disk unit, an optional directory path,
a file name, and an optional file extension.

The current default device, unit, and directory path are con-

Chapter 3: Keyword Details

sidered as appropriate. Refer to the DEFAULT command for
more information.

If no filename extension is specified, the extension ".V2" is
appended to the name given if a local disk is to be accessed.

Details

This command loads the contents of the specified disk file into the system
memory. The disk file can contain programs and/or variables, but it must have
the format produced by the eV+ STORE_ commands.

If an attempt is made to load a program that has the same name as a program
already in memory, an error message is displayed and the new program is not
loaded. The currently loaded program must be deleted with the DELETE com-
mand or memory must be zeroed with the ZERO command before a new pro-
gram of the same name can be loaded with the LOAD command.

If a location variable, real variable, or string variable already exists in memory
that has the same name as one contained in the disk file, the previous variable is
deleted and replaced by the information on the diskette without warning.

If a program is being loaded into the system and there is a program line that eV+
cannot process, an error message appears on the monitor screen and the line is
marked with a question mark. You can then use the eV+ editor to modify the pro-
gram after it is completely read into memory. This is useful, for example, when
you load a program that was composed off-line.

When a LOAD command loads programs into memory, all the programs are
entered in a program module with the same name as the first program read from
the disk file. The program module is created if it does not already exist. The pro-
grams loaded are entered into the module in the order that they are read from
disk. Refer to the description of the MODULE command for an explanation of
program modules.

The autostart feature available with eV+ systems allows you to automatically
issue a LOAD command when the robot system is powered on and eV+ is
loaded from disk. Refer to the eV+3 User's Manual (Cat. No. I651) for more
information.

If the file is in special, binary program format, the LOAD command auto-
matically applies the special manipulation the file requires.

Examples

The following example loads the contents of the file PALLET.V2 from disk D (the
SD Card).

LOAD D:pallet

The following example loads all the programs contained in file F3.PG into the
system memory.

22353-000 Rev. B eV+3 Keyword Reference Manual 317

318 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

LOAD f3.pg

Related Keywords

DEFAULT

MODULE

STORE

STOREL

STOREM

STOREP

STORER

STORES

Chapter 3: Keyword Details

MDIRECTORY

Monitor command that displays the names of all the program modules in the
system memory or the names of the programs in a specified program module.

Syntax

MDIRECTORY /M module

Parameters

/M Optional qualifier that specifies that only modified
modules or modified programs within a module are
listed.

module Optional name of a program module in memory. All
the modules in memory are listed if this parameter
is omitted. If this parameter is specified, all the pro-
grams in the named module are listed.

Details

This command can be used to obtain information about the program modules
currently defined in the system memory. Program modules are automatically cre-
ated by the LOAD command. The MODULE command can be used to create,
expand, or rearrange a program module.

When the command parameters are omitted, the MDIRECTORY command lists
the names of all program modules currently in memory.

For any module or program name that is displayed, if the copy in memory has
been modified since last being loaded or stored, an "M" appears before the pro-
gram or module name.

When the module parameter is specified, the MDIRECTORY command functions
like a DIRECTORY command, except only programs in the specified module are
listed in the sequence they follow in the module. Refer to the DIRECTORY com-
mand for details about the information displayed.

The order of programs in a module can be changed with the MODULE monitor
command.

Examples

The following example displays the names of all of the program modules in
memory.

MDIRECTORY

The following example displays the names of all of the programs in the program
module named main.package.

MDIRECTORY main.package

22353-000 Rev. B eV+3 Keyword Reference Manual 319

320 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Related Keywords

DELETEM

DIRECTORY

LOAD

MODULE

STOREM

Chapter 3: Keyword Details

MODULE

Monitor command that creates a new program module, or modifies the contents
of an existing module.

Syntax

MODULE module = program, ..., program

Parameters

module Name of a program module.

program Name of a program in memory.

Details

A program module is a group of programs that can be referred to by a single
name. The following monitor commands can be used to access program mod-
ules:

l LOAD creates a new module if necessary and enters programs in the mod-
ule as they are read from a disk file.

l DELETEM deletes all the programs contained in a module and deletes the
module.

l MDIRECTORY lists either all the modules currently in memory or all the
programs in a named module.

l MODULE either creates a new module or modifies the contents of an exist-
ing module.

l STOREM stores in a disk file all the programs in a module.

Program modules are created automatically by the LOAD monitor command
when a program file is read from disk. The MODULE command can be used to
create new program modules, or to expand or rearrange the contents of modules
already defined in the system memory.

If the specified program module does not already exist, the MODULE command
will create the module. In that case, all the listed programs will be placed in the
new module.

If the specified module does exist, the MODULE command will add the listed
programs at the end of the module. If any of the programs are already in the spe-
cified module, they will be moved to the end of the module.

Each program in memory may belong to one module at most. Whenever a pro-
gram is added to a module and the program is already in another module, the
program will be removed from its previous module.

22353-000 Rev. B eV+3 Keyword Reference Manual 321

322 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Example

If there is no program module named "system.1" in memory, the example below
will create that module and put three programs into it. If there is a program mod-
ule named "system.1" in memory, this command will add the three programs to
the module.

MODULE system.1 = main.program, subroutine.1, subroutine.2

Related Keywords

DELETEM

LOAD

MDIRECTORY

MODULE

STOREM

Chapter 3: Keyword Details

NET

Monitor command that displays status information about the network. Also dis-
plays details about the remote mounts that are currently defined in the eV+ sys-
tem.

Syntax

NET mode

Parameter

The mode parameter is an optional value that indicates what part of the status
information is to be displayed. The values for the mode parameter are described
in the table below.

NOTE: Omitting the optional mode parameter will have the same
function as specifying a 0 value.

Valu-
e Description

0 Display network status information as shown below.

.NET 0

TCP/IP: Up

FTP: Option not installed

Local IP address: 192.9.222.252
Packets transmitted: 105007
Packets received: 577717

Transmission errors: 0

Reception errors: 6

Missed packets: 0

Available TCP connections: 32

Mount Node Path
XC ASERVER C:/ADEPT/DISKS/DISK_C

1 Display additional information about errors to the output as shown
below.

.NET 1

TCP/IP: Up

FTP: Option not installed

Local IP address: 192.9.222.252

Packets transmitted: 105007

Packets received: 577875

Transmission errors: 0

Reception errors: 6

Missed packets: 0

22353-000 Rev. B eV+3 Keyword Reference Manual 323

324 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Valu-
e Description

Reception framing error: 0

Reception CRC error: 3

Reception overflow: 3

Reception buffer error: 0

Transmission late collision: 0

Transmission loss of carrier: 0

Transmission retry error: 0

Transmission buffer error/underflow: 0

Available TCP connections: 32

Mount Node Path

XC ASERVER C:/ADEPT/DISKS/DISK_C

2 Display network status and IP addresses of the defined nodes as
shown below.

.NET 2

TCP/IP: Up

FTP: Option not installed

Name IP address

ASERVER 192.9.222.252

Details

This command displays informationabout the TCP/IP protocol.

There can be any one of three network states as described in the table below.

Network State Description

Up This indicates that the network
has initialized successfully and
is running.

Option installed The software option is installed,
but the protocol is not currently
active.

Hardware not installed The Ethernet cable is not con-
nected.

If TCP/IP is in the Up state, additional information is also displayed as shown in
the following example.

Chapter 3: Keyword Details

Examples

If the TCP/IP network is in the Up state, issuing a NET command will return
information as shown in the example below (your values may be different)..

Local IP address 192.9.222.252
Packets transmitted 105007
Packets received 577717
Transmission errors 0
Reception errors 0
Missed packets 0
Available TCP Connections 32

The following additional output is displayed only if mode is specified with a
nonzero value.

Reception framing error 0
Reception CRC error 0
Reception overflow 0
Reception buffer error 0
Transmission late collision 0
Transmission loss of carrier 0
Transmission retry error 0
Transmission buffer error/underflow 0

Related Keywords

NETWORK

22353-000 Rev. B eV+3 Keyword Reference Manual 325

326 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

PANIC

Monitor command that simulates an external E-stop button press, stops all
robots immediately but does not turn OFF robot high power.

Syntax

PANIC robot_num

Parameter setting

robot_num Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, the operation for all robots are
altered. Otherwise, only the operation for the specified robot is
affected.

Details

This command performs the following actions:

l Immediately stops robot motion.

l Stops execution of the robot control program if the robot is attached and
no REACTE operation has been executed to enable program processing of
error.

Unlike pressing the emergency stop button on the manual control pendant, high
power remains enabled after a PANIC operation is processed.

Example

The following monitor command example will simulate an external E-stop but-
ton press, stop robot 2 immediately, but does not turn OFF robot high power.

PANIC 2

Related Keywords

ABORT (monitor command)

ABORT (program command)

ESTOP (monitor command)

ESTOP (program command)

PANIC (program command)

Chapter 3: Keyword Details

PARAMETER

Monitor command that sets or displays the values of system parameters.

Syntax

PARAMETER parameter[index] = value

Usage Considerations

If the equal sign and value are omitted, the system parameter is not changed and
its current value is displayed in the Monitor Window.

If no system parameter is specified, the current values of all system parameters
are displayed in the Monitor Window.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about
system parameters.

Parameters

parameter Name of the system parameter whose value is to
be displayed or modified. The namemust be spe-
cified when the equal sign and a value are included
in the command tomodify the system parameter
value. The name can be omitted when the com-
mand is being used to display system parameter
values. When specified, the system parameter
name can be abbreviated.

index For system parameters that can be qualified by an
index, this is an optional real value, variable, or
expression that specifies the specific parameter ele-
ment of interest.

value Optional real value, variable, or expression defining
the value to be assigned to the system parameter.
The equal sign must be omitted if no value is spe-
cified.

Details

If a value is specified, the specified system parameter is set to the value on the
right-hand side of the equal sign. The parameter name can be abbreviated to the
minimum length that identifies it uniquely.

The PARAMETER command can be used without any arguments to see a list of
all the system parameters available with your eV+ system. A subset of the com-
plete list can be requested by providing an abbreviation for the system parameter
name and no input value. Then, all the system parameters with names begin-
ning with the specified root will be displayed with their current values (see
examples below).

22353-000 Rev. B eV+3 Keyword Reference Manual 327

328 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

If the specified parameter accepts an index qualifier and the index is zero or omit-
ted with or without the brackets, all the elements of the parameter array are mod-
ified or displayed.

If the system parameter name is omitted but an index is specified, the values of
all parameters without indexes are displayed along with the specified element of
all parameter arrays.

Examples

The following example sets the BELT.MODE system parameter to 4.

PARAMETER BELT.MODE = 4

The following example displays the current settings of the system parameters
with names that begin with "B".

PARAMETER B

Related Keywords

BELT.MODE

NOT.CALIBRATED

PARAMETER (program command)

PARAMETER (real-valued function)

Chapter 3: Keyword Details

PING

Monitor command that tests the network connection to a node.

Syntax

PING node

Parameters

node Name or IP address of the network node with which com-
munication will be attempted. If a node name is used, it must
have been defined in the eV+ configuration file or by an
FSET monitor command keyword or program
command keyword.

Details

This command tests the network connection to an addressed node. If the node
responds, the command displays "Success". If the node does not respond within
5 seconds, the command displays "Node not reachable".

Examples

The following example will return a message of "Success" if a connection to the
node name "server2" was successful. If the connection was unsuccessful, the mes-
sage "Node not reachable" will be returned.

ping server2

The following example will return a message of "Success" if a connection to the
node with an IP address of 172.16.200.1 was successful. If the connection was
unsuccessful, the message "Node not reachable" will be returned.

ping 172.16.200.1

Related Keywords

FSET (monitor command)

FSET (program command)

NET

22353-000 Rev. B eV+3 Keyword Reference Manual 329

330 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

PRIME

Monitor command that prepares a program for execution but does not start exe-
cution.

Syntax

PRIME task program(param_list), cycles, step

Usage Considerations

PRIME resets the execution stack for the selected program execution task and can-
cels the context of any program that is paused for that task.

A PRIME command cannot be processed while the selected program task is
already active.

This command can be used only when the external Front Panel keyswitch is set
to AUTOMATIC mode.

Parameters

task Optional integer number that specifies which system pro-
gram task is to be activated.

program Optional name of the program to be executed. If the
name is omitted, the last program name specified in an
EXECUTE monitor command, program command, or
PRIME monitor command for the selected task is used.

param_list Optional list of constants, variables, or expressions sep-
arated by commas that must correspond in type and num-
ber to the arguments in the .PROGRAM statement for the
program specified. If no arguments are required by the
program, the list is blank and the parentheses may be
omitted.

Program parameters may be omitted as desired using
commas to skip omitted parameters. No commas are
required if parameters are omitted at the end of the list.
Omitted parameters are passed to the called program as
undefined and can be detected with the DEFINED func-
tion.

cycles Optional real value, variable, or expression interpreted as
an integer that specifies the number of program exe-
cution cycles to be performed. If omitted, the cycle count
is assumed to be 1. For unlimited cycles, specify any neg-
ative value. The maximum loop count value allowed is
32767.

Chapter 3: Keyword Details

step Optional real value, variable, or expression interpreted as
an integer that specifies the step at which program exe-
cution is to begin. If omitted, program execution begins at
the first executable statement in the program after the ini-
tial blank and comment lines and all the AUTO, GLOBAL,
and LOCAL statements.

Details
This command prepares a program for execution. It can be considered as being the same
as the EXECUTEmonitor command, except that PRIME does not actually start program
execution.

After a program is primed, execution can be started with the PROCEEDmonitor com-
mand.

Example

The following example will prepare the "rob.move" program on task 1.

PRIME 1 rob.move()

Related Keywords

EXECUTE (monitor command)

EXECUTE (program command)

STOREP

XSTEP

22353-000 Rev. B eV+3 Keyword Reference Manual 331

332 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

PROCEED

Monitor command that resumes execution of an application program.

Syntax

PROCEED task

Usage Considerations

A program cannot resume if it has completed execution normally or has stopped
due to a HALTprogram command.

Parameter

task Real value, variable, or expression interpreted as an
integer that specifies which program task is to be
executed. If no task number is specified, task number 0
is assumed.

Details

This command resumes execution of the specified program task at the step fol-
lowing the one where execution was halted due to a PAUSE program command,
, an ABORT monitor command, a breakpoint, single-step execution, or a runtime
error.

In addition to continuing execution of a suspended program, this command can
be used to initiate execution of a program that has been prepared for execution
with the PRIME monitor command.

If the specified task is executing and the program is at a WAIT or WAIT.EVENT
program command (for example, waiting for an external signal condition to be
satisfied), entering PROCEED in the Monitor Window has the effect of skipping
over the WAIT or WAIT.EVENT program commands.

This command has no effect if the specified task is executing and the program is
not at a WAIT or WAIT.EVENT program command.

NOTE: PROCEED differs from RETRY. If a program statement gen-
erated an error, RETRY attempts to re-execute that statement, but
PROCEED resumes execution at the statement that follows. If a
robot motion was in progress when the program stopped, RETRY
attempts to complete that motion where PROCEED advances to the
next motion.

Example

The following example will continue execution of a paused program on task 2.

PROCEED 2

Chapter 3: Keyword Details

Related Keywords

ABORT (monitor command)

ABORT (program command)

EXECUTE (monitor command)

EXECUTE (program command)

PRIME

RETRY

SSTEP

STATUS

XSTEP

22353-000 Rev. B eV+3 Keyword Reference Manual 333

334 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

RENAME

Monitor command that changes the name of a user program in memory to the
new name provided.

Syntax

RENAME new_program = old_program

Usage Considerations

RENAME can be used on any program in memory. If the program is currently
executing, an error "Program Interlocked" will be returned. If a program is
stopped, but still on the stack, the program will be removed from the stack (sim-
ilar to KILL) and renamed in memory. RENAME does not change the name of a
disk file. It changes the name of a program resident in system memory.

Parameters

new_program New name for the program.

old_program Current name of the program.

Details

If there is already a program in the system memory with the specified new name,
the RENAME operation is not performed and an error message is displayed. In
this case, you must first delete the existing program with the new name to per-
form the RENAME operation.

If the user program being renamed is currently assigned to a program module,
the program is removed from the module and assigned with the new name to
the global module.

Refer to the MODULE command for information about program modules.

Example

The following example changes the name of program "oldprog" to "newprog".

RENAME newprog=oldprog

Related Keywords

COPY

FRENAME

Chapter 3: Keyword Details

RESET

Monitor command that will turn OFF all the digital output signals.

Syntax

RESET

Usage Considerations

This monitor command has no effect on Host I/O (external) signal numbers 4001
to 4999.

The RESET program command is useful in the initialization portion of a pro-
gram to ensure that all the external output signals are in a known state.

!
WARNING: Do not issue this command
unless you are sure all output signals can be
safely turned OFF. Be particularly careful of
devices that are activated when a signal is
turned OFF.

Related Keywords

BITS (monitor command)

BITS (program command)

BITS (real-valued function)

IO

SIG

SIG.INS

SIGNAL (monitor command)

SIGNAL (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 335

336 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

RESET.LOCK

Monitor command that detaches a robot from the application program.

Syntax

RESET.LOCK

Usage Considerations

This command will detach all robots that are currently attached.

Related Keywords

ATTACH

DETACH

Chapter 3: Keyword Details

RETRY

Monitor command that repeats execution of the last interrupted statement and
continues execution of the program.

Syntax

RETRY task

Usage Considerations

RETRY cannot be processed when the specified task is executing.

A program cannot be resumed if it has completed execution normally or has
stopped due to a HALT program command.

Parameter

task Real value, variable, or expression interpreted as an
integer that specifies which program task is to be
executed. If no task number is specified, task number 0 is
assumed.

Details

This command restarts execution of the specified task similar to the PROCEED
monitor command. After a RETRY command, the point at which execution
resumes depends on the status at the time execution was interrupted. If a pro-
gram step or robot motion was interrupted before its completion, use of a RETRY
command causes the interrupted operation to be completed before execution con-
tinues normally. This allows you to retry a step that has been aborted or that
caused an error.

If no program step or robot motion was interrupted, the RETRY command has
the same effect as the PROCEED command.

NOTE: When a RETRY command is used to resume an inter-
rupted motion, all motion parameters are restored to the settings in
effect before the motion was interrupted.

Example

The following example will resume from where the task number defined by
"task.num" was interrupted (if the task is not executing or has not been stopped
from the HALT operation).

RETRY task.num

Related Keywords

PROCEED

22353-000 Rev. B eV+3 Keyword Reference Manual 337

338 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

SSTEP

STATUS

XSTEP

Chapter 3: Keyword Details

SELECT

Monitor command that selects a robot for subsequent Monitor Window oper-
ations

Syntax

SELECT device_type = unit

Usage Considerations

The SELECT command needs to be used only if there are multiple devices of the
same type connected to your system.

If the SELECT command is not issued, automatic selection will occur for the first
robot of the system, starting from the lowest robot identifier (1).

The SELECT command affects only the robot selection for the Monitor Window
(i.e., for subsequent monitor commands, such as HERE and WHERE). If you
want to change the selection for a program task, you must execute the SELECT
program command in that program task, either within a program, or by using
the DO monitor command. For example, DO @1 SELECT ROBOT = 2 changes the
robot selection for program task 1.

Parameters

device_type Keyword that identifies the type of device that is to be
selected. The only valid device type is ROBOT.

unit Real value, variable, or expression interpreted as an
integer that specifies the particular robot to be selected.
The values that are accepted depend on the con-
figuration of the system.

Details

In a multiple-robot system, the SELECT monitor command specifies which robot
the Monitor Window will access.

If the robot number specified for the unit parameter is not valid, a (-407) *Invalid
argument* error occurs.

If the robot number specified for the unit parameter is valid, but the robot is not
configured in the system, a (-622) *No robot connected to system* error occurs.

If the robot number specified for the unit parameter is valid and the robot is con-
figured in the system, a (1) *Success* information message occurs.

Example

The following example will select robot 2 for subsequent Monitor Window oper-
ations.:

SELECT ROBOT = 2

22353-000 Rev. B eV+3 Keyword Reference Manual 339

340 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Related Keywords

ATTACH

SELECT (program command)

SELECT

Chapter 3: Keyword Details

SIGNAL

Monitor command that turns ON or OFF digital output signals, internal software
signals, or host signals.

Syntax

SIGNAL signal, ..., signal

Usage Considerations

To control host signals with the SIGNAL command, they must be assigned in the
range of 4001 to 4999 in the NJ-series Robot Integrated CPU Unit using Sysmac
Studio. Refer to the Sysmac Studio Robot Integrated System Building Function with
Robot Integrated CPU Unit Operation Manual (Cat. No. W595) for more information.

Parameter

signal Real-valued expression that evaluates to a digital out-
put or internal signal number. A positive value indic-
ates ON, a negative value indicates OFF.

SIGNAL ignores parameters with a zero value.

Details

The value of the signal parameter determines which signal is to be controlled.
The following values for the signal parameter are available.

l Digital outputs connected to XIO and IO Blox of each robot: 1 to 999
l Robot outputs for end effectors such as a gripper: 3001 to 3004
l Internal software signals: 2001 to 2999
l Host signals: 4001 to 4999

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about default
signal allocation when multiple robots are present.

In emulation mode, digital inputs (numbered from 1001 to 1999) can also be con-
trolled with the SIGNAL command.

Example

The following example will turn OFF the digital output signal specified by the
value of the variable "reset" (assuming the value of "reset" is positive), and turn
ON the digital output signal 4.

SIGNAL -reset, 4

The following example will turn digital output signal 1 OFF, digital output signal
4 ON, and internal software signal 2010 ON.

SIGNAL -1, 4, 2010

22353-000 Rev. B eV+3 Keyword Reference Manual 341

342 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Related Keywords

BITS (monitor command)

BITS (program command)

BITS (real-valued function)

IO

RESET

RUNSIG

SIG

SIG.INS

Chapter 3: Keyword Details

SPEED

Monitor command that specifies monitor speed.

Syntax

SPEED speed_factor

Usage Considerations

Monitor speed is limited to 100 or less. If you specify a faster speed, 100 will be
assumed. A value of 100 is considered normal, full speed and 50 is 1/2 of full
speed.

l Motion speed has different affects for joint-interpolated motions and
straight-line motions. Refer to the eV+3 User's Manual (Cat. No. I651) for
more information.

l SPEED settings takes effect immediately including the speed of any cur-
rently executing motions.

The speed of robot motions is determined by a combination of the monitor speed
setting set with the SPEED monitor command and the program speed setting set
by an executing program with a SPEED program command.

If the eV+ system is not configured to control a robot, use of the SPEED command
will cause an error.

Parameter

speed_factor Real-valued expression whose value is used as a new
speed factor.

Details

The speed at which robot motion occurs is a function of both the speed set by
this command and the speed set by a SPEED program command. During a con-
tinuous path motion, when the program speed is changed, the path followed is
altered to maintain the specified speed and acceleration. However, when the mon-
itor speed is changed, the path is unaffected but the accelerations will be mod-
ified.

Monitor speed is applied as a percentage of set program speeds. This allows con-
venient adjustments to the speed of the robot motions without modification to
programs or variables. The relationship of the monitor SPEED, the program
SPEED, and the accelerations can be explained as follows.

When the monitor speed is 100%, eV+ generates motions that attempt to achieve
the specified program speed and acceleration. During continuous path motions,
this will result in the path being rounded near intermediate destination locations
to prevent excessive accelerations. If the program speed is increased and the
accelerations remain constant, the rounding at intermediate points is increased to
maintain the acceleration specifications.

22353-000 Rev. B eV+3 Keyword Reference Manual 343

344 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

If the monitor speed is set below 100%, eV+ generates the same path that would
have been planned for a monitor speed of 100% and the rounding is unchanged.
The duration of each part of the motion (acceleration segments, constant velocity
segments, and deceleration segments) are proportionally scaled to slow down the
entire motion.

NOTE: The monitor speed is set to 50 when eV+ is initialized. The
speed cannot be set lower than 0.000001 [1.0E-6].

Example

The following example sets the monitor speed to 30%.

SPEED 30

Related Keywords

SCALE.ACCEL

SPEED (program command)

SPEED (real-valued function)

Chapter 3: Keyword Details

SRV.RESET

Monitor command that restarts and resets eV+.

Syntax

SRV.RESET

Usage Considerations

This command will cause all switch and parameter settings to be reset to their
default values.

NOTE: The robot EtherCAT configuration will not be reset.

Details

Issuing the SRV.RESET command will reset the eV+ system. All robot high
power will be disabled.

The following conditions will prevent the command from executing.

l The number of robots in the system differs from the current configuration.
l Any robot is attached to a task or any task is running.
l Any robot is in an error state.

The name of each configured robot is displayed on the Monitor Window along
with any errors that may have occurred while resetting the system.

22353-000 Rev. B eV+3 Keyword Reference Manual 345

346 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

SSTEP

Monitor command that executes a single step or an entire subroutine of a control
program.

Syntax

SSTEP task

Usage Considerations

SSTEP (subroutine-step) can be used to single-step any of the available system
program tasks independent of the execution status of other system tasks.

Parameter

task Optional integer number that specifies which system
program task is to be executed. If no task number is spe-
cified, task number 0 is assumed.

Details

If the next program step to be executed is not a CALL or CALLS program com-
mand, the SSTEP command operates the same as an XSTEP command without
program arguments.

If the program step to be executed is a CALL or CALLS program command, the
SSTEP command causes the entire called subroutine to be executed before pro-
gram execution stops at the step following the CALL or CALLS program com-
mand.

As with the PROCEED and RETRY commands, an SSTEP command can be
executed only after single-step execution of the preceding program statment, a
PAUSE program command, a breakpoint, or a nonfatal error during program exe-
cution.

During single-step execution, the next statement to be executed is displayed in
the Monitor Window and the manual control pendant.

The SSTEP status is retained by the eV+ system even if program execution stops
within the called subroutine and is restarted at that point with additional XSTEP
SSTEP command, or with a PROCEED command. Program execution will stop
when the original subroutine finally executes a RETURN program command.

Example

The following example will execute the next step of the program that was execut-
ing as task 0.

SSTEP

The following example will execute the next step of program task 1.

Chapter 3: Keyword Details

SSTEP 1

Related Keywords

CALL

EXECUTE (monitor command)

EXECUTE (program command)

PRIME

PROCEED

RETRY

STATUS

XSTEP

22353-000 Rev. B eV+3 Keyword Reference Manual 347

348 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STACK

Monitor command that specifies the amount of system memory reserved for a
program task to use for subroutine calls and automatic variables.

Syntax

STACK task = size

Usage Considerations

This command cannot be executed while any program task is active.

This command cannot be issued using the Monitor Window while the Sysmac
Studio is connected. This command is typically used with the MC keyword in a
Monitor Command program.

This command is not executable while operating in Emulation Mode.

The RETRY monitor command can be used to continue task execution after issu-
ing the STACK command.

If an attempt is made to set the stack size smaller than the amount of stack
memory currently in use by the task, the stack size will be set to the size cur-
rently in use.

If you do not want to use the default stack size (128 kB), it must be set every time
the eV+ system is booted from disk. An initialization command program can be
used to set the stack sizes in this case.

Parameters

task Real-valued constant, variable, or expression inter-
preted as an integer that specifies the program task
whose stack size is to be changed.

size Real-valued constant, variable, or expression that spe-
cifies the amount of stack space to be reserved in kilo-
bytes. The number of bytes to be reserved is computed
by multiplying the size parameter value by 1024.

Details

When subroutine calls are made, eV+ uses an internal storage area called a stack
to save information required by the subroutine that begins executing. This inform-
ation includes the following items.

l The name and step number of the calling program.

l Data necessary to access subroutine arguments.

l The values of any automatic variables specified in the called program.

The STACK command allows users to explicitly allocate storage space to the
stack for each program task. To optimize the use of system memory, the amount

Chapter 3: Keyword Details

of stack space can be adjusted for a particular application. Stacks can be made
arbitrarily large, limited only by the amount of memory available in your system.

If a STACK command cannot allocate the amount of storage requested, it will fail
with the error message *Not enough storage area*. If this occurs, take the fol-
lowing steps. These steps will compact the program storage area and may permit
a larger stack to be allocated.

1. Reduce the sizes of other program task stacks if possible.

2. Issue a ZERO monitor command to delete all programs in memory

2. Issue the desired STACK command.

3. Reload the programs.

If a program task runs out of stack space, it will stop with the error message
"*Not enough program stack space*". If this happens, use the STACK monitor
command to increase the stack size and then issue the RETRY monitor com-
mand to continue program execution. All the other program tasks must be
stopped.

The STATUS command can be used to display the stack statistics for a single pro-
gram task. The maximum stack value indicates how much stack space was
requested by the task that generated the error.

Examples

The following statement will reserve 64 kilobytes of memory on the stack for task
0.

STACK 0 = 64

Related Keywords

AUTO

STATUS

22353-000 Rev. B eV+3 Keyword Reference Manual 349

350 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STATUS

Monitor command that returns status information for the system and the pro-
grams being executed.

Syntax

STATUS select

Usage Considerations

The STATUS command can be used at any time to determine the status of the sys-
tem.

Parameter

select Optional real value, variable, or expression interpreted as an
integer that selects the information to be returned.

Details

If the select parameter is omitted, the status of all the program tasks is returned.

The information returned is not updated continuously.

If the value of the select parameter is 0 or positive, it must correspond to one of
the program tasks.

The following example provides descriptions of the information returned from
the STATUS command when the select parameter is omitted.

ROBOT

This appears only in systems with a robot present. The following messages are
possible for the "ROBOT:" field shown above.

l Fatal Error

A fatal hardware error has occurred. Robot power is OFF and cannot be
turned ON until the error is resolved.

l Robot power off

Robot power is OFF and can be turned ON if necessary.

Chapter 3: Keyword Details

l Not calibrated

Robot power is ON, but the robot is not calibrated and cannot be moved
until a CALIBRATE monitor command or program command is issued.

l COMP mode

Robot power is ON and the robot is enabled for control by an application
program.

l Manual mode

Robot power is ON and the robot is being controlled by the manual con-
trol pendant.

Monitor Speed

The "Monitor speed:" field of the information returned shows the current monitor
speed factor.

TASK

The "TASK" column lists all running tasks

STATE

The "STATE" field contains messages indicating the current state of each pro-
gram task as described below.

l Not active

The task is currently inactive.

l Program running

The task is executing the program indicated at the right.

l Program input

The executing program is waiting for input from some I/O device.

l Program WAIT

The executing program is waiting at a WAIT program command state-
ment.

MAIN

The "MAIN" column indicates the main program that is being executed that is
the program that was invoked with an EXECUTE monitor command or program
command, or a PRIME or XSTEP monitor command.

CURRENT PROGRAM

The "CURRENT PROGRAM" column is the program that is currently on the top
of the stack and is the program that is currently executing. It may be either the

22353-000 Rev. B eV+3 Keyword Reference Manual 351

352 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

main program or a program that was subsequently invoked with a CALL or
CALLS program command (or a reaction).

STEP

The "STEP" column indicates the number of the next step to be executed within
the current program.

CYCLES

The "CYCLES" column indicates the number of execution cycles of the main pro-
gram that have been completed when the STATUS command was issued.

STACK

The "STACK" column indicates the present size of the execution stack in kilo-
bytes.

The following example provides descriptions of the information returned from
the STATUS command when the select parameter has a program task specified.

The "STATE", "PROGRAM", and "STEP" fields in this format are similar to the
"STATE", "CURRENT PROGRAM", and "STEP" fields in the description above.

If the selected program task is active, only the program on the top of the stack is
shown. If the task state is "Not active", then the entire execution stack is shown,
beginning with the main program and ending with the top of the stack.

CYCLES

The "CYCLES" column returns the total number of cycles that have been com-
pleted, followed by the total number of cycles to be completed. The value -1 indic-
ates that cycles are to be executed indefinitely.

STACK

The "STACK" column indicates the size of the stack in kilobytes currently in use.

MAX

The "MAX" column shows the maximum amount of the stack that has been used
since the last time the program was executed. If a program has failed with the
"*Not enough program stack space*" error, the MAX field indicates how much
stack space was requested by the operating system. This will return a value to
use to reallocate stack space to the task.

LIMIT

The "LIMIT" field shows the limit on the stack size. This limit may be changed
with the STACK monitor command.

Chapter 3: Keyword Details

Example

In the example shown below, tasks 0 and 1 are running, task 2 has completed
one cycle and is no longer running, and task 3 is inactive and has an empty
stack.

Task 1 was started by the request "EXECUTE 1 ai.monitor.jobs" (see the "MAIN"
column). The next step to execute is step 25 of program "ai.check.job" which was
called either directly or indirectly by the main program "ai.monitor.jobs". The task
has not completed any cycles and is using a stack that is currently 2.5 kilobytes
in size.

Related Keywords

ABORT (monitor command)

ABORT (program command)

EXECUTE (monitor command)

EXECUTE (program command)

KILL (monitor command)

KILL (program command)

PROCEED (monitor command)

RETRY

STACK

STATUS (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 353

354 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STORE

Monitor command that stores programs and variables in a disk file.

Syntax

STORE /levels file_spec = program, ..., program

Usage Considerations

STORE can be used while a program is executing. An executing program can be
stored.

There must be sufficient room on the disk to store the new disk file. Otherwise,
the store operation will fail.

Loading and storing precision points on a system with less axes than the one
which defined them will result in components being lost.

Protected and read-only programs in memory cannot be stored.

This monitor command does not store External variables.

Parameters

/levels Optional qualifier that determines the level of pro-
gram references to consider if a program parameter is
specified. If /levels is omitted, all program references
are processed as described below. If the qualifier is
specified as "/2", for example, only the first two levels
of program references are processed.

file_spec Specification of the disk file into which the programs
and variables should be stored. This consists of an
optional physical device, an optional disk unit, an
optional directory path, a file name, and an optional
file extension.

The current default device, unit, and directory path
are considered as appropriate. Refer to the DEFAULT
command for more information.

If no filename extension is specified, the extension
".V2" will be appended to the name given (for disk
files only).

program Optional name of a program in memory.

Details

This command creates the specified disk file and stores the following information
in the file:

Chapter 3: Keyword Details

l The specified programs.

l All the subroutines referenced directly and indirectly by the specified pro-
grams (unless limited by a "/levels" qualifier).

l All the global (location, real-valued, and string) variables referenced by the
programs and subroutines that are stored.

If no program names are specified, all the programs, subroutines, and global vari-
ables in memory are saved in the disk file.

This command stores the same information as the separate commands STOREP ,
STOREL , STORER , and STORES , but the STORE command creates only one file
rather than four.

As the programs are stored on the disk, their names are displayed on the Mon-
itor Window. You may see names other than those given on the command line
since referenced subroutines are automatically stored. Programs are stored in
alphabetical order regardless of the order used in the command.

Examples

The following example creates a file named "F3.V2" on the default disk unit and
stores the two programs named "cycle" and "motor" along with all the sub-
routines and global variables they reference.

STORE f3=cycle,motor

The following examplel creates a file named "F3.V2" on the default disk unit and
stores only the program "cycle" and the subroutines it calls directly (but no sub-
routines called by those subroutines), along with all the global variables ref-
erenced by those programs.

STORE /2 f3=cycle

The following example creates a file named "DEMO.V2" on disk unit "D" and
stores all the programs and global variables that are in memory.

STORE D:demo

Related Keywords

DEFAULT

FCOPY

LOAD

STOREL

STOREM

STOREP

STORER

STORES

22353-000 Rev. B eV+3 Keyword Reference Manual 355

356 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STOREL

Monitor command that stores location variables in a disk file.

Syntax

STOREL /levels file_spec = program, ..., program

Usage Considerations

STOREL can be used while a program is executing.

There must be sufficient room on the disk to store the new disk file. Otherwise,
the store operation will fail.

Loading and storing precision points on a system with fewer axes than the one
which defined them will result in components being lost.

Parameters

/levels Optional qualifier that determines the level of pro-
gram references to consider if a program parameter is
specified. If /levels is omitted, all program references
are processed as described below. If the qualifier is
specified as "/2", for example, only the first two levels
of program references are processed.

file_spec Specification of the disk file into which the programs
and variables should be stored. This consists of an
optional physical device, an optional disk unit, an
optional directory path, a file name, and an optional
file extension.

The current default device, unit, and directory path
are considered as appropriate. Refer to the DEFAULT
command for more information.

If no filename extension is specified, the extension
".LC" will be appended to the name given (for disk
files only).

program Optional name of a program in memory.

Details

This command stores the names and values of all the global location variables
referenced in the specified programs, and in any subroutines referenced by those
programs unless limited by the /levels parameter. If no programs are specified,
all global location variables with defined values are stored in the disk file.

Chapter 3: Keyword Details

Example

The following example will store all the global location variables referenced by
the program named "motor" and by all the subroutines referenced by "motor" into
a disk file named "F2.LC".

STOREL f2=motor

Related Keywords

DEFAULT

FCOPY

LOAD

STORE

STOREM

STOREP

STORER

STORES

22353-000 Rev. B eV+3 Keyword Reference Manual 357

358 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STOREM

Monitor command that stores a specified program module to a disk file.

Syntax

STOREM /qualifiers file_spec = module

Usage Considerations

STOREM can be used while a program is executing.

There must be sufficient room on the disk to store the new disk file. Otherwise,
the store operation will fail.

Protected and read-only programs in memory cannot be stored.

Parameters

/qualifiers Any combination of up to three qualifiers may be
specified to store multiple data types in addition to
the module programs. If all the qualifiers are omit-
ted, only the module programs are stored in the
specified file.

If /L is specified, the global location and precision
point variables referenced directly by the module
programs are stored in a .LOCATIONS section at
the end of the file.

If /R is specified, the global real and double vari-
ables referenced directly by the module programs
are stored in .REAL and .DOUBLE sections at the
end of the file.

If /S is specified, the global string variables ref-
erenced directly by the module programs are stored
in a .STRINGS section at the end of the file.

file_spec Specification of the disk file into which the pro-
grams should be stored. This consists of an
optional physical device, an optional disk unit, an
optional directory path, a file name, and an
optional file extension.

The current default device, unit, and directory path
are considered as appropriate. Refer to the
DEFAULT command for more information.

If no filename extension is specified, the extension
".PG" will be appended to the name given (for disk
files only).

Chapter 3: Keyword Details

module Name of a program module in memory.

Details

This command stores in the indicated disk file all the unrestricted programs in
the specified program module. As the programs are stored on the disk, their
names are displayed on the Monitor Window. Programs are stored in the
sequence they follow in the module.

Example

The following example stores all the programs in the program module named
"main" into a disk file named "LINE23.PG".

STOREM line23=main

Related Keywords

DEFAULT

FCOPY

LOAD

MDIRECTORY

MODULE

STORE

STOREP

22353-000 Rev. B eV+3 Keyword Reference Manual 359

360 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STOREP

Monitor command that stores program files to a disk file.

Syntax

STOREP /levels file_spec = program, ..., program

Usage Considerations

STOREP can be used while a program is executing.

There must be sufficient room on the disk to store the new disk file. Otherwise,
the store operation will fail.

Protected and read-only programs in memory cannot be stored.

NOTE: In general, it is good programming practice to group pro-
grams into modules, so STOREM should normally be used instead
of STOREP.

Parameters

/levels Optional qualifier that determines the level of pro-
gram references to consider if a program parameter
is specified. If /levels is omitted, all program ref-
erences are processed as described below. If the qual-
ifier is specified as "/2", for example, only the first
two levels of program references are processed.

file_spec Specification of the disk file into which the programs
should be stored. This consists of an optional phys-
ical device, an optional disk unit, an optional dir-
ectory path, a file name, and an optional file
extension.

The current default device, unit, and directory path
are considered as appropriate. Refer to the DEFAULT
command for more information.

If no filename extension is specified, the extension
".PG" will be appended to the name given (for disk
files only).

program Optional name of a program in memory.

Details

This command stores the specified programs in the indicated disk file. In addi-
tion to the programs specified, any subroutines referenced by those programs and
any subroutines referenced by the subroutines are also automatically stored,

Chapter 3: Keyword Details

unless limited by the /levels parameter. If no program names are given, all the
programs in memory are saved in the disk file.

As the programs are stored on the disk, their names are displayed on the Mon-
itor Window. You may see names other than those given on the command line
since referenced subroutines are automatically stored. Programs are stored in
alphabetical order regardless of the order used in the command.

Example

The following example stores the program named "test" and all the subroutines
referenced by it into a disk file named "F1.NEW".

STOREP f1.new=test

Related Keywords

DEFAULT

FCOPY

LOAD

STORE

STOREL

STOREM

STORES

22353-000 Rev. B eV+3 Keyword Reference Manual 361

362 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STORER

Monitor command that stores real variables in a disk file.

Syntax

STORER /levels file_spec = program, ..., program

Usage Considerations

STORER can be used while a program is executing.

There must be sufficient room on the disk to store the new disk file. Otherwise,
the store operation will fail.

Parameters

/levels Optional qualifier that determines the level of pro-
gram references to consider if a program parameter
is specified. If /levels is omitted, all program ref-
erences are processed as described below. If the qual-
ifier is specified as "/2", for example, only the first
two levels of program references are processed.

file_spec Specification of the disk file in which the variables
should be stored. This consists of an optional phys-
ical device, an optional disk unit, an optional dir-
ectory path, a file name, and an optional file
extension.

The current default device, unit, and directory path
are considered as appropriate. Refer to the DEFAULT
command for more information.

If no filename extension is specified, the extension
".RV" will be appended to the name given (for disk
files only).

program Optional name of a program in memory.

Details

This command stores the names and values of all the global real variables ref-
erenced in the specified programs, and in any subroutines referenced by those
programs unless limited by a the /levels parameter. If no programs are specified,
all defined global real variables are stored in the disk file.

NOTE: Although they can have real values, system parameters are
not stored with the STORER command.

Chapter 3: Keyword Details

Example

The following example stores all the global real variables referenced by the pro-
gram named "cycle" and by all the subroutines referenced by "cycle" into a disk
file named "F2.RV".

STORER f2=cycle

Related Keywords

DEFAULT

FCOPY

LOAD

STORE

STOREL

STOREM

STOREP

STORES

22353-000 Rev. B eV+3 Keyword Reference Manual 363

364 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

STORES

Monitor command that stores a string variable in a disk file.

Syntax

STORES /levels file_spec = program, ..., program

Usage Considerations

STORES can be used while a program is executing.

There must be sufficient room on the disk to store the new disk file. Otherwise,
the store operation will fail.

Parameters

/levels Optional qualifier that determines the level of pro-
gram references to consider if a program parameter is
specified. If /levels is omitted, all program references
are processed as described below. If the qualifier is
specified as "/2", for example, only the first two levels
of program references are processed.

file_spec Specification of the disk file into which the variables
should be stored. This consists of an optional physical
device, an optional disk unit, an optional directory
path, a file name, and an optional file extension.

The current default device, unit, and directory path
are considered as appropriate. Refer to the DEFAULT
command for more information.

If no filename extension is specified, the extension
".ST" will be appended to the name given (for disk
files only.

program Optional name of a program in memory.

Details

This command stores the names and values of all global string variables ref-
erenced in the specified programs, and in any subroutines referenced by those
programs unless limited by the /levels parameter. If no programs are specified,
all global defined string variables are stored in the disk file.

Refer to the LISTS command for the format used to store certain special char-
acters.

Chapter 3: Keyword Details

Example

The following example stores all the global string variables in system memory
into a disk file named "F3.ST".

STORES f3

Related Keywords

DEFAULT

FCOPY

LOAD

STORE

STOREL

STOREM

STOREP

STORER

22353-000 Rev. B eV+3 Keyword Reference Manual 365

366 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

SWITCH

Monitor command that displays the settings of system switches in the Monitor
Window.

Syntax

SWITCH switch[index]

Usage Considerations

If no switch parameter is provided, the current settings of all switches are dis-
played.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about system
switches.

Parameters

switch Optional name of a switch to be displayed. The switch
name can be abbreviated as described below.

index For switches that can be qualified by an index, this is an
optional real value, variable, or expression that des-
ignates the specific switch element of interest.

Details

This command displays the settings of the specified switch as "On" (enabled) or
"Off" (disabled). If no switch name is specified, the status of all switches is dis-
played.

A subset of the complete list can be displayed by providing an abbreviation for
the switch name. All the switches with names beginning with the specified root
will be displayed with their current settings.

If the specified switch accepts an index qualifier and the index is 0 or omitted
(with or without the brackets), all the elements of the switch array are displayed.

If the switch name is omitted but an index is specified, the values of all switches
without indexes are displayed along with the specified element of all switch
arrays.

Examples

The following example displays the current settings of the CP switch.

SWITCH CP

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

Chapter 3: Keyword Details

ENABLE

ENABLE (program command)

SWITCH (program command)

SWITCH (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 367

368 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

TESTP

Monitor command that tests for the presence of the named program in the sys-
tem memory.

Syntax

TESTP program

Parameter

program Name of the program to search for.

Details

This command is primarily useful in Monitor Command programs. A success
message is output if the program is found. Otherwise, an error response is
returned.

Example

The following example will generate an error message if the program "move" is
not in memory.

TESTP move

Related Keywords

DIRECTORY

STATUS

Chapter 3: Keyword Details

TIME

Monitor command that sets or displays the date and time.

Syntax

TIME dd-mmm-yy hh:mm:ss

TIME dd-mmm-yyyy hh:mm:ss

Usage Considerations

When operating in Emulation Mode, the date and time cannot be set.

Parameters

dd-mmm-yy
hh:mm:ss

dd-mmm-yyyy
hh:mm:ss

Optional date and time specification.

If omitted, the time is displayed. If specified, the sys-
tem clock is changed and all of the elements except
":ss" must be included.

The individual elements of the date and time spe-
cification are defined as follows:

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter
abbreviation (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG, SEP, OCT, NOV,
or DEC)

yy The year, where 80 to 99 represent
1980 through 1999 and 00 to 79 rep-
resent 2000 through 2079

yyyy The year (1980 to 2079)

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0
assumed if ":ss" omitted)

Details

The system clock is maintained automatically and should be changed only when
its values are incorrect.

The system clock is typically used in the following situations.

l The date and time are displayed when the eV+ system is booted from disk
l The date and time are recorded with the file name when a new disk file is
created.

22353-000 Rev. B eV+3 Keyword Reference Manual 369

370 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

l The date and time are appended to the message indicating that an applic-
ation program has terminated execution.

l The date and time are displayed by the TIME monitor command.
l The date and time are available to an application program by use of the
$TIME and $TIME4 functions.

Examples

The following example sets the date and time to June 23, 2011, at 4:10 p.m.

TIME 23-JUN-11 16:10

The following example displays the current date and time.

TIME

Related Keywords

TIME (program command)

TIME (real-valued function)

$TIME (string function)

$TIME4 (string function)

Chapter 3: Keyword Details

TOOL

Monitor command that sets the internal transformation used to represent the loc-
ation and orientation of the tool tip relative to the tool-mounting flange of the
robot.

Syntax

TOOL @task:program transform_value

Usage Considerations

The TOOL command applies to the robot selected by the eV+ monitor with the
SELECT monitor command.

The command can be used while programs are executing. However, an error will
result if the robot is attached by any executing program.

If the eV+ system is not configured to control a robot, use of the TOOL command
will cause an error.

Parameters

@task:program These optional parameters specify the context for any
variables referenced by the command. The variables
will be treated as though they are referenced from the
specified context. If no context is specified, the vari-
ables will be considered global. Refer to the eV+3
User's Manual (Cat. No. I651) for more information
about variable context.

transform_value Optional transformation variable, function, or com-
pound transformation expression that will be the new
tool transformation. If the transformation value is
omitted, the tool is set to NULL.

Details

If no transformation value is specified, the tool transformation is set equal to the
null tool. The null tool has its center at the surface of the tool mounting flange
and its coordinate axes parallel to those of the last joint of the robot represented
by the transformation [0,0,0,0,0,0]. The tool transformation is automatically set
equal to the null tool when the system is turned ON and after a ZERO monitor
command.

The relative tool transformation is automatically taken into consideration each
time the location of the robot is requested, when a command is issued to move
the robot to a location defined by a transformation, and when manually con-
trolled motions are performed in world or tool mode. Refer to the eV+3
User's Manual (Cat. No. I651) for information about how to define a tool trans-
formation.

22353-000 Rev. B eV+3 Keyword Reference Manual 371

372 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

If the transformation value specified as the argument to this command is mod-
ified after the TOOL command is issued, the change does not affect motions of
the robot until another TOOL command is issued. For example, if the trans-
formation value is specified by a transformation variable, changes to the value of
that variable will not affect the tool transformation until another TOOL com-
mand is issued with the variable.

NOTE: The monitor command statement "LISTL TOOL" can be
used to display the current tool setting.

Examples

The following example replaces the current tool transformation with the value of
compound transformation "grip:extension".

TOOL grip:extension

The following example cancels any tool transformation that may be in effect.

TOOL

Related Keywords

SELECT (monitor command)

SELECT (real-valued function)

TOOL (program command)

TOOL (transformation function)

Chapter 3: Keyword Details

WAIT.START

Monitor command that puts a Monitor Command program into a wait state
until a condition is satisfied.

Syntax

WAIT.START condition

Usage Considerations

This command is not intended to be used in the Monitor Window. It is normally
used as a step in a Monitor Command program.

You can cancel an activated WAIT.START command by pressing the Emergency
Stop button on the external Front Panel or by pressing the Emergency Stop button
on the pendant.

Aborting an activated WAIT.START command causes termination of the Monitor
Command program containing the command.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about Mon-
itor Command programs.

Parameter

condition Optional real value, variable, or expression that is evaluated
for a TRUE (nonzero) or FALSE (0) value.

Details

This command can be used to suspend processing of a Monitor
Command program until a desired condition exists. For example, the state of one
or more external signals can be used as the condition for continuation.

If the condition parameter is included in a WAIT.START command, the Monitor
Command program is suspended until the condition value makes a transition
from FALSE (0) to TRUE (nonzero).

NOTE: The Monitor Command program is suspended if the con-
dition being tested is already TRUE when the WAIT.START com-
mand is executed. A transition from FALSE to TRUE must occur to
resume.

The WAIT.START command checks for the specified condition only once every
system cycle. There can be a delay of up to 16 milliseconds between satisfaction
of the condition and resumption of program execution.

Example

The following example stops processing of the Monitor Command program until
the state of digital input signal 1001 changes from OFF to ON.

WAIT.START SIG(1001)

22353-000 Rev. B eV+3 Keyword Reference Manual 373

374 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

Related Keywords

WAIT

Chapter 3: Keyword Details

WHERE

Monitor command that displays the current location of the robot and the hand
opening.

Syntax

WHERE

Usage Considerations

The WHERE command applies to the robot selected by the eV+ monitor with the
SELECT command.

If the eV+ system is not configured to control a robot, use of the WHERE com-
mand will cause an error.

Details

The location of the robot tool point is displayed in cartesian world coordinates
and as joint positions together with the current hand opening.

Example

The following example shows the output displayed when the WHERE command
is issued for a 4-axis robot.

Related Keywords

HERE

SELECT (monitor command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 375

376 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

XSTEP

Monitor command that executes a single step of a program.

Syntax

XSTEP task program (param_list), cycles, step

Usage Considerations

XSTEP can be used to single-step any of the system program tasks, independent
of the execution status of other system tasks.

Parameters

task Optional integer that specifies which system program
task is to be executed. If no task number is specified,
task 0 is assumed.

program Optional name of the application program to be
executed.

NOTE: XSTEP commands that do not
include a program name do not affect the
temporary time slice and priority para-
meters.

param_list Optional parameter list for the program. Refer to the
description of the EXECUTE monitor command and pro-
gram command for details.

cycles Optional real value, variable, or expression interpreted
as an integer that specifies the number of program exe-
cution cycles to be performed. Refer to the description of
the EXECUTE monitor command and program command
for details.

step Optional real value, variable, or expression interpreted
as an integer that specifies the step at which program
execution is to begin.

Details

The XSTEP command can be used to execute an application program one step at
a time. This is frequently useful while a program is being developed and pro-
gram errors are detected and corrected.

The following aspects of program execution must be considered when using this
command.

Chapter 3: Keyword Details

l The system program task that is to be utilized

l The program that is to be executed

l Program execution is stopped after one command.

The optional task parameter specifies which of the system program tasks is to be
activated.

If any of the program arguments (program, param_list, cycles, or step) are spe-
cified, program execution is initiated in the same manner as for the EXECUTE
monitor command. Unlike the EXECUTE monitor command, the first executable
program statement is displayed in the Monitor Window but is not executed.
XSTEP must then be entered again without any program arguments to execute
that statement.

If all the command arguments are omitted, the following operations are per-
formed.

1. The displayed program statement is executed.

2. The next statement to be executed is displayed in the Monitor Window.

3. The program is stopped again.

As with the PROCEED and RETRY monitor commands, an XSTEP command
with no arguments can be executed only after execution has stopped due to one
of the following events.

l An ABORT keyword operation is processed.

l Single-step execution of the preceding program statement.

l A PAUSE program command is executed.

l A breakpoint is encountered.

l Occurrence of a nonfatal error during program execution.

Examples

The following example initiate execution of program "pack" for three cycles as
task 0. The parameters "p2" and "17" are passed to the program. The first execut-
able step of "pack" is displayed in anticipation of its execution with a subsequent
XSTEP command (without parameters).

XSTEP pack(p2,17),3

The following example prepares the program "assembly" for execution as pro-
gram task 0 or the current debug task starting at step number 23. If "XSTEP" is
then typed, step 23 will be executed.

XSTEP assembly,,23

The following example executes the next step of the program executing as pro-
gram task 2.

22353-000 Rev. B eV+3 Keyword Reference Manual 377

378 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

XSTEP 2

The following example executes the next step of the program that was executing
as task 0 (or the current debug task).

XSTEP

The following example moves the execution pointer to step number 45 in the pro-
gram that was executing as task 0 (or the current debug task).

XSTEP ,,45

Related Keywords

EXECUTE (monitor command)

EXECUTE (program command)

PRIME

PROCEED

SSTEP

STATUS

Chapter 3: Keyword Details

ZERO

Monitor command that initializes the eV+ system and deletes all the programs
and data in system memory.

Syntax

ZERO

Usage Considerations

This command cannot be used when any program task is executing or when a
robot is attached to a task.

Any currently selected robot will not be affected by this command.

This command cannot be used while online with a controller. Refer to the Sysmac
Studio Robot Integrated System Building Function with Robot Integrated CPU Unit
Operation Manual (Cat. No. W595) for more information.

Details

This command initializes the eV+ system and deletes all the programs and vari-
ables in memory.

The following changes occur when the command is processed.

l All the programs and variables in memory are deleted.

l The program execution stacks are cleared.

l The status line is cleared.

l Any latch data buffers are cleared.

l Any tool transformations are automatically set equal to the null tool when
the system is turned ON after a ZERO operation.

l The BASE transformation is automatically set equal to the null transform
when the system is turned ON after a ZERO operation.

l All logical units are detached (except the robot).

l Movement parameters such as SPEED, FINE, etc. are reset to default. Other
parameters and switches are not affected.

Example
The following example deletes all programs and data in system memory.

ZERO

Related Keywords

DELETE

DELETEL

DELETEM

DELETEP

22353-000 Rev. B eV+3 Keyword Reference Manual 379

380 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.2 Monitor Command Keywords

DELETER

DELETES

Chapter 3: Keyword Details

3.3 Other Keywords
Use the information in this section to understand other keywords and their use with the eV+
system.

.END

Keyword that marks the end of an eV+ program.

Syntax

.END

Usage Considerations

The eV+ editors automatically add this line to the end of every program.

This keyword must exist at the end of every eV+ program. Programs missing the
.END keyword do not load correctly into the eV+ system.

Example

The following example will display the string "Valid Program" in the Monitor
Window.

.PROGRAM program1()
TYPE "Valid Program"

.END

Related Keywords

.PROGRAM

22353-000 Rev. B eV+3 Keyword Reference Manual 381

382 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.3 Other Keywords

IPS

Specify the units for a SPEED program command as inches per second.

Syntax

SPEED value IPS ALWAYS

Usage Considerations

IPS can be used only as a parameter for a SPEED program command.

The speed setting specified is scaled by the monitor speed in effect when the
robot motion occurs.

Speeds specified with the IPS keyword apply to straight-line motions. Joint-inter-
polated motions do not maintain the specified tool speed.

To specify speed in millimeters per second, use the MMPS keyword.

Details

IPS is an optional parameter for the SPEED program command which specifies
the units to be used for the speed value. When IPS is specified in a SPEED
program command, the speed value is interpreted as inches per second for
straight-line motions.

Refer to the SPEED program command for further details on setting motion
speeds with the IPS keyword.

Example

The following example sets the robot tool tip speed to 20 inches per second for
the next straight-line robot motion (assuming the monitor speed is set to 100).

SPEED 20 IPS

Related Keywords

MMPS

SPEED (monitor command)

SPEED

SPEED (real-valued function)

Chapter 3: Keyword Details

MMPS

Specify the units for a SPEED program command as millimeters per second.

Syntax

SPEED value MMPS ALWAYS

Usage Considerations

MMPS can be used only as a parameter for a SPEED program command.

The speed setting specified is scaled by the monitor speed in effect when the
robot motion occurs.

Speeds specified with the MMPS keyword apply to straight-line motions. Joint-
interpolated motions do not maintain the specified tool speed.

To specify units in inches per second, use the IPS keyword.

Details

MMPS is an optional parameter for the SPEED program command which spe-
cifies the units to be used for the speed value. When MMPS is specified in a
SPEED program command, the speed value is interpreted as millimeters per
second for straight-line motions.

Refer to the SPEED program command for further details on setting motion
speeds with the MMPS keyword.

Example

The following example sets the default program speed for straight-line motions to
10 millimeters per second (assuming the monitor speed is set to 100).

SPEED 10 MMPS ALWAYS

Related Keywords

IPS

SPEED (monitor command)

SPEED

SPEED (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 383

384 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

3.4 Program Command Keywords
Use the information in this section to understand program command keywords and their use
with the eV+ system.

ABORT

Terminate execution of an executing program task.

Syntax

ABORT task_num

Usage Considerations

ABORT is ignored if no program is executing as the specified task.

ABORT does not force DETACH or FCLOSE operations on the disk logical units. If the pro-
gram has one or more files open and you decide not to resume execution of the program, use
the KILL keyword to close all the files and detach the logical units.

Parameter

task_num Optional real value, variable, or expression interpreted as an integer that
specifies which program task is to be terminated. The default task is 0.

Details

The ABORT program command terminates execution of the specified active executable pro-
gram after completion of the step currently being executed. If the task is controlling a robot,
robot motion terminates at the completion of the current motion. Program execution can be
resumed with the PROCEED keyword.

Example

The following example will terminate the execution of the program on task 1 after moving to
the "safe.loc" position.

MOVE safe.loc
BREAK
ABORT 1

Related Keywords

ABORT (monitor command)

CYCLE.END (monitor command)

CYCLE.END (program command)

ESTOP (monitor command)

ESTOP (program command)

EXECUTE

KILL (monitor command)

Chapter 3: Keyword Details

KILL (program command)

PANIC (monitor command)

PANIC (program command)

PROCEED

STATUS (monitor command)

STATUS (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 385

386 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ABOVE

Request a change in the robot configuration during the next motion so that the elbow is above
the line from the shoulder to the wrist.

Syntax

ABOVE

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support an above configuration, this keyword is ignored by the
robot.

Additional Information: SCARA robots cannot have an above configuration.

The ABOVE program command can be executed by any program task as long as the robot
selected by the task is not attached by any other task. If the robot is not attached, this com-
mand has no effect. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the ABOVE program com-
mand causes an error.

The following figure shows the ABOVE and BELOW configurations.

Figure 3-5. Above and Below Configurations

Example

The following example will move the robot to "point1" using the ABOVE configuration.

ABOVE
MOVE point1
BREAK

Related Keywords

BELOW

CONFIG

SELECT (program command)

SELECT (monitor command)

Chapter 3: Keyword Details

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 387

388 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ACCEL

Set acceleration and deceleration for robot motions and optionally specify a defined accel-
eration profile.

Syntax

ACCEL (profile) acceleration, deceleration

Usage Considerations

The ACCEL program command can be executed by any program task as long as the robot
selected by the task is not attached by any other task. This command applies to the robot selec-
ted by the task.

If the eV+ system is not configured to control a robot, executing this command causes the error
Robot not attached to this program.

Before an acceleration / deceleration profile can be used, it must be defined for the selected
robot (profile 0 is always defined).

If an acceleration profile that is not defined is initially specified in the program, the system
will default to acceleration profile 1.

If an acceleration profile that is defined (2, for example) is specified in the program and then
later in the same program, an acceleration profile is specified that does not exist (7, for
example), the program will continue to use the previously specified profile (2, for example).

If a parameter is omitted, the current setting remains in effect.

Parameters

profile Optional integer specifying the acceleration profile to use. Acceptable val-
ues are 0 to 8, depending on the number of defined profiles. The default
is the last specified profile.

acceleration Optional real value, variable, or expression considered as a percentage of
the maximum possible acceleration.

deceleration Optional real value, variable, or expression considered as a percentage of
the maximum possible deceleration.

The value should normally be in the range of 1 to 100. If an out-of-
range value is specified, the nearest limit will be used.

Details

If profile 0 is used, a square wave acceleration profile is generated at the beginning and end of
the motion.

If a profile is specified, that profile is invoked for subsequent robot motions. Defined profiles
set the maximum rate of change of the acceleration and deceleration. The values set with this
command define the maximum acceleration and deceleration magnitudes that are achieved.

When the eV+ system is initialized, the profile, acceleration, and deceleration values are set to
initial values. The initially selected profile may be 0, 1, or 2 depending on the type of robot.

Chapter 3: Keyword Details

The settings are not affected when program execution starts or stops or when a ZERO monitor
command is processed.

Default acceleration and deceleration values of 100% are set for use with typical robot pay-
loads and link inertias. However, because the actual attainable values vary greatly as a func-
tion of the end-effector, payload, and the initial and final locations of a motion, accelerations
greater than 100% may be permitted for your robot. If you specify a higher acceleration or decel-
eration than is permitted, the default values are used.

You can use the ACCEL(3) and ACCEL(4) function statements to determine the maximum
allowable acceleration and deceleration settings.

For a given motion, the maximum attainable acceleration may be less than what is requested.
This occurs when a profile with a nonzero acceleration ramp time is used and there is insuf-
ficient time to reach the maximum acceleration. A specific time must elapse before the accel-
eration can be changed from 0 to the specified maximum value. If the maximum acceleration
cannot be achieved, the trapezoidal profile is reduced to a triangular shape. This occurs during
the following circumstances.

l The motion is too short. In this case, the change in position is achieved before the max-
imum acceleration can be achieved.

l The maximum motion speed is too low. In this case, the maximum speed is achieved
before the maximum acceleration.

In both of these situations, raising the maximum acceleration and deceleration values does not
affect the time for the motion.

Additional Information: If you increase the maximum acceleration and decel-
eration values but the motion time does not change, try increasing the program
speed, switch to an acceleration profile that allows faster acceleration ramp
times, or switch to acceleration profile 0 which specifies a square-wave accel-
eration profile.

NOTE: This type of acceleration limiting cannot occur with acceleration profile
0 because a square-wave acceleration instantaneously changes acceleration val-
ues without ramping.

Examples

The following example sets the default acceleration time to 50% of normal and the deceleration
time to 30% of normal.

ACCEL 50, 30

The following example changes the deceleration time to 60% of normal and does not change
the acceleration time.

ACCEL ,60

The following example reduces the acceleration and deceleration to one half of their current set-
tings.

ACCEL ACCEL(1)/2, ACCEL(2)/2

22353-000 Rev. B eV+3 Keyword Reference Manual 389

390 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

The following example invokes defined profile 2 and sets the acceleration magnitude to 80% of
the defined rate.

ACCEL (2) 80

Related Keywords

ACCEL (real-valued function)

DURATION

SCALE.ACCEL

SELECT

SELECT (real-valued function)

SELECT (monitor command)

SPEED

Chapter 3: Keyword Details

ALIGN

Align the robot tool Z-axis with the nearest world axis.

Syntax

ALIGN

Usage Considerations

The ALIGN program command can be executed by any program task as long as the task has
attached a robot. The command applies to the robot selected by the task.

If the system is not configured to control a robot, executing this command causes an error.

Details

The ALIGN program Command causes the tool to be rotated so that its Z-axis is aligned par-
allel to the nearest axis of the world coordinate system. This command is primarily useful for
aligning the tool before a series of locations is taught. This typically accomplished with the use
of the DO monitor command.

Example

The following example will move the robot to "point1" and align the tool's z-axis to the nearest
world axis.

MOVE point1
ALIGN

Related Keywords

SELECT (program command)

SELECT (monitor command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 391

392 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ALTER

Specify the magnitude of the real-time path modification that is to be applied to the robot path
during the next trajectory computation.

Syntax

ALTER Dx, Dy, Dz, Rx, Ry, Rz

Usage Considerations

This program command can be executed by the task that is controlling a robot in alter mode or
by any other task that has selected the robot (using the SELECT keyword).

Additional Information: Refer to the ALTON program command for more
information about enabling alter mode.

This command is ignored if the selected robot is not in alter mode.

When alter mode is enabled, this command should be executed once during each trajectory
cycle. If this command is executed more often, only the last set of values defined during each
cycle will be used.

Parameters

Dx
Dy
Dz

Rx
Ry
Rz

Optional real values, variables, or expressions that define the translations along,
and the rotations about, the X, Y, and Z axes.

In cumulative mode, omitted coordinates are interpreted as 0. In non-cumu-
lative mode, omitted coordinates default to the values specified in the previous
ALTER command.

Distances are interpreted as millimeters; angles are interpreted as degrees.

Details

After alter mode has been enabled with the ALTON program command, this command should
be executed once each trajectory-generation cycle to specify the amount by which the path is to
be modified. The coordinates defined by this command are interpreted according to the modes
specified by the ALTON program command that initiated alter mode.

Example

The following statements can be embedded in a program loop that uses sensor data to control
the motion of the robot.

ALTER 0.1*sx, , 0.2*sz

WAIT

Related Keywords

ALTOFF

ALTON

Chapter 3: Keyword Details

STATE

22353-000 Rev. B eV+3 Keyword Reference Manual 393

394 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ALTOFF

Terminate real-time path-modification mode (alter mode).

Syntax

ALTOFF

Usage Considerations

A robot must be attached by the program task prior to executing this program command.

Turning OFF alter mode causes a break in continuous-path motion.

Details

This program command suspends program execution until any previous robot motion has
been completed and then turns OFF real-time path modification mode (alter mode). After alter
mode is OFF, the robot position is at a final location that reflects both the destination of the last
robot motion and the total alter correction that has been applied.

Related Keywords

ALTER

ALTON

STATE

Chapter 3: Keyword Details

ALTON

Enable real-time path-modification mode (alter mode) and specify the way in which alter
coordinate information will be interpreted.

Syntax

ALTON mode

Usage Considerations

A robot must be attached by the program task prior to executing this program command.

Alter mode cannot be active at the time this program command is executed.

Any motions that are performed while alter mode is enabled must be of the straight-line
motion type and cannot be specified relative to a conveyor belt.

Parameters

mode Optional real value, variable, or expression that defines how path-modi-
fication data specified by subsequent ALTER commands are to be inter-
preted. The mode value is interpreted as a sequence of bit flags that are
detailed below. The bits are assumed to be clear if the mode parameter is
omitted.

Bit 1 (LSB): Accumulate Corrections (mask value = 1)

If this bit is ON, coordinate values specified by subsequent ALTER com-
mands are interpreted as incremental and are accumulated. If this bit OFF,
each set of coordinate values is interpreted as the total (noncumulative)
correction to be applied.

Bit 2: World Coordinates (mask value = 2)

If this bit is ON, coordinate values specified by subsequent ALTER com-
mands are interpreted to be in the world coordinate system. If this bit is
OFF, coordinates are interpreted to be in the tool coordinate system.

Details

This program command initiates the real-time path-modification (alter) functionality. After this
command is executed, the coordinate values specified by ALTER commands will auto-
matically be superimposed on the nominal path computed by the eV+ trajectory generator dur-
ing all subsequent robot motions. The corrections can be applied in all six degrees of freedom
and they can be specified as cumulative or noncumulative values in world or tool coordinates.

Additional Information: RX, RY, and RZ angles represent an extrinsic rotation
and are different than the intrinsic rotation yaw, pitch, and roll angles of trans-
formation variables.

Once alter mode is initiated, the robot location is corrected during all subsequent motions and
between motions if breaks occur between continuous-path segments. Alter mode is terminated
by any of the following actions.

22353-000 Rev. B eV+3 Keyword Reference Manual 395

396 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

l Executing an ALTOFF program command

l Detaching the robot

l Prematurely terminating a robot motion

l Stopping program execution

Example

The following example will initiate alter mode and interpret subsequent ALTER commands as
total corrections (bit 1 is OFF) and world-coordinate (bit 2 is ON) corrections to the nominal
path of the robot.

ALTON 2

Related Keywords

ALTER

ALTOFF

STATE

Chapter 3: Keyword Details

ANY

Signal the beginning of an alternative group of commands for the CASE structure.

Syntax

ANY

Usage Considerations

The ANY statement must be within a CASE structure.

Details

Refer to CASE on page 426 for more information.

Examples

Refer to CASE on page 426 for more information.

Related Keywords

CASE

VALUE

22353-000 Rev. B eV+3 Keyword Reference Manual 397

398 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

APPRO

Start a robot motion toward a location defined relative to specified location with joint-inter-
polated motion.

Syntax

APPRO location, distance

Usage Considerations

The APPRO program command can be executed by any program task as long as the task has
attached a robot. The command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these commands will cause an
error.

Parameters

location Transformation value that defines the basis for the final location.

distance Real-valued expression that specifies the distance along the robot tool Z-
axis between the specified location and the actual desired destination.

A positive distance sets the tool back (negative tool Z-axis) from the spe-
cified location. A negative distance offsets the tool forward (positive tool Z-
axis).

Details

This command initiates a robot motion to the orientation described by the given location
value. The position of the destination location is offset from the given location by the distance
given, measured along the Z-axis of the specified location in the negative direction.

Example

The following example moves the tool by joint-interpolated motion to a location "offset" mil-
limeters from that defined by the transformation "place".

APPRO place,offset

Related Keywords

DEPART

DEPARTS

MOVE

MOVES

Chapter 3: Keyword Details

APPROS

Start a robot motion toward a location defined relative to specified location with straight-line
motion.

Syntax

APPROS location, distance

Function

Usage Considerations

APPROS causes a straight-line motion, during which no changes in configuration are per-
mitted.

The APPROS program command can be executed by any program task as long as the task has
attached a robot. The command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these commands will cause an
error.

Parameters

location Transformation value that defines the basis for the final location.

distance Real-valued expression that specifies the distance along the robot tool Z-
axis between the specified location and the actual desired destination.

A positive distance sets the tool back (negative Z-axis) from the specified
location. A negative distance offsets the tool forward (positive Z-axis).

Details

This command initiates a robot motion to the orientation described by the given location
value. The position of the destination location is offset from the given location by the distance
given, measured along the Z-axis of the specified location in the negative direction.

Example

The following example moves the tool along a straight-line to a location 50 millimeters from
that defined by the transformation "place" with the offset along the resultant Z-axis to a loc-
ation beyond the location "place".

APPROS place,-50

Related Keywords

DEPART

DEPARTS

MOVE

MOVES

22353-000 Rev. B eV+3 Keyword Reference Manual 399

400 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ATTACH

Make a device available for use by the application program.

Syntax

ATTACH (lun, mode) $device

Usage Considerations

The robot is automatically attached when the EXECUTE monitor command or program com-
mand is processed for task 0 except when the DRY.RUN system switch is enabled. All the
other logical units are automatically detached when program execution begins.

It is recommended to use the IOSTAT real-valued function with the ATTACH program com-
mand to monitor the successful completion of the operation. Refer to the example below for
more information.

If the Monitor Window or the pendant was attached when a program stopped executing, it is
automatically reattached if execution of the program is resumed with the PROCEED, RETRY,
SSTEP, or XSTEP keywords.

Parameters

lun The logical unit number to associate with the attached device. The inter-
pretation of this parameter depends on the value of the mode parameter as
described below.

If bit 3 of the mode parameter is 0, this parameter is optional and defaults
to 0 to attach the robot.

It can be a real value, variable, or expression interpreted as an integer in
the range 0 to 24 that specifies the logical unit to be attached. If the logical
unit specified is not 0, you can use the $device parameter to override the
default device for the logical unit.

If bit 3 of the mode parameter is 1, this parameter is required andmust be
a real variable. In this case, the eV+ system attaches the device specified
by the $device parameter and automatically assigns a logical unit number
to this parameter. If all the logical units are in use, the parameter is set to -
1 . eV+ assigns a value to the lun parameter even if the ATTACH request
fails.

mode Optional real value, variable, or expression (interpreted as a bit field) that
defines how the ATTACH request is to be processed. The value specified is
interpreted as a sequence of bit flags as detailed below. The bits are
assumed to be clear if no value is specified.

Bit 1 (mask value = 1, LSB): Queue (0) versus Fail (1)

This bit controls how the device driver responds to the attach request from
the control program task. The device driver is an internal system task that
is separate from the control program task. For most applications, this bit
should be ON.

Chapter 3: Keyword Details

If this bit is OFF and the device is already attached by another control pro-
gram task, the driver queues this attach request and signals the control pro-
gram that there is an error in the attachment request. In this case, the
operation IOSTAT(lun) returns a negative number. The attachment will
complete when the device becomes available.

If this bit is ON and the device is already attached by another control pro-
gram task, the device driver immediately signals that the attach request
has failed.

Bit 2 (mask value = 2): Wait (0) versus No-wait (1)

This bit controls whether or not the control program task waits for a
response from the device driver. For most applications, this bit should be
OFF.

If this bit is OFF, program execution waits for the device driver to signal the
result of the attach request.

If this bit is ON, program execution does not wait for the result of the attach
request. The program must then use the function statement IOSTAT(lun)
to determine if the attachment has succeeded (see above). If the program
attempts to read from or write to the logical unit while the attachment is
pending, program execution then waits for the attachment to complete.

Bit 3 (mask value = 4): Specify LUN (0) versus Have LUN
Assigned (1)

This bit determines how the lun parameter is processed.

If this bit is OFF, the device corresponding to the value of lun is attached.
The value of the lun parameter specifies the device that is to be attached
except when a different device is specified with the $device parameter
(refer to the Details section below).

If this bit is ON, the device to be attached is specified by the $device para-
meter which should not be omitted. In this case, a logical unit is auto-
matically selected and the value of the lun parameter is turned ON by the
ATTACH keyword. eV+ assigns a value to lun even if the ATTACH request
fails. This mode cannot be used to attach the robot or pendant.

$device Optional string constant, variable, or expression that identifies the device to
be attached. If bit 3 of the mode parameter is 0, this parameter is used to
override the default device associated with the value of the lun parameter
(the logical unit 0 is always the robot).

The acceptable device names are provided below.

l DISK - Physical drive in the controller (disk or Secure Digital card)
l MONITOR - The Monitor Window
l SERIAL:n - Reserved for future use.
l SYSTEM - Disk device set with the CD or DEFAULT keywords
l TCP - TCP protocol device driver
l TFTP - Reserved for future use.
l UDP - UDP protocol device driver

22353-000 Rev. B eV+3 Keyword Reference Manual 401

402 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Details

The robot must remain attached by a robot control program to execute motion of the robot.
When the robot is detached, you can use the manual control pendant to move the robot under
directions from the application program. This is useful, for application setup sequences for
example.

Program task 0 automatically attaches robot 1 when that task begins execution. A robot control
program executed by any of the other program tasks must explicitly attach the robot.

Any task can attach to any robot, provided that the robot is not already attached by a different
task. The robot that is attached by an ATTACH command is the one that was last specified by
a SELECT program command executed by the current task. If no SELECT program command
has been executed, then robot 1 is attached. The SELECT program command can be used to
select a different robot only if no robot is currently attached to the task.

To successfully attach the robot, the system must be in COMP mode. Otherwise (for mode bit 1
= 0), program execution is suspended without notice until the system is placed in COMP
mode. This situation can be avoided with the following methods.

l Use the STATE function to determine if the system is in COMP mode before executing
an ATTACH command.

l Set bit 1 in the mode value and use the IOSTAT function to determine the success of the
ATTACH command.

When the Monitor Window (logical unit 4) is attached, all keyboard input will be buffered for
input requests by the program.

NOTE: When the Monitor Window is attached, a user is not able to type
ABORT to terminate program execution. The program must provide a means for
fielding a termination request or you must use the pendant or emergency stop
switch to stop program execution.

When a DISK device is attached, it allows a program to read and write data from and to files
(DISK refers to the Secure Digital card). One of the FOPEN program commands must be used
to specify which file to access. WRITE and READ program commands can then be used to
transfer information to and from the file. FCMND program commands can be used to send
commands to the file system.

When mode bit 3 = 0 and the $device parameter is omitted, the logical unit number implicitly
specifies the corresponding default device from the following table.

Number Device

0 Robot (default when lun is omitted)

1 Reserved for future use

2, 3, 4 Monitor Window

5, 6, 7, 8 Disk

9 No default device

3.1Default Device Numbers Supplied by the LUN

Chapter 3: Keyword Details

Number Device

10, 11, 12, 13 Reserved for future use

14, 15, 16 No default device

17, 18, 19 Disk

20, 21, 22, 23, 24 Reserved for future use

25, 26, 27, 28, 29, 30, 31 No default devices

Examples

The following example will attempt to attach the robot for an amount of time specified by
timer 3 (5 seconds). The IOSTAT real-valued function will return information to monitor the
success or failure of the ATTACH operation during this time interval. If the attach operation is
not successful within the 5 second interval, a message will be displayed in the Monitor Win-
dow.

start = TIMER(-3)
DO

ATTACH (0,1)
UNTIL (IOSTAT(0, 0) == 1) OR ((TIMER(-3) - start) > 5)

IF IOSTAT(0 , 0) < 1 THEN
TYPE "The following error occurred: ", $ERROR(IOSTAT(0,0))
TYPE "The program will be interrupted!"

HALT
END

Related Keywords

DETACH

FSET

IOSTAT

SELECT (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 403

404 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

AUTO

Declare temporary variables that are automatically created on the program stack when the pro-
gram is entered.

Syntax

AUTO type variable, ..., variable

Usage Considerations

AUTO (automatic) variables have an undetermined value when a program is first entered, but
they are not considered undefined. They have no value after the program exits.

AUTO commands must appear before any executable keyword in the program. Only the
.PROGRAM command, comments, blank lines, GLOBAL and LOCAL commands, and other
AUTO commands may precede this command.

If a variable is listed in an AUTO command, any global variables with the same name cannot
be accessed directly by the program.

The values of AUTO variables are not saved by the STORE or restored by the LOAD com-
mands.

Parameters

type If the type parameter is specified, all the variables must match that type
(REAL, DOUBLE, or LOC). Array variables must have their indexes spe-
cified explicitly, indicating the highest valid index for the array.

If this keyword is omitted, the type of each variable is determined by its
use within the program. An error is generated if the type cannot be
determined from usage.

LOC Location variable (transformation or precision point).

REAL Single-precision real variable.

DOUBLE Double-precision real variable.

Refer to the GLOBAL command for details on the
default type.

variable Name of a variable of any data type available with eV+ (belt, precision
point, real-value, string, and transformation). Each variable can be a
simple variable or an array. If the type parameter is specified, all the vari-
ables must match that type. Array variables must have their indexes spe-
cified explicitly, indicating the highest valid index for the array.

Details

This command is used to declare variables to be defined only within the current program. An
AUTO variable can be referenced only by the specific calling instance of a program. The names

Chapter 3: Keyword Details

of AUTO variables can be selected without regard for the names of variables defined in any
other programs.

AUTO variables are allocated each time the program is called and their values are not pre-
served between successive subroutine calls. These values can be displayed with monitor com-
mands only when the program task is inactive, but is on an execution stack. When a program
is first entered, AUTO variables have arbitrary, undetermined values but they are not con-
sidered undefined. AUTO variables are lost when the program exits.

Unlike a LOCAL variable, a separate copy of an AUTO variable is created each time a pro-
gram is called, even if it is called simultaneously by several different program tasks or called
recursively by a single task. If a program that uses LOCAL or global variables is called by sev-
eral different program tasks or recursively by a single task, the values of those variables can be
modified by the different program instances and can cause unpredictable program errors.
Therefore, AUTO variables should be used for all temporary local variables to minimize the
chance of such errors.

Variables can be defined as GLOBAL, AUTO, or LOCAL. An attempt to define AUTO,
GLOBAL, or LOCAL variables with the same name will result in the error message "Attempt
to redefine variable class".

Variables can be defined only once within the same context (AUTO, LOCAL, or GLOBAL).
Attempting to define a variable more than once with a different type will result in the error
message "Attempt to redefine variable type".

AUTO array variables must have the size of each dimension specified in the AUTO statement.
Each index specified must represent the last element to be referenced in that dimension. The
first element allocated always has index value zero. For example, the following statement alloc-
ates a transformation array with 24 elements. The left-hand index ranges from 0 to 3, and the
right-hand index ranges from 0 to 5.

AUTO LOC points[3,5]

The storage space for AUTO variables is allocated on the program execution stack. If the stack
is too small for the number of AUTO variables declared, the task execution will stop with the
error message "Too many subroutine calls". If this happens, use the STATUS monitor com-
mand to determine how much additional stack space is required. Then, use the STACK mon-
itor command to increase the stack size and then issue the RETRY monitor command to
continue program execution.

AUTO variables cannot be deleted with the DELETE_ commands.

AUTO variables can be referenced with monitor commands such as DELETE_, DO , HERE ,
LIST_, TOOL by using the optional context specifier @ as shown in the example below.

command @task:program command_arguments

Examples

The following example statement will declare the variables loc.a, $ans, and i to be AUTO in
the current program. The variable types for loc.a and i must be clear from their use in the pro-
gram.

AUTO loc.a, $ans, i

22353-000 Rev. B eV+3 Keyword Reference Manual 405

406 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

The following example will declare the variables i, j, and tmp[] to be AUTO, real variables in
the current program. Array elements tmp[0] through tmp[10] are defined.

AUTO REAL i, j, tmp[10]

The following example will declare the variable "loc" to be an AUTO variable in the current
program. The variable type of "loc" must be determined by its use in the program. Since "loc"
appears by itself, it is not interpreted as the type-specifying keyword.

AUTO loc

Related Keywords

GLOBAL

LOCAL

STACK

DO

HERE

TOOL

Chapter 3: Keyword Details

BASE

Translate and rotate the world reference frame relative to the robot.

Syntax

BASE X_shift, Y_shift, Z_shift, Z_rotation

Usage Considerations

The BASE program command causes a break in continuous-path motion.

This command can be executed by any program task as long as the robot selected by the task
is not attached by any other task. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, use of the BASE command will cause an
error.

Parameters

X_shift Optional real-valued expression describing the X component in the nor-
mal world coordinate system of the origin point for the new coordinate
system. Zero is assumed if no value is provided.

Y_shift Optional real-valued expression describing the Y component in the nor-
mal world coordinate system of the origin point for the new coordinate
system. Zero is assumed if no value is provided.

Z_shift Optional real-valued expression describing the Z component in the nor-
mal world coordinate system of the origin point for the new coordinate
system. Zero is assumed if no value is provided.

Z_rotation Optional real-valued expression describing the rotation about the Z-axis
in the normal world coordinate system of the origin point for the new
coordinate system. Zero is assumed if no value is provided.

Details

When the eV+ system is initialized, the origin of the reference frame of the robot is assumed to
be fixed in space such that the X-Y plane is at the robot mounting surface, the X-axis is in the
direction defined by joint 1 equal to zero, and the Z-axis coincides with the joint-1 axis.

The BASE command offsets and rotates the reference frame as specified above. This is useful if
the robot is moved after locations have been defined for an application.

If the robot is moved relative to those locations to a point translated by X_shift, Y_shift, Z_shift
and rotated by Z_rotation degrees about the Z axis, a BASE command can be used to com-
pensate so that motions to the previously defined locations will still be as desired after robot
locations have been defined by transformations relative to the robot reference frame.

Another convenient use for the BASE command is to realign the X and Y coordinate axes so
that SHIFT functions cause displacements in desired, nonstandard directions.

22353-000 Rev. B eV+3 Keyword Reference Manual 407

408 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

NOTE: The BASE program command has no effect on locations defined as pre-
cision points. The arguments for the BASE program command describe the dis-
placement of the robot relative to its normal location.

Additional Information: The BASE function can be used with the LISTL monitor
command to display the current BASE setting in the Monitor Window.

Examples

The following example redefines the world reference frame because the robot has been shifted
by "xbase" millimeters in the positive X direction and 50.5 millimeters in the negative Z dir-
ection and has been rotated 30 degrees about the -axis.

BASE xbase,, -50.5, 30

The following example redefines the world reference frame to shift all locations 100 mil-
limeters in the negative X direction and 50 millimeters in the positive Z direction from their
nominal location. The arguments for this statement describe movement of the robot reference
frame relative to the robot and have an opposite effect on locations relative to the robot.

BASE 100,, -50

Related Keywords

BASE (transformation function)

SELECT (monitor command)

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

BELOW

Request a change in the robot configuration during the next motion so that the elbow is below
the line from the shoulder to the wrist.

Syntax

BELOW

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a below configuration, this command is ignored by the
robot.

Additional Information: SCARA robots cannot have a below configuration.

The BELOW program command can be executed by any program task as long as the robot
selected by the task is not attached by any other task. If the robot is not attached, this com-
mand has no effect. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the BELOW command will
cause an error.

The following figure shows the ABOVE and BELOW configurations.

Figure 3-6. Above and Below Configurations

Example

The following example will move the robot to "point1" using the BELOW configuration.

BELOW
MOVE point1
BREAK

Related Keywords

ABOVE

CONFIG

SELECT (program command)

SELECT (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 409

410 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SELECT (real-valued function)

Chapter 3: Keyword Details

BITS

Set or clear a group of digital signals based on a value.

Syntax

BITS first_sig, num_sigs = value

Usage Considerations

Both external digital output signals and internal software signals can be referenced. Input sig-
nals must not be referenced. Input signals are displayed by the monitor command IO 1.

No more than 32 signals can be set at one time.

Any group of up to 32 signals can be set, provided that all the signals in the group are con-
figured for use by the system.

All eV+ digital output commands do not wait for a eV+ cycle and will turn ON outputs imme-
diately. Digital inputs are checked every 2 milliseconds by the eV+ operating system.

Parameters

first_sig Real-valued expression defining the lowest-numbered signal to be
affected.

num_sigs Optional real-valued expression specifying the number of signals to be
affected. A value of 1 is assumed if none is specified. The maximum valid
value is 32.

value Real-valued expression defining the value to be set on the specified sig-
nals. If the binary representation of the value has more bits than num_
sigs, only the lowest num_sigs signals will be affected.

Details

This program command turns ON or OFF one or more external output signals or internal soft-
ware signals based on the value to the right of the equal sign. The effect of this command is to
round the value parameter to an integer and then turn ON or OFF a number of signals based
on the individual bits of the binary representation of the integer.

Examples

The following example sets external output signals 1-8 (8 bits) to the binary representation of
the current monitor speed setting.

BITS 1,8 = SPEED(1)

If the monitor speed were set to 50% (0011 0010 binary), then signals 1-8 are set as follows
after the statement above is issued.

signal 1: 0 (OFF) signal 5: 1 (ON)

signal 2: 1 (ON) signal 6: 1 (ON)

22353-000 Rev. B eV+3 Keyword Reference Manual 411

412 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

signal 3: 0 (OFF) signal 7: 0 (OFF)

signal 4: 0 (OFF) signal 8: 0 (OFF)

The following example sets external output signals 5-9 (4 bits) to the binary representation of
the BCD digit 7

BITS 5,4 = BCD(7)

The following example sets external output signals 1-8 (8 bits) to the binary representation of
the constant 255, which is 11111111 (binary). Signals 1-8 will all be turned ON.

BITS 1,8 = 255

Related Keywords

BITS (real-valued function)

IO

RESET

SIG

SIG.INS

SIGNAL (monitor command)

SIGNAL (program command)

Chapter 3: Keyword Details

BRAKE

Abort the current robot motion.

Syntax

BRAKE

Usage Considerations

The BRAKE program command can be executed by any program task including
a task that is not actively controlling the robot.

This command does not cause a BREAK to occur.

If more than one robot is connected to the controller, this command applies to the
robot currently selected (refer to the SELECT keyword).

If the eV+ system is not configured to control a robot, the BRAKE command will
not generate an error due to the absence of a robot.

Details

The BRAKE program command causes the current robot motion to be aborted
immediately. In response to this command, the robot will decelerate to a stop and
then begin the next motion without waiting for position errors to null.

NOTE: Program execution is not suspended until the robot motion
stops.

Example

The following example initiates a robot motion and simultaneously tests for a
condition to be met. If the condition is met, the motion is stopped with a BRAKE
command. Otherwise, the motion is completed normally.

MOVES step[1]
DO

IF SIG(1023) THEN
BRAKE
EXIT

END
UNTIL STATE(2) == 2
MOVES step[2]

Related Keyword

BREAK

22353-000 Rev. B eV+3 Keyword Reference Manual 413

414 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

BREAK

Suspend program execution until the current motion completes.

Syntax

BREAK

Usage Considerations

The BREAK program command is only used to wait for motion by the robot
attached to the current task.

If the eV+ system is not configured to control a robot, executing the BREAK com-
mand will cause an error.

Details

This command has two effects.

1. Program execution is suspended until the robot reaches its current des-
tination.

NOTE: BREAK cannot be used to make one task wait until
a motion is completed by another task.

2. The continuous-path transition between the current motion and that com-
manded by the next motion statement is broken. The two motions are pre-
vented from being merged into a single continuous path.

The BREAK command causes continuous-path processing to terminate by block-
ing eV+ program execution until the motion ends. CPOFF program command
causes the trajectory generator to terminate continuous path without affecting the
forward processing of the eV+ program.

Example

The following example will move the robot to "point2" after the move to "point1"
is completed without blending or forward processing.

MOVE point1
BREAK
MOVE point2

Related Keywords

BRAKE

CPOFF

CPON

CP

SELECT (program command)

SELECT (monitor command)

Chapter 3: Keyword Details

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 415

416 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

BY

Completes the syntax of the SCALE and SHIFT functions.

Syntax

SCALE(transformation BY value)

SHIFT(transformation BY value, value, value)

Examples

SET new.trans = SCALE(old.trans BY scale.factor)

SET new.trans = SHIFT(old.trans BY x,y,z)

Related Keywords

SCALE

SHIFT

Chapter 3: Keyword Details

CALIBRATE

Initialize the robot positioning system with the robot's current position.

Syntax

CALIBRATE mode, status, robot

Usage Considerations

Normally, the keyword is issued with mode equal to zero.

The command has no effect on a robot when the DRY.RUN switch is enabled.

If the robot is to be moved under program control, the CALIBRATE program com-
mand or monitor command keywords must be processed every time system
power is turned ON and the eV+ system is booted.

The robot cannot be moved under program control or with the pendant until a
CALIBRATE program command or monitor command keyword has been pro-
cessed.

NOTE: Some robots can be moved in joint mode with the control
pendant even when they have not been calibrated.

If multiple robots are connected to the system controller, and the
"robot" parameter is omitted (or 0), this keyword attempts to calibrate all robots
unless they are disabled with the ROBOT system switch. All of the enabled
robots must be calibrated before any of them can be moved under program con-
trol.

The CALIBRATE keyword may operate differently for each type of robot. For
robots with non-absolute (e.g., incremental) encoders, this keyword causes the
robot to move. In this case, the robot must be far enough from the limits of the
working range that it will not move out of range during the calibration process.
Refer to the CALIBRATE monitor command keyword for details of the robot
motion.

If the eV+ system is not configured to control a robot, executing the CALIBRATE
keyword causes an error.

22353-000 Rev. B eV+3 Keyword Reference Manual 417

418 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Parameters

mode Optional real expression that indicates what part of calibration
is to be performed:

Value of
mode Interpretation

0
(or omitted)

Perform a normal calibration.

In detail, the following operations are per-
formed:

(a) Load the main calibration program if it is
not already in memory.

(b) Execute the main calibration program
with the load, execute, and delete flags set.
This causes the robot-specific calibration
routines to be loaded, the robots to be cal-
ibrated, and the robot routines to be deleted.
The main calibration program is left in
memory.

1 Load the main calibration program if it is not
already in memory, and execute the main cal-
ibration program with the load flag set. This
causes the calibration program to load the
applicable robot-specific calibration routines.
Note that the calibration process is not per-
formed.

2 Execute the main calibration program (which
must already be in memory) with the
execute flag set. That causes the system
robot(s) to be calibrated, and all the cal-
ibration programs to be left in memory.

3 Execute the main calibration program which
must already be in memory with the delete
flag set. This causes the calibration program
to delete the robot-specific calibration
routines from memory. Note that the actual
calibration process is not performed and the
main calibration program is left in memory.

status Optional real-valued variable that receives the exit status
returned by the calibration program, or (in mode -1) from eV+
when trying to enter into the calibrate mode.

robot Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, all robots are affected. Otherwise,

Chapter 3: Keyword Details

only the setting for the specified robot is affected.

Details

When the calibration operation is started, eV+ assumes that the robot is not cal-
ibrated and restricts your ability to move the robot with the pendant or an applic-
ation program.

NOTE: The COMP mode light on the pendant does not come on
when the robot is not calibrated.

Robots with incremental encoders lose start-up calibration whenever system
power is switched OFF. As a safety measure, these robots also lose start-up cal-
ibration whenever an *Encoder quadrature error* occurs for one of the robot
joints. Other servo errors that can cause the robot to lose calibration are *Un-
expected zero index*, *No zero index*, and *RSC Communications Failure*.

NOTE: For the eCobra 600 and 800 robots, this operation causes a
small motion of joint 4 (theta).

If this program command attempts to load the main calibration program, the
same program, module, and file name, and search algorithm, are employed as
for the CALIBRATE monitor command.

If you wish to execute a CALIBRATE operation in task 0, it can be accomplished
by using the /C qualifier on the EXECUTE program command keyword in a pro-
gram. With that qualifier specified, a program to calibrate the robot can run in
task 0 even when the DRY.RUN system switch is disabled. A program running
in any task other than 0 can execute the CALIBRATE operation without special
conditions.

The CALIBRATE operation shall only be executed from one task at a time. If it
might be called from multiple tasks (from a REACTE program for example) the
call needs to be protected by a mutex using the TAS keyword (see example
below).

Examples

The following example can be used by any program task to perform start-up cal-
ibration on the robot (if task 0 is used, the DRY.RUN system switch must be
enabled before the program is executed).

DETACH()
DISABLE DRY.RUN
ENABLE POWER

CALIBRATE
ATTACH()

The following example must be used if CALIBRATE is called from more than one
task.

GLOBAL en_po_lock

22353-000 Rev. B eV+3 Keyword Reference Manual 419

420 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

WHILE TAS(en_po_lock,TRUE) DO
WAIT

END

ENABLE POWER

CALIBRATE
ATTACH()

en_po_lock = FALSE

Related Keywords

CALIBRATE (monitor command)

NOT.CALIBRATED

SELECT (program command)

SELECT (real-valued function)

TAS

Chapter 3: Keyword Details

CALL

Suspend execution of the current program and continue execution with a new
subroutine program.

Syntax

CALL program(arg_list)

Usage Considerations

External variable types cannot be used for the arg_list parameter.

Parameters

program Name of the new program to be executed.

arg_list Optional list of subroutine arguments separated by commas
to be passed between the current program and the new pro-
gram. If no argument list is specified, the parentheses after
the program parameter can be omitted.

Arguments can be used to pass data to the called program, to
receive results back, or a combination of both as described
below.

Each argument can be any one of the data types supported
by eV+ (belt, precision point, real-value, string, and trans-
formation) and can be specified as a constant, a variable, or
an expression (see note below). The type of each argument
must match the type of its counterpart in the argument list of
the called program. An argument specified as a variable can
be a simple variable, an array element, or an array with one
or more of its indexes left blank (see below for more inform-
ation).

NOTE: If a value is being passed back to the
calling program, the parameter must be spe-
cified as a variable.

External variable types cannot be used.

Any argument can be omitted but the corresponding argu-
ment in the called program will be undefined. If an argument
is omitted within the argument list, the separating comma
must still be included. If an argument is omitted at the end of
the list, the comma preceding the argument can also be omit-
ted.

NOTE: Refer to the .PROGRAM program com-
mand for information on the effect of omitting
an argument.

22353-000 Rev. B eV+3 Keyword Reference Manual 421

422 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Details

The CALL command causes execution of the current program to be suspended
temporarily. Execution continues at the first step of the indicated new program,
which is then considered a subroutine.

Execution automatically returns to the current program when a RETURN com-
mand is executed in the subroutine. Execution continues with the keyword imme-
diately following the CALL command.

Subroutine arguments can be passed by value or by reference. When an argu-
ment is passed by value, a copy of the argument value is passed to the sub-
routine. Any changes to the corresponding subroutine argument in the
subroutine will not be passed back to the calling program. Any argument that is
specified as an expression or compound transformation will be passed by value.

When an argument is a scalar or array variable, it is passed by reference. That
means a pointer to the variable is passed to the subroutine, which then works
with exactly the same variable as the calling program. If the called subroutine
changes the value of the variable, the value is also changed for the calling pro-
gram. This can be especially significant, for example, if the same variable is
passed as two arguments of a subroutine call. Then, any change to either of the
corresponding subroutine arguments in the subroutine automatically changes the
other corresponding subroutine argument.

Note that an argument that is passed by reference (because it is a variable) can
generally be forced to passage by value. The way that is done depends on the
type of the variable as shown in the following examples.

l For a real variable, passage by value can be forced by enclosing the vari-
able in parentheses as shown below.

CALL prog_a((count))

l For a string variable, an empty string ("") can be added to the variable as
shown below.

CALL prog_b($str.var+"")

l For a transformation variable (for example, start), an equivalent trans-
formation value can be specified by a compound transformation con-
sisting of the variable and the NULL transformation as shown below.

CALL prog_c(start:NULL)

As stated above, the items in the arg_list must match their corresponding items
in the called subroutine. In addition to straightforward matches of scalar to
scalar, and arrays of equal numbers of dimensions, there are several situations in
which higher dimension arrays can be passed in place of lower dimension
arrays. For example, all the following cases are valid.

l Array element passed to a scalar:

Chapter 3: Keyword Details

CALL example(a[1]) ---> .PROGRAM example(b)
CALL example(a[1,2]) ---> .PROGRAM example(b)
CALL example(a[1,2,3]) ---> .PROGRAM example(b)

l One dimension of an array passed to a one-dimensional array:

CALL example(a[]) ---> .PROGRAM example(b[])
CALL example(a[1,]) ---> .PROGRAM example(b[])
CALL example(a[1,2,]) ---> .PROGRAM example(b[])

l Two dimensions of an array passed to a two-dimensional array:

CALL example(a[,]) ---> .PROGRAM example(b[,])
CALL example(a[1,,]) ---> .PROGRAM example(b[,])

l Three dimensions of an array passed to a three-dimensional array:

CALL example(a[,,]) ---> .PROGRAM example(b[,,])

Examples

The following example executes the program named "pallet", passing to it a
pointer to the variable "count". When a RETURN command is executed in the
"pallet" subroutine, control returns to the program containing the CALL com-
mand and the "count" variable will contain the current value of the cor-
responding subroutine argument.

CALL pallet(count)

The following example executes the program named "cycle". The value 1 is
passed to the first parameter of the program "cycle", its second parameter is
undefined, and its third parameter receives the value of the expression n+3. If the
"cycle" program has more than three parameters, the remaining parameters are
all undefined.

Because none of the arguments in the CALL command are variables, no data will
be returned by the program "cycle".

CALL cycle(1, , n+3)

Related Keywords

CALLS

RETURN

22353-000 Rev. B eV+3 Keyword Reference Manual 423

424 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

CALLS

Suspend execution of the current program and continue execution with a new
subroutine program specified with a string value.

Syntax

CALLS string(arg_list)

Usage Considerations

CALLS takes much longer to execute than the normal CALL command. CALLS
should be used only when necessary.

Parameters

string String value, variable, or expression defining the name of the
new program to be executed. The letters in the name can be
lowercase or uppercase and must be within 1 to 15 char-
acters in length.

arg_list Optional list of subroutine arguments separated by commas
to be passed between the current program and the new pro-
gram. If no argument list is specified, the parentheses after
the program parameter can be omitted. Refer to the CALL
command for further information on subroutine arguments.

NOTE: Since the argument list is not specified as part of the string
parameter, all the subroutines called by a specific CALLS com-
mand must have equivalent argument lists.

Details

The CALLS command functions almost exactly the same as the CALL command.
The only difference between the two is the way the subroutine name is specified.
CALL requires that the name be explicitly entered in the command step. CALLS
permits the name to be specified by a string variable or expression, which can
have its value defined when the program is executed. That allows the program to
call different subroutines depending on the circumstances.

As with the CALL command, execution automatically returns to the current pro-
gram when a RETURN command is executed in the subroutine. Execution con-
tinues with the keyword immediately following the CALLS command.

Examples

The example below demonstrates how the CALLS command can be used to
execute a subroutine whose name is determined when the program is executed.

The program reads a set of four digital inputs (1001 to 1004) to determine which
of sixteen different part types applies and is returned to the "type" variable. The

Chapter 3: Keyword Details

part type is considered to be a hexadecimal number which is converted to the cor-
responding ASCII character as the "$type" variable. Once the character is defined,
the appropriate subroutine ("part.0", "part.1", ..., "part.f") is called. The part-type
value is also used to select the portion of the two-dimensional array argument
that is passed to the subroutine.

type = BITS(1001,4)
$type = $ENCODE(/H0, type)
CALLS "part."+$type(arguments[type,], status)

This example can be made more robust by using the STATUS real-valued func-
tion to make sure the proposed subroutine exists before it is called. Using this
function avoids possible errors from undefined program names.

Related Keywords

CALL

CALLS

.PROGRAM

RETURN

STATUS

22353-000 Rev. B eV+3 Keyword Reference Manual 425

426 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

CASE

Initiate processing of a CASE structure by defining the value of interest.

Syntax

CASE value OF

Usage Considerations

This command must be part of a complete CASE structure.

Parameter

value Real value, variable, or expression that defines the value to
be matched in the CASE structure to determine which
keywords are executed.

Details

The CASE command is a flexible structure available in eV+. It provides a means
for executing one group of keywords from among any number of groups. The
complete syntax is as follows (the blank lines are not required).

CASE evaluation OF
VALUE evaluation_condition_1,...:

group_of_steps
VALUE evaluation_condition_2,...:

group_of_steps
.
.
.

ANY
group_of_steps

END

The three vertical dots indicate that any number of VALUE steps can be used to
execute additional groups of keywords.

The ANY step listed above is optional. There can be only one ANY step in a
CASE structure and it must mark the last group in the structure as shown above.

The ANY and END steps must be on lines by themselves as shown. However, as
with all instructions, those lines can have comments.

The CASE structure is processed as follows.

1. The expression following the CASE keyword is evaluated.
2. All the VALUE steps are scanned until one is found to meet the eval-
uation conditions.

3. Keywords following that VALUE step are executed.
4. Execution continues at the first keyword after the END step.

Chapter 3: Keyword Details

If no VALUE step is found that meets the evaluation conditions and there is an
ANY step in the structure, then the keywords following the ANY step will be
executed.

If no VALUE evaluation condition is met in the structure, and there is no ANY
step, none of the commands in the entire CASE structure are executed.

Examples

The following example shows the basic function of a CASE command:

CASE number OF
VALUE 1:

TYPE "one"
VALUE 2:

TYPE "two"
ANY

TYPE "Not one or two"
END

The following sample program prompts to enter a test value. If the value is neg-
ative, the program displays a message and then exits. Otherwise, a CASE
commmand is used to classify the input value as a member of one of the fol-
lowing three groups.

1. Even integers from 0 to 10.
2. Odd integers from 0 to 10.
3. All other numbers.

PROMPT "Enter a value from 0 to 10: ", x
CASE x OF

VALUE 0, 2, 4, 6, 8, 10:
TYPE "The number", x, " is EVEN"

VALUE 1, 3, 5, 7, 9:
TYPE "The number", x, " is ODD"

ANY
TYPE x, " is not an integer from 0 to 10"

END

The following example shows a use of the CASE command to test Boolean con-
ditions.

PROMPT "Enter a number", x
CASE TRUE OF

VALUE (x > 0):
TYPE "The number was greater than 0."

VALUE (x == 0):
TYPE "The number was equal to 0."

VALUE (x < 0):
TYPE "The number was less than 0."

END

The following example demonstrates how to use the CASE command to evaluate
string data.

CASE TRUE OF
VALUE ($string1=="hello"):

22353-000 Rev. B eV+3 Keyword Reference Manual 427

428 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

TYPE "string=hello"
VALUE($string1=="world"):

TYPE "string=world"
ANY

TYPE "unknown string"
END

Related Keywords

ANY

END

TRUE

VALUE

Chapter 3: Keyword Details

CLEAR.EVENT

Clear an event associated with the specified task.

Syntax

CLEAR.EVENT task, flag

Parameters

task Optional real value, variable, or expression interpreted as an
integer that specifies the task for which the event is to be
cleared. The valid range is 0 to 6 or 0 to 27, inclusive. If this
parameter is omitted, the number of the current task is used.

flag Not used. Defaults to 1.

Details

This command clears the event associated with the specified task.

The default event cleared is the input / output completion event for which the
statement WAIT.EVENT 1 waits. This event is cleared by the execution (not the
completion) of any input / output keyword operation.

Related Keywords

GET.EVENT

SET.EVENT

WAIT.EVENT

22353-000 Rev. B eV+3 Keyword Reference Manual 429

430 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

CLEAR.LATCHES

Empties the latch buffer for the selected device.

Syntax

CLEAR.LATCHES (select)

Parameter

select Integer, expression, or real variable that determines
whether any latches have occurred since the last time the
function was executed. The setting values are described
below.

0 Clears latch buffer for currently selected robot

-n (< 0) Clears latch buffer for belt n

Details

This program command clears the event and all information associated with the
specified latch buffer.

As opposed to the LATCHEDReal-valued function, no latch event data will be
made available for retrieval.

Example

The following example is typically used in an initialization program to ensure
latches that may have been detected when V+ programs were not executing are
cleared from the buffer (first in, first out), so that any new latches are accurate.
For the example below, if you stop your V+ programs and belt 1 continues to gen-
erate latches, these latches may not be associated with objects still upstream of
the robot. It is good practice to clear latch buffers when programs are starting up,
except in applications where these latches may still be valid.

CLEAR.LATCHES(-1)

Related Keywords

DEVICE

LATCHED

LATCH

#PLATCH

Chapter 3: Keyword Details

COARSE

Enable a low-precision nulling tolerance for the robot.

Syntax

COARSE tolerance ALWAYS

Usage Considerations

Only the next robot motion will be affected unless the ALWAYS parameter is spe-
cified.

If the tolerance parameter is specified, its value becomes the default for any sub-
sequent COARSE program command executed during the current execution cycle,
regardless of whether ALWAYS is specified.

The statement FINE 100 ALWAYS is assumed whenever program execution is
initiated and when a new execution cycle begins. This is the default state of the
eV+ system.

The COARSE command can be executed by any program task as long as the
robot selected by the task is not attached by any other task. The command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the COARSE com-
mand causes an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the
percentage of the standard coarse tolerances that are to be
used for each joint of the robot attached by the current exe-
cution task. Refer to the Details section below for default val-
ues.

ALWAYS Optional qualifier that establishes COARSE as the default con-
dition. COARSE will remain in effect until disabled by a FINE
program command. If ALWAYS is not specified, the COARSE
commandwill apply only to the next robot motion.

Details

The COARSE program command enables a low-precision feature in the robot
motion servos system so that larger errors in the final positions of the robot joints
are permitted at the ends of motions. This allows faster motion execution when
high accuracy is not required.

Lower precision is sometimes required in belt tracking applications when the con-
stant motion of the robot prevents the servos from settling to high precision.

If the tolerance parameter is specified, the new setting takes effect at the start of
the next motion. The value becomes the default for any subsequent COARSE com-
mand executed during the current execution cycle, regardless of whether

22353-000 Rev. B eV+3 Keyword Reference Manual 431

432 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ALWAYS is specified. Changing the COARSE tolerance does not affect the FINE
tolerance.

If the tolerance parameter is omitted, the most recent setting for the attached robot
is used. The default setting is restored to 100 percent when program execution
begins or a new execution cycle starts, assuming that the robot is attached to the
program.

Examples

The following example enables the low-precision feature for the next motion oper-
ation only.

COARSE

The following example enables the low-precision feature for the next motion oper-
ation with the tolerance settings changed to 150% of the standard tolerance for
each joint

COARSE 150

The followinge example enables the low-precision feature until it is explicitly dis-
abled.

COARSE ALWAYS

Related Keywords

CALL

CALLS

EXECUTE (monitor command)

EXECUTE (program command)

PRIME

SSTEP

XSTEP

Chapter 3: Keyword Details

CPOFF

Instruct the eV+ system to stop the robot at the completion of the next motion
operation (or all subsequent motion operations) and null position errors.

Syntax

CPOFF ALWAYS

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not spe-
cified. This is the default state of the eV+ system.

If the CP system switch is disabled, continuous-path processing never occurs
regardless of any CPOFF commands that are executed.

CPON ALWAYS is assumed whenever program execution is initiated and when
a new execution cycle begins.

The CPOFF program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. The command
applies only to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the CPOFF com-
madn causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPOFF as the default con-
dition. When ALWAYS is included in a CPOFF command, CPOFF
will remain in effect continuously until disabled by a CPON com-
mand. If ALWAYS is not specified, the CPOFF command applies
only to the next robot motion.

Details

When CPOFF is active, the robot will come to a stop at the completion of the next
robot motion and any final position errors will be nulled (if required).

Unlike the BREAK program command which is executed after a motion to cause
continuous-path processing to terminate, CPON and CPOFF are executed before a
motion operation to affect the continuous-path processing of the next motion com-
mand. While BREAK applies to only one motion operation, CPOFF can apply to
all the motion operations that follow.

NOTE: The BREAK program command causes continuous-path
processing to terminate by blocking eV+ program execution until
the motion ends. CPOFF causes the trajectory generator to terminate
continuous path without affecting the forward processing of the
eV+ program.

22353-000 Rev. B eV+3 Keyword Reference Manual 433

434 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Examples

The following example will cause the robot to move to the position defined as
"pos1", decelerate its motion, and stop briefly before moving to the position
defined as "pos2" (the flow of the program execution will not be stopped). The
robot motions between pos1 and pos2 are not blended.

CPOFF ALWAYS
MOVES pos1
MOVES pos2

Related Keywords

BREAK

CP

CPON

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

CPON

Instruct the eV+ system to execute the next motion operations (or all subsequent
motion operations) as part of a continuous path.

Syntax

CPON ALWAYS

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not spe-
cified.

If the CP system switch is disabled, continuous-path processing never occurs
regardless of any CPON commands that are executed.

CPON ALWAYS is assumed whenever program execution is initiated and when
a new execution cycle begins. This is the default state of the eV+ system.

The CPON program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. The command
applies only to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the CPON com-
mand causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPON as the default con-
dition. If ALWAYS is specified, CPON will remain in effect con-
tinuously until disabled by a CPOFF program command. If
ALWAYS is not specified, the CPON command applies only to
the next robot motion.

Details

When CPON is active, it is possible to execute a series of motion operations that
are blended into a single continuous path. Each motion will be performed in suc-
cession without stopping the robot at specified locations.

Unlike the BREAK program command which is executed after a motion oper-
ation to cause continuous-path processing to terminate, CPON and CPOFF are
executed before a motion operation to affect the continuous-path processing of the
next motion operation.

NOTE: The BREAK program command causes continuous-path
processing to terminate by blocking eV+ program execution until
the motion ends. CPOFF causes the trajectory generator to terminate
continuous path without affecting the forward processing of the
eV+ program.

22353-000 Rev. B eV+3 Keyword Reference Manual 435

436 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Executing the CPON command will permit continuous-path processing to occur,
but any of the following conditions will break a continuous path and override
CPON functionality.

l No subsequent motion operation is executed before completion of the next
motion operation.

l The CP system switch is disabled.

l The next motion operation is followed by an operation that explicitly or
implicitly causes motion termination (for example, BREAK).

Example

The following example will cause the robot to begin blending moves between pos-
itions defined as "pos1" and "pos2" when it was previously commanded to not
blend using other methods.

CPON ALWAYS
MOVES pos1
MOVES pos2

Related Keywords

BREAK

CP

CPOFF

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

CYCLE.END

Terminate the executing program in the specified task the next time it executes a
STOP program command (or its equivalent).

Suspend processing of an executable program until a program running in the spe-
cified task completes execution.

Syntax

CYCLE.END task_num, stop_flag

Usage Considerations

The CYCLE.END program command has no effect if the specified program task
is not active.

The CYCLE.END program command suspends execution of the program con-
taining the keyword until the specified program task completes execution. If a
program is aborted while its execution is suspended by a CYCLE.END com-
mand, the program task specified by the CYCLE.END command will still be ter-
minated if the stop_flag is TRUE.

Parameters

task_num Optional real value, variable, or expression interpreted as
an integer that specifies which program task is to be mon-
itored or terminated.

If the task number is not specified, the CYCLE.END pro-
gram command always accesses task 0.

stop_flag Optional real value, variable, or expression interpreted as a
logical TRUE or FALSE value. If the parameter is omitted or
has the value 0, the specified task is not stopped, but
CYCLE.END has all its other functionality as described
below. If the parameter has a nonzero value, the selected
task stops at the end of its current cycle.

Details

If the stop_flag parameter has a TRUE value, the specified program task will ter-
minate the next time it executes a STOP program command (or its equivalent),
regardless of how many program cycles are left to be executed.

NOTE: CYCLE.END will not terminate a program with continuous
internal loops. Such a program must be terminated with the
ABORT keyword.

Regardless of the stop_flag parameter, this command will wait until the program
is terminated. If the program being terminated loops internally so that the current
execution cycle never ends, the CYCLE.END command will wait indefinitely.

22353-000 Rev. B eV+3 Keyword Reference Manual 437

438 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

To proceed from a CYCLE.END that is waiting for a program to terminate, abort
the program that is waiting for a CYCLE.END by issuing an ABORT monitor
command for the program task that executed the CYCLE.END command.

Example

The following example demonstrates how a program task can be initiated from
another program task. The ABORT and CYCLE.END program commands are
used to ensure the specified program task is not already active.

ABORT 3
CYCLE.END 3
EXECUTE 3 new.program

Related Keywords

ABORT (monitor command)

ABORT (program command)

CYCLE.END (monitor command)

EXECUTE (monitor command)

EXECUTE (program command)

KILL (monitor command)

KILL (program command)

STATUS (monitor command)

STATUS (real-valued function)

STOP

Chapter 3: Keyword Details

DECOMPOSE

Extract the real values of individual components of a location value.

Syntax

DECOMPOSE array_name[index] = location

Parameters

array_name Name of the real-valued array that has its elements
defined.

index Optional integer value(s) that identifies the first array
element to be defined. Zero will be assumed for any
omitted index. If a multiple-dimension array is specified,
only the right-most index is incremented as the values
are assigned.

location Location value that is decomposed into its component
values. This can be a transformation value or a pre-
cision-point value and can be defined by a variable or a
location-valued function.

Details

This program command assigns values to consecutive elements of the named
array corresponding to the components of the specified location.

If the location is represented as a transformation value, 6 elements are defined
corresponding to X, Y, Z, yaw, pitch, and roll.

If the location is represented as a precision-point value, then 1 to 12 elements are
defined depending on the number of robot joints present that correspond to the
individual joint positions.

Examples

The following example assigns the components of transformation part to ele-
ments 0 to 5 of array "x".

DECOMPOSE x[] = part

The following example assigns the components of precision point "#pick" to
array element "angles[4]" and those that follow.

DECOMPOSE angles[4] = #pick

The following example will decompose a multi-dimension variable array named
"point".

SET point[0] = TRANS(1,10,2,10,3,10)
SET point[1] = TRANS(1,20,2,20,3,20)

22353-000 Rev. B eV+3 Keyword Reference Manual 439

440 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SET point[2] = TRANS(1,30,2,30,3,30)

FOR i = 0 TO 2
DECOMPOSE a[i,] = point[i]

END

FOR i = 0 TO 2
FOR j = 0 TO 5

TYPE "a[", i, ",", j, "]", a[i,j]
END

END

Related Keywords

#PPOINT

TRANS

Chapter 3: Keyword Details

DEF.DIO

Assign virtual digital I/O to standard eV+ signal numbers for use by keywords.

Syntax

DEF.DIO signal = count, operation

Usage Considerations

This program does not support Host I/O signal numbers 4001 to 4999. Refer to
the Sysmac Studio Robot Integrated System Building Function with Robot Integrated
CPU Unit Operation Manual (Cat. No. W595) for more information.

Parameters

signal Value representing a V+ signal number from 17 to 505 for out-
put or from 1017 to 1505 for input.

count The number of signals desired. Default is 8 and the range is 1
to 32.

operation An optional integer or real-valued expression representing the
action to be taken. If omitted or positive, the signals will be
configured. If negative, the signals will be removed.

Details

Each DEF.DIO operation can only map 32 inputs or 32 outputs. However mul-
tiple operations can be made to map more signals. The signals mapped this way
are equivalent to soft signals and can be read or set with the SIG function or the
SIGNAL and BITS program commands.

If the signal is already mapped to a real or virtual digital I/O, an error -405 *
Illegal digital signal * is returned.

Example

The following example defines input signals 1033 through 1048 as virtual sig-
nals.

DEF.DIO 1033 = 16

Related Keywords

BITS

IO

RESET

RUNSIG

22353-000 Rev. B eV+3 Keyword Reference Manual 441

442 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SIG

SIG.INS

SIGNAL

Chapter 3: Keyword Details

DEFBELT

Define a belt variable for use with a conveyor tracking robot.

Syntax

DEFBELT %belt_var = nom_trans, belt_num, vel_avg, scale_fact

Usage Considerations

The DEFBELT program command cannot be executed while the robot is moving
relative to the specified belt variable.

When a belt variable is initialized using this command, its window parameters
are set to allow any location in the working volume of the robot and no belt win-
dow is set. Refer to the WINDOW program command for more information.

Parameters

%belt_var Name of the belt variable to be defined.

nom_trans Transformation value that defines the position and ori-
entation of the conveyor belt. This can be provided by a
transformation variable, a transformation-valued func-
tion, or a compound transformation.

The X-axis of the nominal transformation defines the dir-
ection of travel of the belt. Normally, the belt moves
along the direction of +X. The X-Y plane defined by this
transformation is parallel to the surface of the belt. The
(X, Y, Z) position defined by the nominal transformation
defines the approximate center of the belt with respect to
the robot.

belt_num The number of the encoder used for reading the instant-
aneous location of the belt. Encoders numbered from 1
to 99 can be specified. This can be specified with a con-
stant, a variable, or an expression.

vel_avg This parameter is currently ignored, but some value
must be provided.

scale_fact The calibration constant that relates motion of the con-
veyor belt with counts of the encoder mounted on the
conveyor. This value which can be supplied as a constant,
a real variable, or an expression is interpreted as having
the units in millimeters of belt travel per encoder count.

22353-000 Rev. B eV+3 Keyword Reference Manual 443

444 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Details

A conveyor belt is modeled by a belt variable. In addition to the parameters for
the DEFBELT program command, a belt variable contains the following inform-
ation

l Window parameters, which define the working range of the robot along
the belt (set with the WINDOW program command).

l An encoder offset which is used to adjust the origin of the belt frame of ref-
erence (set with the SETBELT program command).

Belt variables have the following characteristics.

l Belt variable names must always be preceded by the percent character (%).
Otherwise, the normal rules for variable names apply.

l Belt variable arrays are allowed, for example, %b[x].

l Belt variables can be passed as subroutine parameters just like other vari-
ables.

l Belt variables can be defined only with the DEFBELT command. There is
no assignment command for them. The following statements are invalid.

%new_belt = %old_belt
SET %new_belt = %old_belt

l Belt variables cannot be stored on a mass-storage device.

l Variables used to define the parameters in a DEFBELT command can be
stored on a mass-storage device.

Example

The following example defines the belt variable "%belt.var". The value of "b.num"
must be the number of the encoder to be associated with this belt variable. The
variable "b.num" is also used as an index for arrays of data describing the pos-
ition and orientation of the belt, its velocity smoothing, and the encoder scale
factor.

DEFBELT %belt.var = belt.nom[b.num], b.num, v.avg[b.num],
belt.sf[b.num]

Related Keywords

BELT (real-valued function)

BELT.MODE

BSTATUS

SETBELT

WINDOW (program command)

WINDOW (real-valued function)

Chapter 3: Keyword Details

DEPART

Start a robot motion away from the current location with joint-interpolated
motion.

Syntax

DEPART distance

Usage Considerations

This program command can be executed by any program task as long as the task
has attached a robot. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing this command
causes an error.

Parameter

distance Real-valued expression that specifies the distance in mil-
limeters along the robot tool Z-axis between the current robot
location and the desired destination.

A positive distance moves the tool back (toward negative
tool Z) from the current location. A negative distance moves
the tool forward (toward positive tool Z).

Details

This program command initiates a joint-interpolated robot motion to a new loc-
ation which is offset from the current location by the distance given, measured
along the current tool Z-axis.

Example

The following example moves the robot tool 80 millimeters back from its current
location using a joint-interpolated motion.

DEPART 80

Related Keywords

APPRO

APPROS

DEPARTS

MOVE

MOVEF

MOVES

SELECT (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 445

446 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SELECT (real-valued function)

Chapter 3: Keyword Details

DEPARTS

Start a robot motion away from the current location with straight-line motion.

Syntax

DEPARTS distance

Usage Considerations

The DEPARTS program command causes a straight-line motion during which no
changes in configuration are permitted.

This command can be executed by any program task as long as the task has
attached a robot. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing this command
causes an error.

Parameter

distance Real-valued expression that specifies the distance in mil-
limeters along the robot tool Z-axis between the current robot
location and the desired destination.

A positive distance moves the tool back (toward negative
tool Z) from the current location. A negative distance moves
the tool forward (toward positive tool Z).

Details

This command initiates a straight-line robot motion to a new location which is
offset from the current location by the distance given, measured along the current
tool Z-axis.

Examples

The following example withdraws the robot tool (2 * offset) millimeters along a
straight-line path from its current location.

DEPARTS 2*offset

Related Keywords

APPRO

APPROS

DEPART

MOVE

MOVEF

MOVES

22353-000 Rev. B eV+3 Keyword Reference Manual 447

448 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

DETACH

Release a specified device from the control of the application program.

Syntax

DETACH (logical_unit)

Usage Considerations

Detaching the robot causes a break in continuous-path motion.

DETACH automatically forces an FCLOSE operation if a disk file is open on the
specified device.

The robot is automatically attached to task 0 when the EXECUTE keyword is pro-
cessed to initiate that task and the DRY.RUN system switch is disabled. All other
logical units are automatically detached when program execution begins. Other
events that cause automatic detachment are listed below.

Parameter

logical_unit Optional real value, variable, or expression interpreted as
an integer that identifies the device to be detached. Refer
to the ATTACH program command for a description of
logical unit numbers.

The parentheses can be omitted if the logical unit number
is omitted. This will cause the robot to be detached.

Details

This program command releases the specified device from control by the applic-
ation program. No error is generated if the device was not previously attached.

Control of the specified device can be returned to the program with the ATTACH
program command.

When logical_unit is 0 or omitted, the program releases control of the robot.
While the robot is detached, robot power can be turned OFF and ON, the pendant
can be used to move the robot, and a different robot can be selected if more than
one robot is connected to the system controller. A delay of one system cycle of 16
ms occurs when a robot is detached.

This is useful for applications that require defining where the robot should be loc-
ated for certain operations. A teaching program can DETACH the robot and then
output directions in the Monitor Window or the pendant. You can then use the
pendant to move the robot to the desired locations. The Monitor Window or the
pendant can be used for accepting input.

When a disk logical unit is detached, any device that was specified by the cor-
responding ATTACH program command is forgotten and subsequent ATTACH
command must specify the device again if the default device is not desired.

22353-000 Rev. B eV+3 Keyword Reference Manual 449

450 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

The following events automatically detach all the logical units (except the robot)
from the affected program task.

l Processing of the EXECUTE keyword

l Processing of the KILL keyword

l Processing of the ZERO monitor command

l Normal completion of program execution
If a program terminates execution abnormally, all of its devices remain attached,
but the teach pendant is detached. Abnormal termination of program execution
refers to any cause other than HALT or STOP program commands. If the task is
subsequently resumed, the program automatically reattaches the Monitor Win-
dow and pendant if they were attached before the termination.

NOTE: It is possible that another program task attached the
pendant in the meantime. This results in an error message when
the stopped task is restarted.

Examples

The following example will release program control of the robot.

DETACH

The following example will discontinue program control of the pendant.

DETACH (1)

Related Keywords

ATTACH

Chapter 3: Keyword Details

DISABLE

Turn OFF one or more system switches.

Syntax

DISABLE switch, ... , switch

Usage Considerations

If a specified system switch accepts an index qualifier and the index is zero or
omitted with or without the brackets, all the elements of the switch array are
enabled.

Parameter

switch Name of a system switch to be turned OFF.

The name can be abbreviated to the minimum length that
uniquely identifies the switch. For example, the MESSAGES
system switch can be referred to as "ME" since there is no
other switch with a name beginning with the letters ME.

Details

When a system switch is turned OFF, the feature it controls is no longer func-
tional or available for use. Turning a switch ON with the ENABLE keyword
makes the associated feature functional or available for use.

IMPORTANT: The system switches are shared by all the program
tasks. Care should be exercised when multiple tasks are disabling
and enabling switches. Otherwise, the switches may not be set cor-
rectly for one or more of the tasks.

NOTE: Disabling the DRY.RUN system switch does not have an
effect until the next EXECUTE keyword is processed for task 0, an
ATTACH program command is executed for the robot, or a
CALIBRATE keyword is processed.

The SWITCH monitor command or the SWITCH real-valued function can be
used to determine the status of a system switch at any time. The SWITCH pro-
gram command can be used like the DISABLE program command is used to dis-
able a switch.

Example

The following example turns OFF the MESSAGES system switch.

DISABLE MESSAGES

22353-000 Rev. B eV+3 Keyword Reference Manual 451

452 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

Chapter 3: Keyword Details

DO

Introduce a DO program structure.

Syntax

DO

Usage Considerations

The DO program structure must be concluded with an UNTIL command.

Details

The DO structure provides a way to control the execution of a group of keywords
based on a control expression. The syntax for the DO structure is as follows:

DO
group_of_steps

UNTIL logical_expression

Processing of the DO structure can be described as follows.

1. The group of command steps is executed.

2. The logical expression is evaluated. If the result is FALSE, return to item 1.
Otherwise, proceed to item 3.

3. Program execution continues at the first command after the UNTIL com-
mand.

When this structure is used, it is assumed that some action occurs within the
group of enclosed keywords that changes the result of the logical expression from
FALSE to TRUE when the structure should be exited. Alternately, a logical_expres-
sion can be replaced with an expression that evaluates the state of a digital I/O
signal (see example below).

The group of keywords within the DO structure is always executed at least one
time. Refer to the WHILE command for a variation of this functionality.

There do not need to be any keywords between the DO and UNTIL commands.
When there are no such keywords, the UNTIL criterion is continuously evaluated
until it is satisfied, at which time program execution continues with the
keywords following the UNTIL command.

Example

The following example uses a DO structure to control a task that involves mov-
ing parts from one place to another. The sequence assumes that the digital signal
line buffer.full changes to the on state when the parts buffer becomes full. Then,
the robot typically performs a different sequence of motions.

.

.
DO

CALL get.part()

22353-000 Rev. B eV+3 Keyword Reference Manual 453

454 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

CALL put.part()
UNTIL SIG(buffer.full)
.
.

Related Keywords

DO

EXIT

NEXT

UNTIL

WHILE

Chapter 3: Keyword Details

DOS

Execute a keyword defined by a string expression.

Syntax

DOS string, error

Usage Considerations

Before the command is executed, the string must be translated from ASCII into
the internal representation used by eV+. This causes the DOS command to
execute slower than issuing the keyword directly.

The string cannot define a declaration statement or most of the control structure
statements.

The DOS command is ignored if the string defines a comment line or a blank
line.

If a variable referenced in the command is not found in the current program con-
text, the variable is assumed to be global. Any new variables that are created by
the command (for example, in an assignment statement) are created as global
types. Normal variable type checking is performed and errors are generated if
there are type conflicts.

The single-line control statements GOTO, IF ... GOTO, CALL, and CALLS are
allowed and execute normally. The multi-line control structures (for example,
CASE ... END, IF ... ELSE ... END) cannot be executed by the DOS command.

Parameters

string String constant, variable, or expression that defines the
keyword to be executed. The command may contain a label
field (which is ignored) and may be followed by a standard
comment field. Leading and trailing spaces and tabs are
ignored.

error Optional real variable that receives any parsing or execution
error generated by the command. The value is set to 1 if the
command succeeds. If the command fails, a standard eV+
error number is returned.

If this parameter is omitted and an error occurs, execution of
the program stops and the appropriate error message is dis-
played.

Details

The DOS (DO String) command provides a method for altering a program during
run-time. The embedded keyword that is defined by a string expression is
executed as though it had been entered in the program as a normal keyword.

22353-000 Rev. B eV+3 Keyword Reference Manual 455

456 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

The keyword executes in the context of the current program. Any subroutine argu-
ment, automatic variable, or local variable can be accessed.

Examples

The following example causes the variable "var" to be assigned the value 123. If
"var" is undefined, a new global variable named "var" is created. Any errors
cause the program to stop executing.

DOS "var = 123"

The following example causes the keyword contained in the string variable $ins
to be executed. If an error occurs, an eV+ error code is placed in the real variable
status and execution continues.

DOS $ins, status

Related Keywords

DO

MCS

Chapter 3: Keyword Details

DRIVE

Move an individual joint of the robot.

Syntax

DRIVE joint, change, speed

Usage Considerations

The DRIVE program command can be executed by any program task as long as
the task has attached a robot. This command applies to the robot selected by the
task.

If the eV+ system is not configured to control a robot, executing the DRIVE com-
mand causes an error.

Parameters

joint Number of the robot joint to be moved. This can be specified
by a constant, a variable, or an expression.

change The change desired in the joint position. This can be specified
by a constant, a variable, or an expression. The value can be
positive or negative.

The value is interpreted in the units used tomeasure the joint
position. A change for a rotary joint must be the number of
degrees the joint is to move. A change for a linear joint must
specify the number of millimeters to move.

speed The temporary program speed to be used for the motion, con-
sidered as a percentage of the current program speed setting.
This can be specified by a constant, a variable, or an expres-
sion.

Details

The DRIVE program command operates the single specified robot joint, changing
its position by the amount specified with the change parameter in degrees or mil-
limeters. The joint parameter can be 1, 2, ..., n, where n is the number of joints the
robot has.

The speed of the motion is governed by a combination of the speed given in this
command and the monitor speed setting. The regular program speed setting is
not used. Refer to the SPEED monitor command and the SPEED program com-
mand for information about motion speeds.

The duration setting established by the DURATION program command also
affects the execution time of the motion.

22353-000 Rev. B eV+3 Keyword Reference Manual 457

458 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Example

The following example changes the angle of joint 2 by driving the joint 62.4
degrees in the negative direction at a speed of 75% of the monitor speed.

DRIVE 2,-62.4,75

Related Keywords

SELECT

SELECT (program command)

Chapter 3: Keyword Details

DURATION

Set the minimum execution time for subsequent robot motions.

Syntax

DURATION time ALWAYS

Usage Considerations

Unless the ALWAYS parameter is specified, only the next robot motion is
affected.

The statement DURATION 0 ALWAYS is assumed whenever program execution
is initiated and when a new execution cycle begins.

The DURATION program command affects the DRIVE program command.

The setting of the SPEED monitor command affects the results of the DURATION
setting.

The DURATION command can be executed by any program task as long as the
robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the DURATION
command causes an error.

Parameters

time Real-valued expression that specifies the minimum length of
time in seconds that subsequent robot motions take to per-
form.

If the value is zero, robot motions are performedwithout con-
sideration of their time duration and use only the applicable
values for SPEED and ACCEL keywords.

ALWAYS Optional keyword that determines how long the new duration
will have an effect.

If ALWAYS is included, the specified duration time applies to all
subsequent robot motions until the duration setting is
changed by another DURATION command. The specified dur-
ation applies only to the next robot motion if ALWAYS is not
included.

Details

This command sets the minimum execution time for subsequent robot motions.
For any motion, the time specified by the DURATION command has no effect if
the duration setting is less than the time computed by the eV+ robot-motion tra-
jectory generator using the current motion speed and acceleration settings. If the
duration is longer than the time computed by the trajectory generator, the motion

22353-000 Rev. B eV+3 Keyword Reference Manual 459

460 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

is slowed so that its elapsed time corresponds approximately to the specified dur-
ation.

NOTE: Actual motion times may differ slightly from the duration
setting due to quantization effects and due to acceleration and decel-
eration profiling.

The DURATION command does not specify the duration of an entire motion, but
instead specifies the minimum time of the constant-velocity segment plus one-
half the acceleration and deceleration segments. Continuous-path motions in
which individual motions are blended together get the correct duration, but a
single motion takes longer than the specified duration. The time of motion is
primarily defined either by the value of DURATION or SPEED, using the value
that provides the longer time.

Consider a situation where the value of a periodic, external signal is used to con-
tinuously correct the path of the robot while the robot is moving. The
DURATION command can be used to match the motion execution time to the
sensor sampling rate and processing time. This ensures that the robot is kept in
motion while new information is being processed.

Example

The following example evaluates an external sensor and moves to the computed
robot location. This sequence is repeated 20 times at intervals of 96 milliseconds
(6/TPS seconds). This assumes the default period of 16 milliseconds for the eV+
trajectory generator. The motion speed is set to a very large value to ensure
motion is paced by the duration setting.

DURATION 6/TPS ALWAYS
SPEED 200 ALWAYS

FOR i = 1 TO 20
CALL read.signal(loc)
MOVE loc

END

Related Keywords

ACCEL

DURATION

SELECT

SELECT (real-valued function)

SPEED (monitor command)

SPEED (program command)

Chapter 3: Keyword Details

ELSE

Separate the alternate group of statements in an IF ... THEN control structure.

Syntax

ELSE

Usage Considerations

ELSE can be used only within an IF ... THEN ... ELSE ... END control structure.

Details

Denotes the end of a group of statements to be executed if the value of the logical
expression in an IF logical_expr THEN control structure is nonzero, and the start
of the group of statements to be executed if the value is zero.

Example

The following example determines whether the variable "input.signal" has been
defined. If it has, the program checks the signal indicated by the value of
"input.signal" and types different messages depending on its setting. The outer IF
does not include an ELSE clause.

IF DEFINED(input.signal) THEN
IF SIG(input.signal) THEN

TYPE "The input signal is ON"
ELSE

TYPE "The input signal is OFF"
END

END

Related Keyword

IF ... THEN

22353-000 Rev. B eV+3 Keyword Reference Manual 461

462 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ENABLE

Turn ON one or more system switches.

Syntax

ENABLE switch, ..., switch

Usage Considerations

The ENABLE can be used when a program is executing.

If a specified system switch accepts an index qualifier and the index is zero or
omitted with or without the brackets, all the elements of the switch array are
enabled.

Parameter

switch Name of a system switch to be turned ON.

The name can be abbreviated to the minimum length that
uniquely identifies the switch. For example, the MESSAGES
switch can be referred to with "ME" since there is no other
switch with a name beginning with the letters ME.

Details

When a system switch is turned ON, the feature it controls is functional and
available for use. Turning a switch OFF with the DISABLE keyword makes the
associated feature not functional or available for use.

IMPORTANT: The system switches are shared by all the program
tasks. Care should be exercised when multiple tasks are disabling
and enabling switches. Otherwise, the switches may not be set cor-
rectly for one or more of the tasks.

The SWITCH monitor command or the SWITCH real-valued function can be
used to determine the status of a system switch at any time. The SWITCH pro-
gram command can be used like the ENABLE program command is used to set a
switch.

Example

The following example turns ON the MESSAGES system switch.

ENABLE MESSAGES

Related Keywords

DISABLE

DISABLE

Chapter 3: Keyword Details

SWITCH

SWITCH (program command)

SWITCH (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 463

464 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

END

Mark the end of a control structure.

Syntax

END

Usage Considerations

Every END program command must be part of a CASE, FOR, IF ... GOTO, IF ...
THEN, or WHILE control structure.

Details

Every CASE, FOR, IF ... GOTO, IF ... THEN, or WHILE control structure must
have its end marked by this END program command. The eV+ editor displays
an error message when program editing is exited if the correct number of END
commands do not exist in a program.

Examples

The following example demonstrates the use of END in a WHILE control struc-
ture.

WHILE TRUE DO
;statements

END

The following example demonstrates the use of END in a FOR control structure.

FOR i = 0 TO 10
;statements

END

The following example demonstrates the use of END in an IF ... THEN control
structure.

IF (condition) THEN
;statements

ELSE
;statements

END

The following example demonstrates the use of END in a CASE control structure.

CASE condition OF
VALUE (condition):

;statements
VALUE (condition):

;statements
VALUE (condition):

;statements
ANY

;statements
END

Chapter 3: Keyword Details

The following example demonstrates the use of END in an IF ... GOTO control
structure.

ATTACH(dlun, 4) "DISK"
IF IOSTAT(dlun) < 0 GOTO 100
FOPENW(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100

...
FCLOSE(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100
DETACH(dlun)

100 IF IOSTAT(dlun) < 0 THEN
TYPE $ERROR(IOSTAT(dlun))

END

Related Keywords

CASE

FOR

IF ... GOTO

IF ... THEN

WHILE

22353-000 Rev. B eV+3 Keyword Reference Manual 465

466 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ESTOP

Stop the robot in the same manner as if an emergency-stop signal was received.

Syntax

ESTOP robot_num

Parameters

robot_num Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, the settings for all robots are
altered. Otherwise, only the setting for the specified robot is
affected.

Details

This keyword immediately issues the emergency-stop signal and then proceeds
with a normal power-down sequence. It is functionally identical to pressing the
E-STOP button on the pendant.

No error will be generated if the specified robot_num is not connected.

Example

The following example initiates an emergency-stop, power down sequence for
robot 2.

ESTOP 2

Related Keywords

ABORT (monitor command)

ABORT (program command)

BRAKE

ESTOP (program command)

PANIC (monitor command)

PANIC (program command)

STATE

Chapter 3: Keyword Details

EXECUTE

Begin execution of a control program.

Syntax

EXECUTE /C task program (param_list), cycles, step, priority[i]

Usage Considerations

A program cannot already be active as the specified program task.

Parameters

/C Optional qualifier that conditionally attaches the selected
robot. The qualifier has an effect only when starting the
execution of task 0.

task Real value or expression specifying which program task is
to be activated. Refer to the eV+3 User's Manual
(Cat. No. I651) for more information about program
tasks.

program Name of the program to be executed.

param_list Optional list of constants, variables, or expressions sep-
arated by commas that must correspond in type and
number to the arguments in the .PROGRAM statement
for the program specified. If no arguments are required
by the program, the list is blank but the parentheses
must be entered.

Program parameters may be omitted as desired, using
commas to skip omitted parameters. No commas are
required if parameters are omitted at the end of the list.
Omitted parameters are passed to the called program as
undefined and can be detected with the DEFINED real-val-
ued function.

Automatic variables and subroutine arguments cannot be
passed by reference in an EXECUTE command. They
must be passed by value (refer to the CALL program com-
mand).

The parameters are evaluated in the context of the new
task that is started.

cycles Optional real value, variable, or expression interpreted as
an integer that specifies the number of program exe-
cution cycles to be performed. If omitted, the cycle count
is assumed to be 1. For unlimited cycles, specify any neg-
ative value. The maximum loop count value allowed is

22353-000 Rev. B eV+3 Keyword Reference Manual 467

468 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

32,767.

step Optional real value, variable, or expression interpreted as
an integer that specifies the step at which program exe-
cution is to begin. If omitted, program execution begins
at the first executable statement in the program (after
the initial blank and comment lines and all the AUTO and
LOCAL statements).

priority[] Optional array of real values interpreted as integers that
are used by eV+ to override the default execution priority
within the task. The array contains 16 elements, which
specify the program priority in each of 16 one-millisecond
time slices. If specified, the elements must be in the
range -1 to 64, inclusive. Refer to the eV+3
User's Manual (Cat. No. I651) for more information.

i Optional real value, variable, or expression interpreted as
an integer that specifies the index value of the first ele-
ment.

Details

This command initiates execution of the specified control program. The program
is executed cycles times, starting at the specified program step.

After a program initiates execution of another program, the initiating program
can use the STATUS and ERROR functions to monitor the status of the other pro-
gram.

The optional /C qualifier has an effect only when starting execution of task 0.
When /C is not specified, an EXECUTE command for task 0 fails if the robot can-
not be attached. Attachment requires that the robot be calibrated and that arm
power be enabled or that the DRY.RUN Sysetem Switch is enabled. When /C is
specified, an EXECUTE command for task 0 attempts to attach the robot, but
allows execution of task 0 to continue without any indication of error if the robot
cannot be attached.

Certain default conditions are assumed whenever program execution is initiated.
They are equivalent to the following statements.

CPON ALWAYS
DURATION 0 ALWAYS
FINE 100 ALWAYS
LOCK 0
MULTIPLE ALWAYS
NULL ALWAYS
OVERLAP ALWAYS
SPEED 100,100 ALWAYS
SELECT ROBOT = 1

The robot configuration is saved for subsequent motions.

Chapter 3: Keyword Details

An execution cycle is terminated when a STOP program command is executed, a
RETURN program command is executed in the top-level program, or the last
defined step of the program is encountered. The value of cycles can range from -
32,768 to 32,767. The program is executed one time if cycles is omitted or has the
value 0 or 1. Any negative value for cycles causes the program to be executed
continuously until a HALT program command is executed, an error occurs, or
execution of the program is aborted.

NOTE: Each time an execution cycle is initiated, the execution
parameters are reset to their default values. This includes motion
speed, robot configuration, and servo modes. The robot currently
selected is not changed.

If step is specified, the program begins execution at that step for the first pass.
Successive cycles always begin at the first executable step of the program.

All the EXECUTE parameters are evaluated in the context of the new task that is
started. This can lead to unexpected results when the EXECUTE command is
used and an attempt is made to pass a task-dependent value (for example, the
TASK function). In such a case, if you want the task-dependent value to reflect
the invoking task, you must assign the task-dependent value to a variable and
pass that variable.

Examples

The following example initiates execution (as task 0) of the program named
"assembly" with execution to continue until HALT program command is
executed, an error occurs, or execution of the program is aborted.

EXECUTE 0 assembly, -1

The following example initiates execution, with program task 2, of the program
named "test". The parameter values 1 and 2 are passed to the program.

EXECUTE 2 test(1,2)

The following example demonstrates how an application program can be ini-
tiated from another application program. The ABORT and CYCLE.END program
commands are used to ensure the specified program task is not already active.

ABORT 3
CYCLE.END 3
EXECUTE 3 new.program

Related Keywords

ABORT (monitor command

ABORT (program command)

CALL (program command)

CYCLE.END (monitor command)

CYCLE.END (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 469

470 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

EXECUTE (monitor command)

KILL (monitor command)

KILL (program command)

PRIME

PROCEED

RETRY

SSTEP

STATUS

STATUS (real-valued function)

XSTEP

Chapter 3: Keyword Details

EXIT

Branch to the statement following the nth nested loop of a control structure.

Syntax

EXIT count

Usage Considerations

This command works with the FOR, WHILE, and DO control structures.

Parameter

count Optional integer value (expressions and variables are not
acceptable) specifying how many nested structures to exit.
The default value is 1.

Details

When an EXIT command is reached, the control structure is terminated and exe-
cution continues at the first command following the outermost control structure
exited.

Example

In the following example, if input signal 1001 is set, exit one control structure. If
1002 is set, exit three control structures.

FOR i = 1 TO 40
WHILE ctrl.var DO

DO
IF SIG(1002) THEN

EXIT 3
END
IF SIG(1001) THEN

EXIT
END

UNTIL FALSE
count = count+1

END
END

Related Keywords

DO

FOR

NEXT

WHILE

22353-000 Rev. B eV+3 Keyword Reference Manual 471

472 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

EXTERNAL

Declare a variable that is shared between eV+ and the NJ-series Robot Integrated CPU Unit.

Syntax

EXTERNAL variable, ..., variable

Usage Considerations

EXTERNAL statements must appear before any executable statement in the program.

The External variable must also be declared with the same name in the NJ-series Robot Integ-
rated CPU Unit. Refer to the NJ-series Robot Integrated CPU Unit User's Manual (Cat. No. O037)
for more information.

External variables can be accessed from V+ programs and the Monitor Window in the same
way as global variables.

The variable will automatically be a double-precision data type.

If the value of the External variable is out of range for the data type defined in the NJ-series
Robot Integrated CPU Unit, it will have an undefined value in that unit.

External variables cannot be declared with the same name as other variable types (GLOBAL,
LOCAL, AUTO) in the same program.

Parameters

variable Variable name as a double-precision data type. Each variable can be a
simple variable or an array.

If an array is used, the array size is defined in the NJ-series Robot Integ-
rated CPU Unit declaration andmust match the array size of the variable
parameter. Array variables must not have their indexes specified, but they
must include brackets [] after the variable name. The array size range is 0
to 99 and only one-dimension, fixed length arrays are allowed.

Refer to the details section below for information about variable names.

Details

After declaring the External variable, it will be available for use with any V+ program executed
in any V+ task.

Once an External variable has been declared, it is available to any executing program until the
variable is deleted or all V+ programs that reference it are removed from system memory.

The following conditions will create an error when retrieving the value of an External variable
from the NJ-series Robot Integrated CPU Unit.

l The variable does not exist in the NJ-series Robot Integrated CPU Unit (-406, undefined
program or variable name).

l The array limits are exceeded (-404, illegal array index)
l The variable type is not supported or the types do not match (-404, illegal array index)

Chapter 3: Keyword Details

Variable Names

The name of the External variable must be the same in the eV+ system and the NJ-series Robot
Integrated CPU Unit.

Variable names must begin with an alphabetic character (a-z) and can include 0-9, a-z, peri-
ods, and underscores.

The maximum length of a variable name is 15 bytes.

Examples

The following example declares an external variable "myvar", accesses the variable value, and
then changes the value.

EXTERNAL myvar
IF myvar==1 THEN

myvar=myvar+1
END

Related Keywords

AUTO

GLOBAL

LOCAL

22353-000 Rev. B eV+3 Keyword Reference Manual 473

474 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

FCLOSE

Close the disk file currently open on the specified logical unit.

Syntax

FCLOSE (logical_unit)

Usage Considerations

No error is generated if a file is not open on the logical unit, although the
IOSTAT real-valued function returns an error code.

Parameter

logical_unit Real value, variable, or expression (interpreted as an
integer) that identifies the device to be accessed. Refer to
the ATTACH command for a description of logical unit
numbers.

Details

After a program has finished accessing a file that has been opened with an
FOPEN command, the program must close the file by executing an FCLOSE com-
mand. FCLOSE frees the file for access by the eV+ monitor and other programs.
In addition, for files that have been opened for writing, FCLOSE writes out any
data still buffered by eV+ and updates the file directory information. If this oper-
ation is not performed, the disk file may not actually contain all of the inform-
ation written to it.

An FCLOSE operation is automatically performed on a logical unit when the unit
is detached, when the program that issued the FOPEN completes execution, or
when a KILL of the program task is performed.

The IOSTAT real-valued function should be used to check for successful com-
pletion of a close operation. The error code for File not opened will be returned if
there was no file currently open on the specified logical unit.

Related Keywords

ATTACH

DETACH

FOPEN

FOPENR

IOSTAT

KILL (monitor command)

KILL (program command)

Chapter 3: Keyword Details

FCMND

Generate a device-specific command to the input / output device specified by the
logical unit.

Syntax

FCMND (logical_unit, command_code) $out_string, $in_string

Usage Considerations

The logical unit referenced must have been previously attached.

As appropriate, the current default device, unit, and directory path are con-
sidered for any disk file specification. Refer to the DEFAULT monitor command
for more information.

Parameters

logical_unit Real-valued expression that identifies the device to
be accessed. Refer to the ATTACH program com-
mand for a description of logical unit numbers.

command_code Real-valued expression that specifies the command
to be executed.

$out_string String constant, variable, or expression that is
transmitted to the device alongwith the command
code to specify the operation to be performed.

$in_string Optional string variable. This variable receives any
information returned from the device as a result of
the command.

Details

The FCMD program command allows a program to generate device-specific com-
mand sequences. For example, this command can be used to send a command to
the disk to delete a file or to rename a file. Since these are maintenance oper-
ations which are not generally performed by eV+ programs, no special-purpose
eV+ program commands exist for performing these operations.

Any error in the specification of this command such as attempting to access an
invalid unit, will cause a program error and will halt program execution. Errors
associated with performing the actual operations such as device not ready, do
not halt program execution since these errors can occur in the normal operation
of a program. These normal errors can be detected by using the IOSTAT function
after performing the FCMND.

NOTE: In general, it is good practice to always test whether each
FCMND operation completed successfully using the IOSTAT func-
tion.

22353-000 Rev. B eV+3 Keyword Reference Manual 475

476 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

File Command Codes

A file cannot be open on the logical unit when the FCMND command is
executed.

6 Rename a file. The $out_string parameter must contain the
new name of the file including any required disk unit and dir-
ectory path specification. The $in_string parameter must con-
tain the old file name.

14 Create a subdirectory. The $out_string parameter must con-
tain the specification of the subdirectory, including an optional
unit name if the current default disk unit is not to be accessed.
Refer to the eV+3 User's Manual (Cat. No. I651) for a descrip-
tion of subdirectory specifications.

NOTE: Only the final subdirectory in the spe-
cified directory path is created by this operation.
All the intermediate subdirectories are not cre-
ated and they must already exist.

15 Delete a subdirectory. The $out_string parameter must con-
tain the specification of the subdirectory, including an optional
unit name if the current default disk unit is not to be accessed.
Refer to the eV+3 User's Manual (Cat. No. I651) for a descrip-
tion of subdirectory specifications.

NOTE: Only the final subdirectory in the spe-
cified directory path is created by this operation.
All the intermediate subdirectories are not cre-
ated and they must already exist.

19 Assert the creation date / time for the file currently open on
the specified logical unit. This file command can be issued at
any time a disk file is opened. Once issued, when the file is
closed, the file's creation date and time are set equal to the
specified values rather than the current date and time. If this
command is issuedwhen the file is closed, eV+ does not auto-
matically assert the not archived bit. The input stringmust
contain date and time while observing the following con-
siderations.

l date is a 16-bit integer word representing the date in
the standard compressed format used by the TIME and
$TIME functions.

l time is a 16-bit integer word representing the time in
the standard compressed format.

l This file command code applies only to local disk drives.

20 Return the number of unused and total number of kilobytes
on a local disk. The returned string is in the form uuuuu/ttttt

Chapter 3: Keyword Details

where uuuuu is the number of unused kilobytes and ttttt is
the total number of kilobytes. A file must be open on the drive
with prereads disabled. The open file identifies the disk unit.

21 Read the creation date / time for the file currently open on the
specified logical unit. This file command can be issued any time
after a file has been opened. Normally, this command returns
the values that are read from the disk directory at the time
the file was opened. However, if an FCMND 19 statement has
been issued to assert file creation date and time, the FCMND
21 statement returns the value set by FCMND19 statement.
The string returned by this command contains date and time
(use the INTB to extract the values). The following con-
siderations should be made.

l date is a 16-bit integer word representing the date in
the standard compressed format used by the TIME and
$TIME functions.

l time is a 16-bit integer word representing the time in
the standard compressed format.

l This file command code applies only to local disk drives.

TCP Command Codes

600 Initiate a close connection from the TCP server side for the cli-
ent identified by the handle number "handle" in the statment
FCMND (lun, 600) $INTB(handle).

NOTE: Close-connection requests are more
commonly initiated by the client side.

601 Initiate a PINGmonitor command. The resulting IOSTAT func-
tion value returned is either 1, indicating the client was found
on the network, or -562, indicating a network timeout.

22353-000 Rev. B eV+3 Keyword Reference Manual 477

478 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Examples

The following example checks to see if a client is on the network.

FCMND (lun, 601) "node_address", $str

Related Keywords

ATTACH

DETACH

FDELETE (monitor command)

FDELETE (program command)

FDIRECTORY

FOPEN

FRENAME

IOSTAT

MCS

Chapter 3: Keyword Details

FCOPY

Copy the information in an existing disk file to a new disk file.

Syntax

FCOPY err, $new_file = $old_file

Parameters

err Optional parameter used to return an error.

$new_file String constant, variable, or expression that specifies the
file for the new disk file to be created. If the period (".")
and filename extension are omitted, the default is a blank
extension. The current default device, unit, and directory
path are considered as appropriate. Refer to the
DEFAULT command for more information.

$old_file String constant, variable, or expression that specifies an
existing disk file. If the period (".") and filename extension
are omitted, the default is a blank extension. The current
default device, unit, and directory path are considered as
appropriate.

Details

If the new file already exists or the old file does not exist, an error is reported and
no copying takes place. You cannot overwrite an existing file. The existing file
must first be deleted with an FDELETE command.

If the file to be copied has the read-only attribute, the new file will also have that
attribute. Files with the protected attribute cannot be copied. Refer to
FDIRECTORY for a description of file protection attributes.

When a file is copied, the file creation date and time are preserved along with the
standard file attributes. The only attribute that is affected is the archived bit,
which is cleared to indicate that the file is not archived.

In general, a file specification consists of the following six elements.

1. An optional physical device (for example, DISK>)

2. An optional disk unit (for example, D:)

3. An optional directory path (for example, DEMO\)

4. A file name (for example, NEWFILE)

5. A period character (".")

6. A file extension (for example, V2)

22353-000 Rev. B eV+3 Keyword Reference Manual 479

480 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Example

The following example creates a file named "newfile.v2" on disk device "D" that
is an exact copy of the existing file named "oldfile.v2" on disk device "D".

FCOPY "D:\newfile.v2" = "D:\oldfile.v2"

Related Keywords

DEFAULT

FCOPY (monitor command)

FRENAME

Chapter 3: Keyword Details

FDELETE

Delete the specified disk file.

Syntax

FDELETE (lun) object

Usage Considerations

The logical unit number must be attached, but no file can be currently open on
that logical unit.

The FCLOSE keyword must be issued before deleting an open disk file with this
keyword.

Parameters

lun Real value, variable, or expression interpreted as an
integer that corresponds to a disk. Refer to the
ATTACH command for a description of logical unit
numbers.

object String constant, variable, or expression specifying the
disk file to delete. The error "Nonexistent file" will be
reported with IOSTAT if the specified object does not
exist.

The string may contain an optional disk unit and an
optional directory path and must contain a file name, a
period (.), and a file extension. The current default disk
unit and directory path are considered as appropriate.
Refer to the DEFAULT command for more information.

Details

If a disk logical unit number is specified, the object parameter is interpreted as
the specification of a disk file to be deleted. If the deletion fails for any reason (for
example, the file does not exist or the disk is protected), an error will be returned
via the IOSTAT real-valued function.

Examples

The following example closes and then deletes the disk file defined by the file spe-
cification in the string variable $file.

FCLOSE (5) $file

FDELETE (5) $file

22353-000 Rev. B eV+3 Keyword Reference Manual 481

482 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

ATTACH

FCLOSE

FDELETE (monitor command)

FOPEN

IOSTAT

Chapter 3: Keyword Details

FEMPTY

Empty any internal buffers in use for a disk file by writing the buffers to the file if
necessary.

Syntax

FEMPTY (logical_unit)

Usage Considerations

When accessing a file, the file must be open for random access on the specified
logical unit (refer to the FOPEN_ commands for more information).

Parameter

lun Real value, variable, or expression (interpreted as an
integer) that identifies the device to be accessed. Refer
to the ATTACH command for a description of logical
unit numbers.

Details

During random-access I/O of a disk file, eV+ writes data to the disk in blocks of
512 bytes (characters). For efficiency, when a record with a length of less than 512
bytes is written using a WRITE command, that data is stored in an internal buf-
fer and might not actually be written to the disk until a later time.

When a disk logical unit is referenced, the FEMPTY command directs eV+ to
write its internal buffer contents immediately to the disk file. That is useful, for
example, in applications where data integrity is especially critical.

The IOSTAT real-valued function can be used to determine if any error results
from an FEMPTY operation.

Examples

The following example empties the internal output buffer for logical unit 5 and
write to the disk immediately.

FEMPTY (5)

Related Keywords

ATTACH

FOPEN

FOPENA

FOPEND

FOPENR

22353-000 Rev. B eV+3 Keyword Reference Manual 483

484 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

FOPENW

IOSTAT

WRITE

Chapter 3: Keyword Details

FINE

Enable a high-precision nulling tolerance for the robot.

Syntax

FINE tolerance ALWAYS

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not spe-
cified.

If the tolerance parameter is specified, its value becomes the default for any sub-
sequent FINE program commands executed during the current execution cycle,
regardless of whether ALWAYS is specified.

The statement FINE 100 ALWAYS is assumed whenever program execution is
initiated and when a new execution cycle begins. This is the default state of the
eV+ system.

The FINE program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the FINE com-
mand causes an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the
percentage of the standard fine tolerances that are used for
each joint of the robot attached by the current execution task.

ALWAYS Optional qualifier that establishes FINE as the default con-
dition. FINE will remain in effect continuously until disabled by
a COARSE program command. If ALWAYS is not specified, the
FINE commandwill apply only to the next robot motion.

Details

The FINE program command enables the high-precision feature in the robot
motion servo system so that small errors in the final positions of the robot joints
are permitted at the ends of motions. This produces high-accuracy motions but
increases cycle times since the settling time at the end of each motion is
increased.

If the tolerance parameter is specified, the new setting takes effect at the start of
the next motion. The value becomes the default for any subsequent FINE com-
mands executed during the current execution cycle regardless of whether or not
ALWAYS is specified. Changing the FINE tolerance does not affect the COARSE
tolerance.

22353-000 Rev. B eV+3 Keyword Reference Manual 485

486 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

If the tolerance parameter is omitted, the most recent setting for the attached robot
is used. The default setting is restored to 100 percent when program execution
begins or a new execution cycle starts assuming that the robot is attached to the
program.

Examples

The following example enables the high-precision feature for the next motion
operation only.

FINE

The following example enables the high-tolerance feature for the next motion
operation with the tolerance settings changed to 50% of the standard tolerance for
each joint.

FINE 50

The following example enables the high-tolerance feature until it is explicitly dis-
abled.

FINE ALWAYS

Related Keywords

COARSE

CONFIG

DELAY.IN.TOL

NONULL

NULL

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

FLIP

Request a change in the robot configuration during the next motion so that the
pitch angle of the robot wrist has a negative value.

Syntax

FLIP

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a flip configuration, this command is
ignored by the robot.

The FLIP program command can be executed by any program task as long as the
robot selected by the task is not attached by any other task. If the robot is not
attached, this command has no effect. This command applies to the robot selec-
ted by the task.

If the eV+ system is not configured to control a robot, executing the FLIP com-
mand causes an error.

Details

Enabling a FLIP configuration forces the wrist joint to have a negative rotation.
Enabling a NOFLIP configuration forces a wrist joint to have a positive rotation.

Wrist joint angles are expressed as ±180°.

NOTE: Robots can change configuration during joint-interpolated
moves only.

22353-000 Rev. B eV+3 Keyword Reference Manual 487

488 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Figure 3-7. FLIP / NOFLIP Configurations

The following figures illustrate FLIP versus NOFLIP configurations for a 6-axis
robot.

Figure 3-8. FLIP / NOFLIP Example on Viper 650 Robot

Chapter 3: Keyword Details

Example

The following example demonstrates the use of the FLIP and NOFLIP com-
mands.

FLIP
MOVE loc_a

NOFLIP
MOVE loc_a

Related Keywords

CONFIG

NOFLIP

SELECT (program command)

SELECT (real valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 489

490 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

FOPEN

Create and open a new TCP connection.

Syntax

FOPEN (lun, mode) attribute

Usage Considerations

The logical unit must be attached before an open operation will succeed.

Parameters

lun Real value, variable, or expression (interpreted as an
integer) that defines the logical unit number assigned to
the TCP device. Refer to the ATTACH command for a
description of unit numbers.

mode Type of TCP connection. 0 = client mode, 16 = server
mode.

attribute When opening a TCP connection in server mode, this
string defines the characteristics of the server. When
opening a connection in client mode, the string defines
the name of the server in addition to characteristics of
the connection.

The attribute list which is processed like an output spe-
cification for the TYPE command is used to compose a
single string that is passed to the TCP driver. The
string must not exceed 512 characters.

NOTE: An eV+ string literal or string
variable cannot exceed 128 characters. In
order to create an attribute list longer
than 128 characters, you must con-
catenate multiple strings.

The attribute list can consist of one or more com-
ponents separated by commas. Each component can be
expressed in any of the following ways.

l A string constant, variable, or expression.

l A real-valued constant, variable, or expression
that is evaluated to determine a value to be used
in the control string.

l A format control specifier that determines the
format of information in the control string.

Chapter 3: Keyword Details

Details

A TCP/IP connection can be opened in either server mode or client mode. In
server mode, one or more clients (depending on the value assigned to /CLIENTS)
are allowed to connect to the server for subsequent communication.

To establish a client-server connection, the client must know the port number for
the server. For this reason, when using the FOPEN instruction for opening a
server connection, the port is explicitly defined using the /LOCAL_PORT attrib-
ute. The server does not need to know the port number used by the client.

Port numbers 0 through 255 are used by standard TCP application packages. If
you are writing your own custom protocol, use a port number greater than 255.

The following table shows valid TCP attributes for the FOPEN instruction.

Table 3-6. FOPEN TCP Attributes

Attribute: /CLIENTS

Explanation: Defines the number of client con-
nections allowable on a server. If omit-
ted, a single client connection is
assumed. The maximum number of cli-
ent connections is 31.

Attribute: /LOCAL_PORT

Explanation: Defines the local port number for the
connection. If omitted, a local port
number is automatically assigned.

Attribute: /REMOTE_PORT

Explanation: Defines the port number of a server to
which a client connection is to be
made. This must be providedwhen
establishing a client connection.

Examples

The following example configures a TCP server with local port 260 to accept 5 cli-
ent connections.

FOPEN (lun, 16) "/LOCAL_PORT 260 /CLIENTS 5"

The following example configures a TCP client connection that connects to port
number 260 on the server called "server1".

FOPEN (lun, 0) "server1 /REMOTE_PORT 260"

22353-000 Rev. B eV+3 Keyword Reference Manual 491

492 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

ATTACH

DETACH

FCLOSE

FDELETE

FEMPTY

FSET

IOSTAT

Chapter 3: Keyword Details

FOPENA

Opens a file for read-write-append access. If the specified file does not already
exist, the file is created.

Syntax

FOPENA (lun, record_len, mode) file_spec

Usage Considerations

If the file already exists, no error occurs and the file position is set to the end of
the file. Write operations then append to the existing file.

A logical unit must be attached before an open operation will succeed.

No more than 60 disk files and 160 network files can be open by the entire sys-
tem at any time. That includes files opened by all of the program tasks and by
the system monitor (for example, for an FCOPY command).

Parameters

lun Real-valued expression defining the logical unit number of
the disk device to be accessed.

Refer to the ATTACH command for a description of unit
numbers.

record_len Optional real-valued expression defining the length of
records to be read and written.

If the record length is omitted or is 0, variable-length
records are processed. In this case, random access of
records cannot be done.

If the record length is non-zero, it specifies the length (in
characters) of fixed-length records to be processed. Ran-
dom access is allowed with fixed-length records.

mode Optional real-valued expression defining how read access
is to be executed. The value specified is interpreted as a
sequence of bit flags as detailed below. All bits are
assumed to be clear if no mode value is specified.

Bit 1 (least significant bit): disable pre-reads (mask value
= 1)

If this bit is OFF, eV+ will read a record as soon as the file
is opened (pre-read) and after each READ command in
anticipation of subsequent READ requests. If this bit is ON,
no such pre-reads are performed.

Bit 2: enable random access (mask value = 2)

If this bit is OFF, the file will be accessed sequentially.

22353-000 Rev. B eV+3 Keyword Reference Manual 493

494 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Records are read or written in the order they occur in the
file.

If this bit is ON, the file is accessed using random access
which is allowed only for disk files with fixed-length
records. In random-access mode, the record-number para-
meter in the READ or WRITE command specifies which
record is accessed.

Bit 4: force disk write (mask value = 8)

If ON, the physical disk is written every time a record is
written for a disk file being opened for write access. The
directory or file allocation information is updated with
each write. This mode is equivalent to (and faster than)
closing the file after every write. It is significantly slower
than normal buffered mode but it guarantees that inform-
ation that is written will not be lost due to a system crash
or power failure.

This mode is intended primarily for use with log files that
are left opened over an extended period of time and inter-
mittently updated. For these types of files, the additional
significant overhead of this mode is not as important as
the benefit.

file_spec String constant, variable, or expression specifying the file
to be opened. The string may contain an optional disk unit
and an optional directory path, and must contain a file
name, a period (.), and a file extension.

The current default disk unit and directory path are con-
sidered as appropriate.

Refer to the eV+3 User's Manual (Cat. No. I651) for more
information on disk units and directory paths.

Details

This command opens a disk file so that input / output operations can be per-
formed. When the operations are complete, the file should be closed using an
FCLOSE or DETACH command.

Related Keywords

ATTACH

DETACH

FCLOSE

FOPEN

FOPEND

FOPENR

Chapter 3: Keyword Details

FOPENW

FSEEK

IOSTAT

READ

WRITE

22353-000 Rev. B eV+3 Keyword Reference Manual 495

496 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

FOPEND

Opens a disk directory for reading.

Syntax

FOPEND (lun, record_len, mode) file_spec

Usage Considerations

The file name and extension in the file_spec parameter are used to prepare a file
name template for use when read operations are later performed. Those read oper-
ations return only records from the disk directory file that match the file name
template. Any attempt to write to the directory file causes an error. Refer to the
eV+3 User's Manual (Cat. No. I651) for information about the format of directory
records.

The file name and extension can include wildcard characters (asterisks "*"). A
wildcard character within a file name or extension indicates that any character
should be accepted in that position. A wildcard character at the end of a file
name or extension indicates that any trailing characters are acceptable. A wild-
card character in place of a file name (or extension) indicates that any name (or
extension) is acceptable. Omission of the file name, the period, and the file exten-
sion is equivalent to specifying *.*. Omission of the period and file extension is
equivalent to specifying a wildcard extension.

A logical unit must be attached before an open operation will succeed.

No more than 60 disk files and 160 network files can be open by the entire sys-
tem at any time. That includes files opened by all of the program tasks and by
the system monitor (for example, for an FCOPY command).

Parameters

lun Real-valued expression defining the logical unit number of
the disk device to be accessed.

Refer to the ATTACH command for a description of unit
numbers.

record_len Optional real-valued expression defining the length of
records to be read.

If the record length is omitted or is 0, variable-length
records are processed. In this case, random access of
records cannot be done.

If the record length is non-zero, it specifies the length (in
characters) of fixed-length records to be processed. Ran-
dom access is allowed with fixed-length records.

mode Optional real-valued expression defining how read access
is to be executed. The value specified is interpreted as a
sequence of bit flags as detailed below. All bits are

Chapter 3: Keyword Details

assumed to be clear if no mode value is specified.

Bit 1 (least significant bit): disable pre-reads (mask value
= 1)

If this bit is OFF, eV+ will read a record as soon as the file
is opened (pre-read) and after each READ command in
anticipation of subsequent READ requests. If this bit is ON,
no such pre-reads are performed.

Bit 2: enable random access (mask value = 2)

If this bit is OFF, the file will be accessed sequentially.
Records are read in the order they occur in the file.

If this bit is ON, the file is accessed using random access
that is allowed only for disk files with fixed-length records.
In random-access mode, the record-number parameter in
the READ command specifies which record is accessed.

Bit 4: force disk write (mask value = 8)

If ON, the physical disk is written every time a record is
written for a disk file being opened for write access. The
directory or file allocation information is updated with
each write. This mode is equivalent to (and faster than)
closing the file after every write. It is significantly slower
than normal buffered mode but it guarantees that inform-
ation that is written will not be lost due to a system crash
or power failure.

This mode is intended primarily for use with log files that
are left opened over an extended period of time and inter-
mittently updated. For these types of files, the additional
significant overhead of this mode is not as important as
the benefit.

file_spec String constant, variable, or expression specifying the file
to be opened. The string may contain an optional disk unit
and an optional directory path, and must contain a file
name, a period (.), and a file extension. The file name and
extension are optional and both can contain wildcard char-
acters (refer to Usage Considerations above).

The current default disk unit and directory path are con-
sidered as appropriate.

Refer to the eV+3 User's Manual (Cat. No. I651) for more
information on disk units and directory paths.

Details

This command opens a disk file so that input / output operations can be per-
formed. When the operations are complete, the file should be closed using an
FCLOSE or DETACH command.

22353-000 Rev. B eV+3 Keyword Reference Manual 497

498 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Example

The following example opens the current default directory to find all the files
with the extension DAT.

FOPEND (5) "*.dat"

Related Keywords

ATTACH

DETACH

FCLOSE

FOPEN

FOPENA

FOPENR

FOPENW

FSEEK

IOSTAT

READ

Chapter 3: Keyword Details

FOPENR

Opens a file for read-only access.

Syntax

FOPENR (lun, record_len, mode) file_spec

Usage Considerations

A logical unit must be attached before an open operation will succeed.

No more than 60 disk files and 160 network files can be open by the entire sys-
tem at any time. That includes files opened by all of the program tasks and by
the system monitor (for example, for an FCOPY command).

Parameters

lun Real-valued expression defining the logical unit number of
the disk device to be accessed.

Refer to the ATTACH command for a description of unit
numbers.

record_len Optional real-valued expression defining the length of
records to be read.

If the record length is omitted or is 0, variable-length
records are processed. In this case, random access of
records cannot be done.

If the record length is non-zero, it specifies the length (in
characters) of fixed-length records to be processed. Ran-
dom access is allowed with fixed-length records.

mode Optional real-valued expression defining how read access
is to be executed. The value specified is interpreted as a
sequence of bit flags as detailed below. All bits are
assumed to be clear if no mode value is specified.

Bit 1 (least significant bit): disable pre-reads (mask value
= 1)

If this bit is OFF, eV+ will read a record as soon as the file
is opened (pre-read) and after each READ command in
anticipation of subsequent READ requests. If this bit is ON,
no such pre-reads are performed.

Bit 2: enable random access (mask value = 2)

If this bit is OFF, the file will be accessed sequentially.
Records are read in the order they occur in the file.

If this bit is ON, the file is accessed using random access
that is allowed only for disk files with fixed-length records.

22353-000 Rev. B eV+3 Keyword Reference Manual 499

500 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

In random-access mode, the record-number parameter in
the READ command specifies which record is accessed.

Bit 4: force disk write (mask value = 8)

If ON, the physical disk is written every time a record is
written for a disk file being opened for write access. The
directory or file allocation information is updated with
each write. This mode is equivalent to (and faster than)
closing the file after every write. It is significantly slower
than normal buffered mode but it guarantees that inform-
ation that is written will not be lost due to a system crash
or power failure.

This mode is intended primarily for use with log files that
are left opened over an extended period of time and inter-
mittently updated. For these types of files, the additional
significant overhead of this mode is not as important as
the benefit.

file_spec String constant, variable, or expression specifying the file
to be opened. The string may contain an optional disk unit
and an optional directory path, and must contain a file
name, a period (.), and a file extension.

The current default disk unit and directory path are con-
sidered as appropriate.

Refer to the eV+3 User's Manual (Cat. No. I651) for more
information on disk units and directory paths.

Details

This command opens a disk file so that input / output operations can be per-
formed. When the operations are complete, the file should be closed using an
FCLOSE or DETACH command.

Example

The following example opens the file named data.dat on the default device for
read-only access with variable-length records (record length omitted). Since the
mode parameter is omitted, pre-reads will occur and the records will be accessed
sequentially (this is required for variable-length records).

FOPENR (5) "data.dat"

Related Keywords

ATTACH

DETACH

FCLOSE

Chapter 3: Keyword Details

FOPEN

FOPENA

FOPEND

FOPENW

FSEEK

IOSTAT

READ

22353-000 Rev. B eV+3 Keyword Reference Manual 501

502 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

FOPENW

Opens a file for read-write access. If the file already exists, an error occurs.

Syntax

FOPENW (lun, record_len, mode) file_spec

Usage Considerations

Any error in the specification of this instruction (such as attempting to access an
invalid unit) will cause a program error and will halt program execution. Errors
associated with performing the actual operations (such as device not ready) do
not halt program execution since these errors can occur in the normal operation
of a program. These normal errors can be detected by using the IOSTAT function.

A logical unit must be attached before an open operation will succeed.

No more than 60 disk files and 160 network files can be open by the entire sys-
tem at any time. That includes files opened by all of the program tasks and by
the system monitor (for example, for an FCOPY command).

Parameters

lun Real-valued expression defining the logical unit number of
the disk device to be accessed.

Refer to the ATTACH command for a description of unit
numbers.

record_len Optional real-valued expression defining the length of
records to be read and written.

If the record length is omitted or is 0, variable-length
records are processed. In this case, random access of
records cannot be done.

If the record length is non-zero, it specifies the length (in
characters) of fixed-length records to be processed. Ran-
dom access is allowed with fixed-length records.

mode Optional real-valued expression defining how read access
is to be executed. The value specified is interpreted as a
sequence of bit flags as detailed below. All bits are
assumed to be clear if no mode value is specified.

Bit 1 (least significant bit): disable pre-reads (mask value
= 1)

If this bit is OFF, eV+ will read a record as soon as the file
is opened (pre-read) and after each READ command in
anticipation of subsequent READ requests. If this bit is ON,
no such pre-reads are performed.

Bit 2: enable random access (mask value = 2)

Chapter 3: Keyword Details

If this bit is OFF, the file will be accessed sequentially.
Records are read or written in the order they occur in the
file.

If this bit is ON, the file is accessed using random access
which is allowed only for disk files with fixed-length
records. In random-access mode, the record-number para-
meter in the READ or WRITE command specifies which
record is accessed.

Bit 4: force disk write (mask value = 8)

If ON, the physical disk is written every time a record is
written for a disk file being opened for write access. The
directory or file allocation information is updated with
each write. This mode is equivalent to (and faster than)
closing the file after every write. It is significantly slower
than normal buffered mode but it guarantees that inform-
ation that is written will not be lost due to a system crash
or power failure.

This mode is intended primarily for use with log files that
are left opened over an extended period of time and inter-
mittently updated. For these types of files, the additional
significant overhead of this mode is not as important as
the benefit.

file_spec String constant, variable, or expression specifying the file
to be opened. The string may contain an optional disk unit
and an optional directory path, and must contain a file
name, a period (.), and a file extension.

The current default disk unit and directory path are con-
sidered as appropriate.

Refer to the eV+3 User's Manual (Cat. No. I651) for more
information on disk units and directory paths.

Details

This command opens a disk file so that input / output operations can be per-
formed. When the operations are complete, the file should be closed using an
FCLOSE or DETACH command.

Example

The following example opens the file named x.d on the device D for read-write
access using fixed-length records of 32 characters each. The mode value 3 has
both bits 1 and 2 set therefore pre-reads are disabled and the random access
method is used.

FOPENW (5, 32, 3) "D:x.d"

22353-000 Rev. B eV+3 Keyword Reference Manual 503

504 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

ATTACH

DETACH

FCLOSE

FOPEN

FOPENA

FOPEND

FOPENR

FSEEK

IOSTAT

READ

WRITE

Chapter 3: Keyword Details

FOR

Execute a program loop a specified number of times.

Syntax

FOR loop_var = initial TO final STEP increment

Usage Considerations

Every FOR command must have an associated END command.

An External variable cannot be used for the loop_var parameter.

Parameters

loop_var Real valued variable that is initialized when the FOR com-
mand is executed. This is incremented each time the loop is
executed. This cannot be a specified value or expression.

Additional Information: This is typically
declared as an AUTO variable.

NOTE: An External variable cannot be used
for the loop_var parameter.

initial Real value that determines the value of the loop_var the first
time the loop is executed.

final Real value that establishes the value to be compared to the
loop_var to determine when the loop should be terminated.

increment Optional real-value that establishes the value to be added to
the loop_var every time the loop is executed. If omitted, the
increment defaults to 1 and STEP may also be omitted.

Details

The commands between the FOR statement and the matching END statement are
executed repeatedly and loop_var is changed each time by the value designated
as increment.

The processing of this structure is as is described below.

1. When the FOR statement is first entered, set loop_var to the initial value.

2. Determine the values of the increment and final parameters.

3. Compare the value of final to the value of loop_var with the following con-
ditions.

22353-000 Rev. B eV+3 Keyword Reference Manual 505

506 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

l If increment is positive and loop_var is greater than final, skip to
item 7 below.

l If increment is negative and loop_var is less than final, skip to item
7 below.

4. Execute the keywords following the FOR statement.

5. When the END step is reached, add the value of increment to the loop_
var..

6. Go back to item 3 above.

7. Continue program execution at the first keyword after END. loop_var
retains the value it had at the time of the evaluation in item 3 above
unless it has been intentionally incremented or decremented within the
logic contained in the loop (or elsewhere if not declared as an AUTO vari-
able).

The group of keywords in the FOR structure may not be executed if the eval-
uation in item 3 fails the first time.

The values of initial, increment, and final when the FOR statement is first
executed determine how many times the group of keywords in the FOR loop are
executed. Any changes to the values of these parameters within the FOR loop
have no effect on the processing of the FOR structure.

Changes to the loop_var within the loop affect the operation of the loop and
should normally not occur in a typical program.

NOTE: If initial, final, or increment are not integer values, round-
ing in the floating point computations may cause the loop to be
executed more or fewer times than expected.

Example

The following example sets all elements of a 10x10 array to 0.

FOR i = 1 TO 10
FOR j = 1 TO 10

array[i,j] = 0
END

END

Related Keywords

DO

END

EXIT

NEXT

WHILE

Chapter 3: Keyword Details

FSEEK

Position a file open for random access and initiate a read operation on the spe-
cified record.

Syntax

FSEEK (logical_unit, record_number)

Usage Considerations

A file must be open for random access on the specified logical unit. Refer to the
FOPEN_ commands for more information).

For efficiency in most applications, the file should be opened in no pre-read
mode.

Parameters

logical_unit Real-valued expression that identifies the device to be
accessed.

Refer to the ATTACH command for a description of
unit numbers.

record_number Optional real-valued expression that specifies the
record to read for file-oriented devices opened in ran-
dom-access mode. If omitted, the record following the
one last read is assumed.

Details

When a file is open for random access, system performance can be improved by
overlapping the time required for disk file access with processing of the current
data. By using the FSEEK command, an application program can initiate a disk
seek and possible read operation immediately after a READ command is pro-
cessed but before processing the data.

Any error in the specification of this command (such as referencing an invalid
unit) causes a program error and halts program execution. Errors associated with
performing the actual seek operation (such as end of file or device not ready) do
not halt program execution since these errors may occur in the normal operation
of a program. These normal errors can be detected by using the IOSTAT function
after performing the subsequent READ operation. In general, it is good practice to
always test whether each file operation completed successfully by testing the
value from IOSTAT .

Example

The following example will seek record number 130 in the file open on logical
unit 5.

22353-000 Rev. B eV+3 Keyword Reference Manual 507

508 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

FSEEK (5, 130)

Related Keywords

ATTACH

FOPENA

FOPEND

FOPENR

FOPENW

IOSTAT

READ

Chapter 3: Keyword Details

FSET

Set or modify attributes of a network device.

Syntax

FSET (logical_unit) attribute_list

Usage Considerations

The IOSTAT function should be used after each FSET command to determine the
success of the FSET operation.

Parameters

logical_unit Real value, variable, or expression interpreted as an
integer that defines the logical unit number of the net-
work device. Refer to the ATTACH program command
for a description of unit numbers.

attribute_list List of string constants, expressions, real values, vari-
ables, and format specifiers used to define the char-
acteristics of the network device. Refer to the
description of the FOPEN program command for
detailed information on this parameter.

Details

The TCP Transmission Control Protocol network device may be referenced with
the FSET command.

You can use the attributes listed in the following table when accessing these
devices with the FSET command.

Attribute Description

/ADDRESS IP address (applies only to the TCP device).

/NODE Node name.

Table 3-8. FSET Attributes for Networks

You may define new nodes on the network using the FSET command to access a
logical unit that has been attached to the TCP device. The string used with the
FSET command has the same format as that used with the NODE statement in
the eV+ configuration file.

Examples

The followinge example defines a new node called "SERVER2" with the IP
address 172.16.200.102.

22353-000 Rev. B eV+3 Keyword Reference Manual 509

510 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ATTACH (lun, 4) "TCP"
FSET (lun) "/NODE 'SERVER2' /ADDRESS '172.16.200.102'"

Related Keywords

FOPEN

IOSTAT

Chapter 3: Keyword Details

GLOBAL

Declare a variable to be global and specify the type of the variable.

Syntax

GLOBAL type variable, ..., variable

Usage Considerations

GLOBAL statements must appear before any executable statement in the pro-
gram.

Parameters

type If the type parameter is specified, all the variables must
match that type (REAL, DOUBLE, OR LOC). Array variables
must have their indexes specified explicitly, indicating the
highest valid index for the array.

If this keyword is omitted, the type of each variable is determ-
ined by its use within the program. An error is generated if
the type cannot be determined from usage.

LOC Location variable (transformation or precision
point).

REAL Single-precision real variable.

DOUBLE Double-precision real variable.

Refer to the GLOBAL command for details on
the default type.

variable Variable name (belt, precision point, real-value, string, and
transformation). Each variable can be a simple variable or an
array. If the type parameter is specified, all the variables
must match the specified type. Array variables must not
have their indexes specified.

Details

Variables that are not declared to be AUTO or LOCAL are GLOBAL by default.
Double precision and location global variables do not need to be declared.

Global variables can be accessed by any program that does not declare a LOCAL
or AUTO variable of the same name. For example, if program_a declares var1 to
be a GLOBAL variable and program_b declares var1 to be AUTO variable, pro-
gram_b cannot use or alter GLOBAL var1. A new copy of variable var1 that is
specific to program_b is created each time program_b executes.

22353-000 Rev. B eV+3 Keyword Reference Manual 511

512 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Examples

The following example creates 2 string variables and 1 untyped global variable.

GLOBAL $str_1, $str_2, x

The following example creates 1 global precision point global variable.

GLOBAL LOC #ppoint_1

The following example creates 2 double precision real global variables.

GLOBAL var_1, var_2

Related Keywords

AUTO

LOCAL

EXTERNAL

Chapter 3: Keyword Details

GOTO

Perform an unconditional branch to the program step identified by the given
label.

Syntax

GOTO label

Parameter

label Label of the program step to which execution is to branch.
Step labels are integer values that range in value from 0 to
65535.

Details

This command causes program execution to jump to the line that contains the
specified step label. A step label is different from a line number. Line numbers
are the numbers automatically assigned by the eV+ program editors to assist the
editing process. Step labels must be explicitly entered on program lines where
appropriate.

IMPORTANT:Modern, structured programming considers GOTO
statements to be poor programming practice. Omron Robotics and
Safety Technologies, Inc. suggests you use one of the other control
structures in place of GOTO statements.

Example

The following example asks you to enter a number from 1 to 100. If the number
input is not in that range, the GOTO 10 command causes execution to jump to
step label 10.

10 PROMPT "Enter a number from 1 to 100: ", number
IF (number < 1) OR (number > 100) THEN

TYPE /B, /C1, "*Invalid response*", /C1
GOTO 10
END

Related Keywords

DO

EXIT

FOR

IF ... THEN

IF ... GOTO

NEXT

WHILE

22353-000 Rev. B eV+3 Keyword Reference Manual 513

514 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

HALT

Stop program execution and do not allow the program to be resumed.

Syntax

HALT

Usage Considerations

The PROCEED monitor command cannot be used to resume program execution
after a HALT program command has been used to stop a program.

HALT forces an FCLOSE and / or DETACH operation on the disk logical units as
required.

Details

The HALT program command causes a break and then terminates execution of
the application program regardless of any program loops remaining to be com-
pleted. The message (HALTED) is displayed.

After termination by a HALT command, program execution cannot be resumed
with a PROCEED or RETRY command.

Example

The following example halts the execution of the program task after the robot
reaches the location defined as "safe_loc".

MOVE safe_loc
BREAK
HALT

Related Keywords

PAUSE

RETURN

STOP

Chapter 3: Keyword Details

HERE

Set the value of a transformation or precision-point variable equal to the current
robot location.

Syntax

HERE location_var

Usage Considerations

The HERE program command returns information for the robot selected by the
task executing the command.

If the eV+ system is not configured to control a robot, use of the HERE command
will cause an error.

Parameter

location_var Transformation, precision point, or compound trans-
formation that ends with a transformation variable.

Details

The HERE program command sets the value of a transformation or precision-
point variable equal to the current robot location.

Normally, the robot location is determined by reading the instantaneous values
of the joint encoders. If the robot has either backlash or linearity compensation
enabled, the commanded robot location is used.

If the location_var is a compound transformation, only the right-most trans-
formation is defined. Its value is set equal to the current robot location relative to
the reference frame determined by the other transformations. An error message
results if any of the other transformations are not already defined.

Examples

The following example sets the transformation "part" equal to the current robot
location.

HERE part

The following example assigns the current location of the robot to the precision
point "#part"

HERE #part

Related Keywords

HERE (monitor command)

HERE (transformation function)

22353-000 Rev. B eV+3 Keyword Reference Manual 515

516 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SELECT (program command)

SELECT (real-valued function)

SET

Chapter 3: Keyword Details

IF ... GOTO

Branch to the specified step label if the value of the logical expression is TRUE
(non-zero).

Syntax

IF logical_expr GOTO label

Usage Considerations

In general, the preferred programming practice is to use the IF ... THEN com-
mand rather than this command.

Parameters

logical_expr Real-valued expression whose value is tested for
TRUE (nonzero) or FALSE (0).

label Label of the program step to which execution is to
branch.

Details

If the value of the expression is non-zero, program execution branches and
begins executing the keyword with a label matching the one specified. If the
value of the expression is zero, the next keyword is executed as usual.

If the specified statement label is not defined, the program is not executable. Any
attempt to branch to an undefined label is identified when the editor is exited
and when the program is loaded into memory from a disk file.

The most common use for IF ... GOTO is as an exit-on-error condition (see
example below).

Example

The following example checks each I/O operation and branches to a label
whenever an I/O error occurs.

ATTACH(dlun, 4) "DISK"
IF IOSTAT(dlun) < 0 GOTO 100
FOPENW(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100

...
FCLOSE(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100
DETACH(dlun)

100 IF IOSTAT(dlun) < 0 THEN
TYPE $ERROR(IOSTAT(dlun))

END

22353-000 Rev. B eV+3 Keyword Reference Manual 517

518 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

GOTO

IF ... THEN

Chapter 3: Keyword Details

IF ... THEN

Conditionally execute a group of keywords (or one of two groups) depending on
the result of a logical expression.

Syntax

IF logical_expr THEN

first keyword area

ELSE

second keyword area

END

Usage Considerations

Every IF ... THEN command must have an associated END command.

The ELSE command may be omitted if there are no items in the second keywords
area shown in the syntax section above.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE
(non-zero) or FALSE (0).

Details

This control structure provides a means for conditionally executing one of two
groups of keywords. The control structure functions as described below (refer to
the Syntax section above).

1. The logical_expr is evaluated. If the result is TRUE, proceed to item 2
below. If the result is FALSE (0), skip to item 4 below.

2. The first keyword area is executed.

3. Skip to item 5 below.

4. If there is an ELSE command, the second keyword area is executed.

5. Program execution continues at the next keyword after the END com-
mand.

The ELSE and END steps must be on lines by themselves as shown in the syntax
section above.

There are no restrictions on the keywords that can be in either group in the struc-
ture and nested IF structures can be used if necessary.

22353-000 Rev. B eV+3 Keyword Reference Manual 519

520 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Examples

In the following example, if the value of variable "row" is greater than 5, the
expression row > 5 will be TRUE (-1.0) and variable "spacing" is assigned a
value of 10. If the value of variable "row" is less than 5, the expression row > 5
will be FALSE (0) and variable "spacing" is assigned a value of 20.

21 IF row > 5 THEN
22 spacing = 10
23 ELSE
24 spacing = 20
25 END

The following program example determines whether the variable "input.signal"
has been defined. If it has, the program checks the signal indicated by the value
of "input.signal" and types different messages depending on its setting. The outer
IF does not include an ELSE clause.

IF DEFINED(input.signal) THEN
IF SIG(input.signal) THEN

TYPE "The input signal is ON"
ELSE

TYPE "The input signal is OFF"
END

END

Related Keywords

CASE

DEFINED

ELSE

IF ... GOTO

Chapter 3: Keyword Details

IGNORE

Cancel the effect of a REACT or REACTI program command.

Syntax

IGNORE signal

Usage Considerations

Only digital I/O signals that physically exist in the system as inputs are available
for reaction monitoring.

The IGNORE program command must be executed by the same program task
that initiated by the REACT or REACTI program commands.

Parameter

signal Digital input signal number (see details below).

Details

The IGNORE program command disables continuous monitoring of the specified
signal, canceling the effect of the lastREACT or REACTI for this signal.

The following signals can be used with the REACT program command.

Signal
Type Range Details

Digital Input 1001 to 1999 Signals are only available if they
physically exist in the system.

Software 2001 to 2999 All signal are available

Host 4001 to 4999

Example

The following example stops monitoring of the digital input or soft signal iden-
tified by the value of "test".

IGNORE test

Related Keywords

LOCK

REACT

REACTI

22353-000 Rev. B eV+3 Keyword Reference Manual 521

522 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

JMOVE

Moves all robot joints to positions described by a list of joint values. The robot
performs a coordinated motion in joint-interpolated mode.

Syntax

JMOVE expression1,...,expressionn

Usage Considerations

You must specify at least one expression (joint), in order to move the robot.

Parameters

expression1 Optional expression for the joint-1 value.

expressionn Optional expression for the nth joint value.

Details

You can specify a maximum of 12 expressions.

If an expression is omitted, that joint is not moved.

If more expressions are specified than there are joints for a robot, the extra expres-
sions are ignored.

Example

The following example moves joint 1 and joint 3 to the positions represented by
variables "j1" and "j3".

JMOVE j1,,j3

Chapter 3: Keyword Details

JOG

Jogs the specified joint of the robot or moves the robot tool along the specified
cartesian direction.

Syntax

JOG (status) robot, mode, axis, speed, location, appro_dist

Usage Considerations

Each time the JOG program command is executed, the robot moves for the time
specified with the JOG.TIME system parameter.

The specified robot cannot be attached by any other task when using a mode
other than COMP. Otherwise, the error message *Robot interlocked* is generated.
The robot can be attached by the current program, but it does not need to be
attached. If the robot is not attached when the JOG program command is
executed, attach the robot after the JOG program command before executing any
other motion commands.

After the robot is moved with the JOG command, the system is left in MANUAL
mode (i.e., as though a manual mode had been selected on the pendant). The
statement JOG mode 5 (or the pendant) can be used to restore COMP mode.
Otherwise, an error *COMP mode disabled* will be returned when a task
attempts to attach the robot.

If a joint is out of range, the JOG command can be used to return joint into range.

Parameters

status An optional status variable. Returns 1 for success; otherwise,
contains a eV+ error code.

robot Specifies the robot number.

mode Specifies the jogmode as described below.

-1 Keep-alive mode. Continues the previous oper-
ation for the time specified using the JOG.TIME
system parameter..

1 Free joint mode. A positive speedwill put the spe-
cified joint(s) in Free mode. A negative speedwill
take the specified joint(s) out of Free mode.

2 Individual joint control.

22353-000 Rev. B eV+3 Keyword Reference Manual 523

524 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

3 World coordinates control.

4 Tool coordinates control.

5 Restore COMPmode.

6 unused.

7 Jog toward the specified location using the spe-
cified speed.

8 Jog toward alignment of the robot tool-Z axis
with the nearest World axis.

9 Cartesian control relative to a frame defined by
the specified location.

axis Specifies the joint number or Cartesian coordinate (X=1,
Y=2, ...), depending on the specified jog mode (see above),
for the desired motion.

This parameter is ignored for modes 7 and 8, but a value
must always be specified.

speed Specifies the speed and direction of the motion. This is inter-
preted as a percentage of the speed in manual mode. Values
above 100 are interpreted as 100%, values below -100 are
interpreted as -100%.

If Free mode is specified, a positive speed will put the given
joint in free mode and a negative speed will put the joint
out of free mode.

location Optional transformation, precision point, location function,
or compound transformation that specifies the destination
to which the robot is to move. This parameter is ignored
and can be omitted for all modes except 7 and 9.

appro_dist Optional real-valued expression that specifies the distance.
The position of the destination location is offset from the
given location by the distance given, measured along the Z-
axis of the specified location in the negative direction. A
positive distance sets the tool back (negative tool-Z) from
the specified location. A negative distance offsets the tool
forward (positive tool-Z). This parameter is used only for
mode 7.

Details

When the status variable is supplied and there is an error, the JOG command
does not cause program execution to stop. The error is returned in the status vari-
able.

Chapter 3: Keyword Details

A new JOG command can be executed before the previous motion is completed.
For extended smooth motion, subsequent JOG commands should be executed
within the JOG.TIME value of the previous JOG command. The keep-alive mode
can be used for this purpose. The keep-alive mode will have no effect after the
timeout of the JOG.TIME value. It has an effect only before the robot stops.

The following error conditions can be reported when the command is processed.

l Mode 1: The error *Illegal joint number* (-609) is returned if FREE mode is
not permitted for the specified joint.

l Mode 2: The error *Joint control of robot not possible* (-938) is returned if
the robot does not support joint control.

l Modes 3, 4, 8, 9: The error *Cartesian control of robot not possible* (-635)
is returned if the robot does not support Cartesian control.

l Mode 7: If the location cannot be reached, the motion stops at the limit of
possible motion and the error *Location out of range* (-610) is returned
when the motion stops. If any other motion error occurs during the motion
(e.g., an obstacle is encountered), the associated error is reported.

l Modes 7 and 9: The error *Missing argument* (-454) is returned if a loc-
ation is not specified. For mode 7, a straight-line motion is performed
toward the specified location if the location is specified with a trans-
formation. A joint-interpolated motion is performed if the location is spe-
cified with a precision point.

When a robot joint is out-of-range, it can be driven into range with a method
described below.

l Enter MAN mode on the Front Panel and manually control the joint.

l Put the pendant in COMP mode and use the JOG command to move the
joint back into range. JOG is allowed only in pendant COMP mode.

NOTE: Use of COMP mode when a joint is out of range is
restricted. All motion commands (except JOG) return a *Pos-
ition out of range* error in that situation. In addition, JOG
can move the joint only in the direction that moves the joint
back into range.

Examples

The following exmaple jogs joint 3 in a negative direction.

JOG 1, 2, 3, -10

The following example jogs the X-axis in world mode.

JOG 1, 3, 1, 10

The following example jogs the Y-axis in tool mode.

22353-000 Rev. B eV+3 Keyword Reference Manual 525

526 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

JOG 1, 4, 2, 10

The following example jog the robot tool toward "loc1".

JOG 1, 7, 1, 10,loc1

The following example jogs the robot tool toward a location 50mm above "loc1".

JOG 1, 7, 1, 10,loc1, 50

Related Keywords

JOG

JOG.TIME

MOVE

Chapter 3: Keyword Details

KEYMODE

Set the behavior of a group of keys on the pendant.

Syntax

KEYMODE first_key,last_key = mode

Usage Considerations

The pendant must be attached before KEYMODE can be processed.

Additional Information: Refer to the T20 Pendant User's Manual
(Cat. No. I601) for information about the key number assignments.

Parameters

first_key Real-valued expression that defines the first key number in
a set of keys to be affected.

last_key Real-valued expression that defines the last key number in
a set of keys to be affected.

mode Real-valued expression that defines the key mode to be
set for the specified set of keys. The mode must have one
of the following values (the modes are described below):

0: Keyboard mode
1: Toggle mode
2: Level mode

Details

The various key modes are described below. Refer to the description of the
PENDANT real-valued function for more information on interaction with the
pendant.

0 - Keyboard Mode

Keys programmed in this mode function similar to a terminal keyboard. A pro-
gram can use the function PENDANT(0) to request the number of the next key
pressed. The program then waits until one of the keys programmed in
KEYBOARD MODE is pressed and then number of the key is returned.

Type-ahead is not possible. The program does not detect any keys that are
pressed while there is no PENDANT(0) function pending.

1 - Toggle Mode

When you press a key that is in this mode, the internal state maintained by eV+
is toggled. The current state of the key can be evaluated as necessary.

22353-000 Rev. B eV+3 Keyword Reference Manual 527

528 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

2 - Level Mode

The key's current level is maintained by the pendant and may be requested. The
key's state is ON only when it is being pressed. This is useful for cursor control,
for example. The value returned is not valid if the pendant is not attached.

Attach/Detach Requirements

The pendant must be attached (with the ATTACH program command) before the
program can read keys using the PENDANT function, set the modes of any of the
keys, or send text to the display.

Defaults

The key modes default to keyboard mode when the pendant is attached.

Example

The following example will set the manual control soft keys to level mode.

KEYMODE 1,5 = 2

Related Keywords

ATTACH

PENDANT (real-valued function)

Chapter 3: Keyword Details

KILL

Clear a program execution stack and detach any I/O devices that are attached.

Syntax

KILL task_number

Usage Considerations

The KILL program command cannot be used while the specified program task is
executing.

The KILL program command has no effect if the specified task execution stack is
empty.

Parameter

task_number Optional real value, variable, or expression interpreted
as an integer that specifies which program task is to be
cleared.

Details

The KILL program command operation clears the selected program execution
stack, closes any open files, and detaches any I/O devices that may have been left
attached by abnormal program termination.

This situation can occur if a program executes a PAUSE program command, is
terminated by an ABORT keyword, or an error condition occurs while an I/O
device is attached or a file is open. If a limited-access I/O device is left attached,
no other program task can use that device until it is detached.

The KILL command always accesses task 0 if the task number is omitted.

Example

The following example will execute the KILL operation on task 1 if signal 2001 is
true.

IF (SIG(2001)==TRUE) THEN
KILL(1)

END

Related Keywords

ABORT (monitor command)

ABORT (program command)

EXECUTE (monitor command)

EXECUTE (program command)

STATUS

22353-000 Rev. B eV+3 Keyword Reference Manual 529

530 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

LEFTY

Request a change in the robot configuration during the next motion to make the
first two links of a SCARA robot use the left arm orientation.

Syntax

LEFTY

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a left-handed configuration, this command
is ignored by the robot.

The LEFTY program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. If the robot is not
attached, this command has no effect. This command applies to the robot selec-
ted by the task.

If the eV+ system is not configured to control a robot, executing the LEFTY com-
mand causes an error.

The following figure shows the LEFTY / RIGHTY configurations for the top view
of a SCARA robot.

Figure 3-9. Lefty / Righty Configuration

Example

The following example will move the robot to location "point1" in the lefty con-
figuration.

LEFTY
MOVE point1

Chapter 3: Keyword Details

Related Keywords

CONFIG

RIGHTY

SELECT (program command)

SELECT (real-valued function)

SELECT (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 531

532 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

LOCAL

Declare permanent variables that are defined only within the current program.

Syntax

LOCAL type variable, ..., variable

Usage Considerations

Subroutines can be called simultaneously by multiple program tasks and recurs-
ively by a single task. Local and global variables can be corrupted if such calls
occur inadvertently. The use of automatic variables in place of local variables is
recommended for this reason.

LOCAL statements must appear before any executable statement in the program.

If a variable is listed in a LOCAL statement, any global variable with the same
name cannot be accessed directly by that program.

The values of local variables are not saved or restored by the STORE or LOAD
monitor commands.

Parameters

type If the type parameter is specified, all the variables must
match that type (REAL, DOUBLE, or LOC). Array variables
must have their indexes specified explicitly, indicating the
highest valid index for the array.

If this keyword is omitted, the type of each variable is determ-
ined by its use within the program. An error is generated if
the type cannot be determined from usage.

LOC Location variable (transformation or precision
point).

REAL Single-precision real variable.

DOUBLE Double-precision real variable.

Refer to the GLOBAL command for details on
the default type.

variable Variable name (belt, precision point, real-value, string, and
transformation). Each variable can be a simple variable or an
array. If the type parameter is specified, all the variables
must match the specified type. Array variables must not
have their indexes specified.

Chapter 3: Keyword Details

Details

This command is used to declare variables to be defined only within the current
program. A local variable can be referenced only within its own program. The
names of local variables can be selected without regard for the names of local
variables defined in other programs.

Local variables are allocated only once during program execution and their val-
ues are preserved between successive subroutine calls. These values are also
shared if the same program is executed by multiple program tasks.

If a program that uses LOCAL (or global) variables is called by several different
program tasks or called recursively by a single task, the values of those variables
can be modified by the different program instances and cause unpredictable pro-
gram errors. Therefore, automatic variables should be used for all temporary
local variables to minimize the chance of errors. Refer to the AUTO command for
more information.

Variables can be defined as automatic, global, or local. Once a variable has been
assigned to a class, an attempt to assign the variable to a different class will res-
ult in the error message "Attempt to redefine variable class".

Variables can be defined only once within the same context (automatic, local, or
global). Attempting to define a variable more than once with a different type will
result in the error message "Attempt to redefine variable type".

Local variables can be referenced with monitor commands such as DELETE_,
DO , HERE , LIST, TOOL by using the optional context specifier @ as shown in
the example below.

command @task:program command_arguments

Example

The following example declares the variables "loc.a", "$ans", and "i" to be local to
the current program.

LOCAL loc.a, $ans, i

Related Keywords

AUTO

LOCAL

STACK

DO

HERE

TOOL

22353-000 Rev. B eV+3 Keyword Reference Manual 533

534 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

LOCK

Set the program reaction lock-out priority to the value given.

Syntax

LOCK priority

Usage Considerations

LOCK 0 is assumed whenever program execution is initiated and when a new
execution cycle begins.

Changing the priority may affect how reactions are processed. Before using this
command, be sure you know what reactions (and their priorities) are active.

Parameter

priority Real-valued expression with a value from 0 to 127, which
becomes the new reaction lock-out priority.

Details

When a program is executed, it is placed on the execution stack. When the pro-
gram's task becomes the highest priority task in a time slice, the program's pri-
ority is set to 0 and it begins execution. During actual execution, a program's task
can be suspended at the end of a time slice, in which case the task waits until the
next time it is the highest priority task in a time slice. The LOCK command does
not affect the task priority value within a time slice. It only changes the program
priority of an executing program.

Program priority becomes important when a reaction routine (REACT, REACTE,
REACTI) is invoked. A program can defer execution of a REACT or REACTI
routine by setting the temporary program priority to a value higher than the
REACT or REACTI program priority. This is the function of a LOCK command.
For example, if a LOCK command changes the temporary program priority to 20,
any REACT or REACTI interrupts with lower priority values are deferred.

Additional Information: If the execution of the REACTI operation
is postponed and the LOCK command is used to change the
REACTI operation to a higher priority, the system will execute the
operation. This differs from the behavior of the normal REACTI
operation. After the system executes the operation, execute the
REACTI operation.

If the execution of the REACTI operation is postponed and the LOCK command
is used to set the priority of the REACTI operation to a higher priority, the current
command will be executed without stopping immediately. After the current com-
mand is executed, issue the REACTI command. REACTE routines cannot be
deferred by priority considerations.

Chapter 3: Keyword Details

Deferred reactions are not ignored. Every time a new LOCK command is pro-
cessed, any deferred reaction programs are checked to see if their priority is high
enough for them to execute. As soon as the program priority is lowered, all
pending reaction routines with a higher priority are run according to their rel-
ative priority.

The PRIORITY real-valued function can be used to determine the program pri-
ority at any time.

NOTE: Although a LOCK command can be used to change the
program priority within a reaction program, the priority still
returns to its pre-reaction value when a RETURN is executed in the
program. This occurs only when executing a RETURN from a reac-
tion program.

Example

The following example increases the program priority by 10.

LOCK PRIORITY+10

Related Keywords

PRIORITY

REACT

REACTI

22353-000 Rev. B eV+3 Keyword Reference Manual 535

536 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

MC

Introduce a monitor command within a Monitor Command program.

Syntax

MC monitor_command

Usage Considerations

The MC command can be contained only within a Monitor Command program.
Monitor Command programs can contain only MC commands, blank lines, and
comment lines.

Additional Information: Refer to the eV+3 User's Manual (Cat. No.
I651) for more information about Monitor Command programs.

Parameter

monitor_command Any valid eV+ monitor command
keyword.

Details

Command programs are created using one of the eV+ editors. To indicate to the
editor that a Monitor Command program is being created, every operation line of
a Monitor Command program must begin with the letters MC followed by one or
more spaces. As with regular application programs, Monitor
Command programs can contain blank lines and comment lines to add clarity.

Every non-blank line of a Monitor Command program must contain a monitor
command or a comment. Monitor commands and program commands cannot be
mixed. Program commands can be included by using the DO command. You can
type a line with the form "MC DO".

Example

The following Monitor Command program example loads disk files, prepares for
execution of a program, and begins the execution. A DO command is used to
include a MOVE command.

1 .PROGRAM setup()
2 MC LOAD C:project
3 MC LOAD B:project.lc
4 MC SPEED 50
5 MC DO MOVE safe.loc
6 MC EXECUTE motion, -1
7 .END

Related Keywords

COMMANDS

DO

Chapter 3: Keyword Details

MCS

22353-000 Rev. B eV+3 Keyword Reference Manual 537

538 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

MCS

Invoke a monitor command from an application program.

Syntax

MCS string

Parameter

string String value, variable, or expression that defines one of the fol-
lowing eV+ monitor commands: DELETE , DELETEL ,
DELETEM , DELETEP, DELETER , DELETES , FCOPY , LOAD
, STORE , STOREL , STOREM , STOREP , STORER , STORES ,
VRENAME

Details

Monitor commands are typically invoked from the Monitor Window or from
Monitor Command programs which contain only monitor commands. The MCS
command can be used to invoke the following monitor commands from an
application program.

DELETE DELETEL DELETEM DELETEP DELETER

DELETES FCOPY LOAD STORE STOREL

STOREM STOREP STORER STORES VRENAME

Using these commands, an application program can store, load, and copy pro-
grams to and from disk, and also delete programs from memory. Similarly, vari-
ables can be deleted from memory when they are no longer needed. Also, vision
prototypes can be renamed.

Loading, storing, and deleting programs and global variables is not interlocked
for multi-task access in eV+. Therefore, if you are incorporating multiple MCS
commands in a program, you will need to use TAS interlocks to prevent multiple
tasks from issuing the commands. Refer to the TAS command for more inform-
ation.

NOTE: If the monitor command specified in the string parameter
contains a blank program context (it contains @), any variables lis-
ted in the command are treated as though they are referenced
within the program containing the MCS command. Refer to the
eV+3 User's Manual (Cat. No. I651) for more information about pro-
gram context.

Program execution is not stopped if an error occurs while processing the monitor
command. The ERROR real-valued function can be used after the MCS com-
mand to check for the occurrence of an error.

Chapter 3: Keyword Details

NOTE: If a DELETE_ command is used within a subroutine to
delete one of the subroutine parameters (one of the variables in the
.PROGRAM statement), the variable is not deleted and no error con-
dition is recorded.

If the FCOPY option is used, logical units 5 (disk 1) and 6 (disk 2) must be avail-
able. If LOAD or STORE_ is used, logical unit 5 must be available.

Example

The following example loads a disk file, executes the program in the file, and
deletes the program from the system memory. Another program file is then
loaded into memory and executed.

Although this simple example can also be implemented with a Monitor
Command program, the following demonstrates use of the MCS command in a
normal program.

.PROGRAM admin()
MCS "LOAD C:setup"
CALL setup
MCS "DELETEP setup"
MCS "LOAD C:demo_1"
CALL demo_main

.END

Related Keywords

DELETE

DELETEL

DELETEM

DELETEP

DELETER

DELETES

ERROR

FCOPY

LOAD

MC

STORE

STOREL

STOREM

STOREP

STORER

STORES

22353-000 Rev. B eV+3 Keyword Reference Manual 539

540 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

TAS

Chapter 3: Keyword Details

MOVE

Initiate a robot motion to the position and orientation described by the given loc-
ation with joint-interpolated motion.

Syntax

MOVE location

Usage Considerations

MOVE causes a joint-interpolated motion.

This command can be executed by any program task as long as the task has
attached a robot. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing this command
causes an error.

Parameter

location Transformation, precision point, location function, or com-
pound transformation that specifies the destination to which
the robot is to move.

Details

The MOVE program command causes a joint-interpolated motion. Intermediate
set points between the initial and final robot locations are computed by inter-
polating between the initial and final joint positions. Any changes in con-
figuration requested by the program since the last MOVE operation (for example,
issuing a LEFTY command) are executed during the motion.

Examples

The following example moves to the location described by the precision point
"#pick" with joint-interpolated motion.

MOVE #pick

Related Keywords

APPRO

APPROS

DEPART

DEPARTS

MOVEC

SELECT (program command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 541

542 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

MOVEC

Initiate a circular / arc-path robot motion using the positions and orientations
described by the given locations.

Syntax

MOVEC(angle, turn) location1, location2

MOVEC(angle, turn) center

Usage Considerations

The MOVEC program command can be executed by any program task as long as
the task has attached a robot. This command applies to the robot selected by the
task.

If the eV+ system is not configured to control a robot, executing this command
causes an error.

Parameters

angle Real-valued expression that specifies the angle of the arc in
degrees. This parameter is optional if location2 is specified.
The angle parameter can be a positive or negative number
but must be specified within the range of -360 to +360. A
positive value will result in a clockwise tool motion. A neg-
ative value will result in a counterclockwise tool motion.

turn Optional boolean expression that specifies whether the tool
should rotate with the arc. If turn is omitted or 0, then the
tool orientation will stay constant with a MOVEC(angle) cen-
ter statement and end at the orientation of location2 for a
MOVEC location1, location2 statement . If turn is non-zero,
the tool orientation will be rotated by the angle of the arc
around the axis of the circle andmaintain a constant ori-
entation relative to the trajectory.

center Transformation, precision point, location function, or com-
pound transformation that specifies the center of the circle.

location1 Transformation, precision point, location function, or com-
pound transformation that specifies an intermediate location
on the circle / arc through which the robot is to move.

location2 Optional transformation, precision point, location function, or
compound transformation that specifies the end-point of the
circle / arc to which the robot is to move. If this parameter is
not supplied, then angle must be specified.

Chapter 3: Keyword Details

Details

MOVEC(angle,turn) location1, location2

The MOVEC program command syntax is designed to create a circle / arc path
ending at a location defined by the location2 parameter. The circle / arc path can
begin from the current robot position or the current robot destination when using
a continuous path motion. The intermediate location designated with the loc-
ation1 parameter is used to define the plane of the circle and the angle of the arc
as shown in the figure below.

Start

Location1

Location2

Figure 3-10. 3-point Plane and Angle Definition

If the three points are aligned or two of them coincide, issuing the MOVEC com-
mand will cause a straight-line motion instead of creating a circle or arc.

With this syntax, the orientation of location1 is not used.

If angle is specified, then the robot will move by angle degrees and not neces-
sarily finish at location2. The angle has higher priority than location2 in defining
the final position.

When angle is specified, the orientation of location2 is ignored. The final ori-
entation is determined entirely by the turn parameter. If the turn parameter is
omitted or 0, then the final orientation will be the orientation of the start position.
If the turn parameter is non-zero, then the final orientation is the the start pos-
ition rotated by angle around the axis of the arc.

When turn is non-zero, the MOVEC command will generate an *invalid ori-
entation* error for 4-axis robots when the plane of the circle is not parallel to the
X-Y plane of the Tool center point.

As with straight-line motion, circular motion is compatible with multi-turn rota-
tion. If location2 is a precision point, the multi-turn joint can rotate more than
360 degrees.

22353-000 Rev. B eV+3 Keyword Reference Manual 543

544 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

MOVEC(angle,turn) center

This MOVEC program command syntax is designed to create a circle / arc path
that starts from the current robot position or in case of continuous path motion,
the current robot destination. The path is centered around the center location. The
end location is specified with angle degrees.

The plane of the circle is defined as the plane passing through the start position
and parallel to the X-Y plane of the center location. If the Z-orientation of the cen-
ter location is not perpendicular to the straight line passing through center and
the start position, then the center of the circle is not the location center. It is the
intersection of the Z-axis of center and a plane that is perpendicular to this axis
and passes through the start position.

After the center of the circle is defined, the radius of the circle is the distance from
the start position to the center.

center

end_pos

start_pos

angle

Figure 3-11. Angle and Center Definition

Examples

The following example shows MOVEC used with transformations.

MOVEC loc1, loc2

The following example shows MOVEC used with continuous path motion as
shown in the figure below.

Chapter 3: Keyword Details

MOVES p1

MOVEC p2, p3

MOVES p4

BREAK

Start

p1

p2

p3 p4

Figure 3-12. Continuous Path with MOVEC

The following example shows MOVEC used to create a full circle with a
SCARA robot as shown in the figure below.

SET center = TRANS(300,0,210,90,30,0)

SET start_pos = TRANS(420, 0, 210, 0, 180, 0)

MOVES start_pos

BREAK

MOVEC(360) center

BREAK

22353-000 Rev. B eV+3 Keyword Reference Manual 545

546 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Figure 3-13. MOVEC Creating a Full Circle

NOTE: In the previous figure, "MOVEC(360,1) center" will return
an *invalid orientation* error because the robot cannot maintain a
constant orientation relative to a non-horizontal circle.

The following example shows MOVEC used to create a half circle with rotating
orientation for dispensing with a 6-axis robot.

SET center = TRANS(300,0,250,0,-150,0)

SET start_pos = center:TRANS(0,0,0,-90):TRANS(100,,,,-30)

MOVES start_pos

BREAK

MOVEC(180,TRUE) center

BREAK

Chapter 3: Keyword Details

Figure 3-14. 6-axis MOVEC Half-circle with Rotating Tool Orientation

Changing the last 3 lines can modify the previous example to create the same
motion without rotating the orientation as shown below.

MOVEC(180) center

BREAK

IMPROVE IMAGE BELOW

Figure 3-15. 6-axis MOVEC Half-circle with Non-rotating Tool Ori-
entation

Related Keywords

APPRO

DEPART

MOVE

MOVES

SELECT (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 547

548 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SELECT (real-valued function)

Chapter 3: Keyword Details

MOVES

Initiate a robot motion to the position and orientation described by the given loc-
ation with straight-line motion.

Syntax

MOVES location

Usage Considerations

MOVES causes a straight-line motion, during which no changes in configuration
are permitted.

This command can be executed by any program task as long as the task has
attached a robot. This command applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing this command
causes an error.

Parameter

location Transformation, precision point, location function, or com-
pound transformation that specifies the destination to which
the robot is to move.

Details

The MOVES program command causes a straight-line motion. During such a
motion the tool is moved along a straight-line path and is smoothly rotated to its
final orientation.

Examples

The following example moves along a straight-line path to the location described
by the compound transformation "ref:place".

MOVES ref:place

Related Keywords

APPRO

APPROS

DEPART

DEPARTS

MOVEC

SELECT (program command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 549

550 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

NEXT

Branch to the END statement of the nth nested loop, perform the loop test, and
loop if appropriate.

Syntax

NEXT count

Usage Considerations

This command can be used with the FOR, WHILE, and DOcontrol structures.

Parameter

count Optional integer specifying the number of nested structures
to branch to the end of (expressions and variables are not
acceptable).

Details

When a NEXT command is processed with count = 1, execution continues at the
end of the control structure. If count > 1, execution continues at the end of count
number of nested control structures.

Example

If error = 1, branch to the end of the innermost control structure. If error = 2,
branch to the end of the outermost control structure:

FOR i = 1 to 20
FOR j = 1 to 10

FOR k = 10 to 50
IF error == 1 THEN

NEXT
END
IF error == 2 THEN

NEXT 3
END

END
END

END

Related Keywords

DO

END

EXIT

FOR

WHILE

Chapter 3: Keyword Details

NOFLIP

Request a change in the robot configuration during the next motion so the pitch
angle of the robot wrist has a positive value.

Syntax

NOFLIP

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a no-flip configuration, this command is
ignored by the robot.

The NOFLIP program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. If the robot is not
attached, this command has no effect. This command applies to the robot selec-
ted by the task.

If the eV+ system is not configured to control a robot, executing the NOFLIP com-
mand causes an error.

Refer to the FLIP program command for more information.

Example

The following example moves the robot to "point1" with the NOFLIP con-
figuration.

NOFLIP
MOVE point1

Related Keywords

CONFIG

FLIP

SELECT (program command)

SELECT (real-valued function)

SELECT (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 551

552 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

NONULL

Instruct the eV+ system to not wait for position errors to be nulled at the end of
continuous-path motions.

Syntax

NONULL ALWAYS

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

NULL ALWAYS is assumed whenever program execution is initiated and when
a new execution cycle begins. This is the default state of the eV+ system.

The NONULL program command can be executed by any program task as long
as the robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the NONULL
command causes an error.

Executing this keyword will have no difference in operation when used in emu-
lation mode. The trajectory of the robot in the emulation mode is considered to be
the same as the current target position. Therefore, unlike with an actual robot, no
positioning error occurs when the operation is completed.

Parameter

ALWAYS Optional qualifier that establishes NONULL as the default con-
dition. When ALWAYS is included in a NONULL command,
NONULL remains in effect continuously until disabled by a
NULL program command. If ALWAYS is not specified, the
NONULL command applies only to the next robot motion.

Details

When NONULL is active and a break in the robot motion occurs, eV+ does not
wait for the servos to signal that all moving joints have reached their specified
positions before it begins the next motion. At the end of the allotted time, eV+
assumes that all joints have reached their final positions and starts commanding
the next motion.

Like COARSE mode, this mode allows faster motion if high final-position accur-
acy is not required.

NOTE: Position-error checking is not active while NONULL is act-
ive and large position errors can occur.

Examples

The following example issues the NONULL operation for a single motion to loc-
ation "point1".

Chapter 3: Keyword Details

NONULL
MOVE point1

The following example issues the NONULL operation for a series of motions to
location "point2" and "point3".

NONULL ALWAYS
MOVE point2
MOVE point3

Related Keywords

COARSE

CONFIG

DELAY.IN.TOL

FINE

NULL

SELECT (program command)

SELECT (real-valued function)

SELECT (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 553

554 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

NOOVERLAP

Generate a program error if a subsequent motion is planned that causes a selec-
ted multi-turn axis to move more than ±180 degrees to avoid a limit stop.

Syntax

NOOVERLAP ALWAYS

Usage Considerations

NOOVERLAP applies to the operation of the following robots and their respect-
ive joints.

l Joints 1, 4, and the final joint for 6-axis robots

l Joint 4 for SCARA robots

l Tool rotation for parallel robots

OVERLAP ALWAYS is assumed whenever program execution is initiated and
when a new execution cycle begins. This is the default state of the eV+ system.

The NOOVERLAP program command can be executed by any program task as
long as the robot selected by the task is not attached by any other task. This com-
mand applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the NOOVERLAP
command causes an error.

Parameter

ALWAYS Optional qualifier that establishes NOOVERLAP as the default
condition. If ALWAYS is specified, NOOVERLAP remains active
continuously until disabled by an OVERLAP program com-
mand. If ALWAYS is not specified, the NOOVERLAP command
applies only to the next robot motion.

Details

When NOOVERLAP is active and the transformation destination of a joint-inter-
polated or straight-line motion requires that a multiple-turn axis rotate more than
±180 degrees to avoid a limit stop, a program error will occur and the motion
will not be performed. If the destination is specified as a precision point, this
check is not performed.

Given a transformation destination, a multiple-turn axis normally attempts to
move to a new position by moving in the direction that requires less than 180
degrees of motion. The only conditions that force an axis to make a larger change
are if SINGLE program command is issued or if a software limit stop would be
violated.

When NOOVERLAP is active, the setting of SINGLE mode is ignored.

Chapter 3: Keyword Details

Additional Information: As with other user program errors, the
error condition generated as a result of the NOOVERLAP check can
be detected by a standard REACTE subroutine if desired.

Related Keywords

OVERLAP

SELECT (program command)

SELECT (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 555

556 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

NULL

Instruct the eV+ system to wait for position errors to be nulled at the end of con-
tinuous path motions.

Syntax

NULL ALWAYS

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

NULL ALWAYS is assumed whenever program execution is initiated and when
a new execution cycle begins. This is the default state of the eV+ system.

The NULL program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the NULL com-
mand causes an error.

Executing this keyword will have no difference in operation when used in emu-
lation mode. The trajectory of the robot in the emulation mode is considered to be
the same as the current target position. Therefore, unlike with an actual robot, no
positioning error occurs when the operation is completed.

Parameter

ALWAYS Optional qualifier that establishes NULL as the default con-
dition. If ALWAYS is specified, NULL remains in effect con-
tinuously until disabled by a NONULL program command. If
ALWAYS is not specified, the NULL command applies only to
the next robot motion.

Details

When NULL is active and a break in the robot motion occurs, eV+ waits for the
servos to signal that all moving joints have reached their specified positions
before it begins the next motion. Position accuracy is determined by the COARSE
and FINE program commands.

Example

The following example issues the NULL operation for a single motion to location
"point1".

NULL
MOVE point1

Related Keywords

COARSE

Chapter 3: Keyword Details

CONFIG

DELAY.IN.TOL

FINE

NONULL

SELECT (program command)

SELECT (real-valued function)

SELECT (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 557

558 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

OVERLAP

Disable the NOOVERLAP limit-error checking either for the next motion or for all
subsequent motions.

Syntax

OVERLAP ALWAYS

Usage Considerations

OVERLAP applies to the operation of the following robots and their respective
joints.

l Joints 1, 4, and the final joint for 6-axis robots

l Joint 4 for SCARA robots

l Tool rotation for parallel robots

OVERLAP ALWAYS is assumed whenever program execution is initiated and
when a new execution cycle begins. This is the default state of the eV+ system.

The OVERLAP program command can be executed by any program task as long
as the robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the OVERLAP
command causes an error.

Parameter

ALWAYS Optional qualifier that establishes OVERLAP as the default con-
dition. If ALWAYS is specified, OVERLAP remains in effect con-
tinuously until disabled by a NOOVERLAP program command.
If ALWAYS is not specified, the OVERLAP command applies
only to the next robot motion.

Details

When OVERLAP is active, the settings of SINGLE program command affects the
robot motion.

When OVERLAP is active and the transformation destination of a joint-inter-
polated or straight-line motion requires that a multiple-turn axis rotate more than
±180 degrees, the motion is executed without generating a program error.

OVERLAP disables the limit-error checking of NOOVERLAP. The OVERLAP set-
ting is applied whenever program execution is initiated and when a new exe-
cution cycle begins.

Related Keywords

NOOVERLAP

SELECT (program command)

Chapter 3: Keyword Details

SELECT (real-valued function)

SINGLE

22353-000 Rev. B eV+3 Keyword Reference Manual 559

560 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PACK

Replace a substring within an array of (128-character) string variables, or within
a (non-array) string variable.

Syntax

PACK string_array[index], first_char, num_chars = string

PACK string_var, first_char, num_chars = string

Parameters

string_array String array variable that is modified by the substring
on the right-hand side of the equal sign. Each element
within the string array is assumed to be 128 characters
long (see below).

index Optional integer value that identifies the first array ele-
ment to be considered. The first_char value is inter-
preted relative to the element specified by this index. If
no index is specified, element zero is assumed.

string_var String variable that is modified by the substring on the
right-hand side of the equal sign.

first_char Real-valued expression that specifies the position of
the first character of the substring within the string
array. A value of 1 corresponds to the first character of
the specified string array element. This value must be
greater than zero.

The value of first_char can be greater than 128. In that
case, the array element accessed follows the element
specified in the function call. For example, a value of
130 corresponds to the second character in the array
element following that specified by index.

num_chars Real-valued expression that specifies the number of
characters to be copied from the string to the array.
This value can range from 0 to 128.

string String variable, constant, or expression from which the
substring is to be extracted. The string must be at least
num_chars long.

Details

This comand replaces a substring within an array of strings or within a string
variable. When an array of strings is being modified, the substring is permitted to

Chapter 3: Keyword Details

overlap two elements of the string array. For example, a 10-character substring
whose first character is to replace the 127th character in element [3] supersedes
the last two characters in element [3] and the first eight characters of element [4].

If the array element to be modified is not defined, the element is created and
filled with ASCII NUL characters (^H00) up to the specified start of the substring.
Similarly, if the array element to be modified is too short, the string is padded
with ASCII NUL characters to the start of the substring.

In order to efficiently access the string array, this command assumes that all of
the array elements from the start of the array until the element before the element
accessed are defined and are 128 characters long. For multidimensional arrays,
only the right-most array index is incremented to locate the substring. For
example, element [2,3] is followed by element [2,4].

When a string variable is modified, the replacement is done in a manner similar
to that for an individual array element. An error results if the operation causes
the string to be longer than 128 characters.

Example

The following example replaces 11 characters within the string array "$list[]".
The replacement is specified as starting in array element "$list[3]". However,
since the first character replaced is to be number 130, the 11-character substring
replaces the second through 12th characters of "$list[4]".

PACK $list[3], 130, 11 = $string

Related Keywords

$MID

$UNPACK

22353-000 Rev. B eV+3 Keyword Reference Manual 561

562 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PANIC

Simulate an external E-Stop button press to stop all robots immediately, but do
not turn off high power.

Syntax

PANIC robot_num

Parameters

robot_num Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, the settings for all robots are
altered. Otherwise, only the setting for the specified robot is
affected.

Usage Considerations

If no robot is specified with the robot_num parameter, all robots are stopped.

This command has no effect on non-robot systems.

Details

This commandperforms the following actions:

l Immediately stops robot motion.

l Stops execution of the robot control program if the robot is attached and
no REACTE has been executed to enable program processing of error.

Unlike pressing the emergency stop button on the pendant, high power is left
turned ON after a PANIC operation is processed.

Related Keywords

ABORT (monitor command)

ABORT (program command)

ESTOP (program command)

ESTOP (monitor command)

PANIC (monitor command)

Chapter 3: Keyword Details

PARAMETER

Set the value of a system parameter.

Syntax

PARAMETER parameter_name = value

PARAMETER parameter_name[index] = value

Usage Considerations

If the specified system parameter accepts an index qualifier and the index is 0 or
omitted with or without the brackets, all the elements of the parameter array are
assigned the value given.

Parameters

parameter_name Name of the parameter whose value is to be mod-
ified.

index For parameters that can be qualified by an index,
this is an optional real value, variable, or expres-
sion that specifies the specific parameter element
of interest (see above).

value Real value, variable, or expression defining the
value to be assigned to the system parameter.

Details

The PARAMETER program command sets the given system parameter to the
value on the right. The parameter name can be abbreviated to the minimum
length that identifies it uniquely.

NOTE: A regular assignment statement cannot be used to set the
value of a system parameter.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about
system parameters.

Example

The following example will set the BELT.MODE parameter to have bits 1 and 3
turned ON (mask values 1 + 4).

PARAMETER BELT.MODE = 5

22353-000 Rev. B eV+3 Keyword Reference Manual 563

564 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

BELT.MODE

NOT.CALIBRATED

PARAMETER (monitor command)

Chapter 3: Keyword Details

PAUSE

Stop program execution but allow the program to be resumed.

Syntax

PAUSE

Usage Considerations

Unlike HALT and STOP, the PAUSE program command does not force FCLOSE
or DETACH operations on the disk logical units. If the program has a file open
and you decide not to continue execution of the current program, you should
issue a KILL program command with the appropriate task number to close all
files and detach all logical units.

Details

The PAUSE program command causes a break and terminates execution of the
application program, displaying the message (PAUSED). Execution can sub-
sequently be continued issuing a PROCEED monitor command with the appro-
priate task number.

When debugging a program, a PAUSE command can be inserted to stop program
execution temporarily while the values of variables are checked.

NOTE: Any robot motion in progress when a PAUSE command is
processed completes normally.

Related Keywords

HALT

KILL (monitor command)

KILL (program command)

PROCEED

STOP

22353-000 Rev. B eV+3 Keyword Reference Manual 565

566 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PDNT.CLEAR

Clears the current notification window or custom message window on the T20
pendant, if any, and returns the T20 pendant back to the Home screen.

Syntax

PDNT.CLEAR

Usage Considerations

The target pendant will be the one connected to the currently selected robot.

Refer to the eV+3 User's Manual (Cat. No. I651) for information about T20 pendant
programming.

Example

The following example will clear the screen of the T20 pendant that is connected
to the currently selected robot.

PDNT.CLEAR

Related Keywords

PDNT.NOTIFY

PDNT.WRITE

Chapter 3: Keyword Details

PDNT.NOTIFY

Creates a pendant notification.

Syntax

PDNT.NOTIFY $title, $msg

Usage Considerations

The pendant does not need to be attached using an ATTACH command prior to
using this operation.

The target pendant will be the one connected to the currently selected robot.

Refer to the eV+3 User's Manual (Cat. No. I651) for information about T20 pendant
programming.

Parameters

$title Optional string constant, variable, or expression that contains
the title of the pendant notification.

$msg Optional string constant, variable, or expression that contains
the message of pendant notification.

Details

PDNT.NOTIFY is used to create a simple notification box on the T20 Pendant
screen that can be cleared by pressing the OK or Cancel buttons on the pendant
or with a PDNT.CLEAR operation.

Example

The following example will create a notification box with a title and message on
the T20 pendant that is connected to the currently selected robot.

PDNT.NOTIFY “Manual Mode”, “To enable power, press and

hold the enable switch.”

Related Keywords

PDNT.CLEAR

PDNT.WRITE

22353-000 Rev. B eV+3 Keyword Reference Manual 567

568 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PDNT.WRITE

Sets the pendant's Custom Message screen.

Syntax

PDNT.WRITE (msgsize) $title, $msg, $f1, $f2, $f3, $f4

Usage Considerations

The pendant does not need to be attached using an ATTACH command prior to
using this operation.

The target pendant will be the one connected to the currently selected robot.

Refer to the eV+3 User's Manual (Cat. No. I651) for information about T20 pendant
programming.

Parameters

msgsize Optional Real value, variable, or expression whose value rep-
resents the array size of $msg.

$title Optional string constant, variable, or expression that contains
the title of the pendant’s Custom Message screen.

$msg Optional string constant, variable, or expression that contains
the body of the pendant’s Custom Message screen. This can
accept html tags to create an html-formatted text box. If
$msg is an array andmsgsize > 1, it will concatenate all the
elements of the array.

$f1 Optional string constant, variable, or expression that contains
the label of the F1 Key of the Custom Message Screen.

$f2 Optional string constant, variable, or expression that contains
the label of the F2 Key of the Custom Message Screen.

$f3 Optional string constant, variable, or expression that contains
the label of the F3 Key of the Custom Message Screen.

$f4 Optional string constant, variable, or expression that contains
the label of the F4 Key of the Custom Message Screen.

Details

PDNT.WRITE is used to set the screen of the T20 Pendant. This is used to create
a user interface to program the pendant through eV+. The screen can be either
updated with a subsequent PDNT.WRITE or cleared with a PDNT.CLEAR. While
the screen is displayed, all green keys, as well as Select Robot, are active, so that
the robot can always be jogged. All other keys have no effect.

Chapter 3: Keyword Details

Example

The following example will create a screen with specified text for the title, mes-
sage, and function keys for the T20 pendant that is connected to the currently
selected robot..

$p.title = "Operator Control"

$p.msg[0] = "Select Options from buttons below"

$p.f[1] = "Apps"

$p.f[2] = "Status"

$p.f[3] = ""

$p.f[4] = ""

PDNT.WRITE $p.title, $p.msg[], $p.f[1], $p.f[2], $p.f[3], $p.f[4]

Related Keywords

KEYMODE

PENDANT

PDNT.CLEAR

PDNT.NOTIFY

22353-000 Rev. B eV+3 Keyword Reference Manual 569

570 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PENDANT

Return input from the manual control pendant.

Syntax

PENDANT (select) key

Usage Considerations

The pendant must be attached using an ATTACH operation prior to using this
function.

Refer to the eV+3 User's Manual (Cat. No. I651) for information about T20 pendant
programming.

Parameter

select Real-valued expression whose value selects what type of
pendant information is returned.

key Return value from the pendant depending on select.

Details

The value returned depends upon the select parameter as follows:

select> 0

Immediately returns a value that reflects the actual state of the key with the given
key number at the moment the operation is called. The state of the key depends
upon the key mode setting for that key. Refer to the KEYMODE program com-
mand for information about setting key modes. The value returned is meaningful
only if the pendant is connected. The pendant logical unit does not need to be
attached for this mode of operation.

If a key is in keyboard mode, the value ON (-1) indicates that the key is pressed.
The value OFF (0) indicates that the key is not pressed.

If a key is in level mode, the value ON (-1) indicates that the pendant is attached
and that the key is pressed. The value OFF (0) indicates the key is not pressed.

If a key is in toggle mode, the value ON (-1) indicates that the key is on and the
value OFF (0) indicates that the key is off.

NOTE: When select is equal to 36 (indicating the SLOW key), the
value returned indicates the current state of slow mode, as indic-
ated by the LED on the key. The SLOW key is always in toggle
mode and is not affected by the KEYMODE command.

Chapter 3: Keyword Details

select = 0

Returns the key number of the next keyboard mode key pressed. Program exe-
cution is suspended until a keyboard mode key is pressed. If no key is pro-
grammed in this mode, an error occurs. The pendant logical unit must be
attached for this mode of operation.

select = -2

Returns the current value from the speed label, in the range of 0 to 100 (decimal).
When the Pendant Jog mode is COMP, the monitor speed is returned. In other jog
modes, the jog speed is returned. The pendant logical unit does not need to be
attached for this mode of operation.

select = -3

Returns the current display screen active on the pendant. This can be used, for
example, to determine the state of the manual control before attempting to write
to it. The pendant logical unit does not need to be attached for this mode of oper-
ation.

The display modes should be interpreted as follows:

Display mode Interpretation

1 Home screen

2 Other screens

3 Error screen

4 USER (custom) screen

select = -4

Returns the version number of the manual control software. This is the same as
the value returned by the real-valued function ID(1,2). The value -1 is returned if
the pendant is not connected to the system. The pendant logical unit does not
need to be attached for this mode of operation.

Examples

The following example sets the manual control soft keys to keyboard mode, and
then waits for one of them to be pressed.

ATTACH (1)
KEYMODE 1,5 = 0
key = PENDANT(0)
TYPE "Soft key #", key, " pressed"
DETACH (1)

The following examle sets the DONE key to level mode and loops until the key is pressed.

22353-000 Rev. B eV+3 Keyword Reference Manual 571

572 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ATTACH (1)
KEYMODE 8 = 2
WAIT PENDANT(8)
DETACH (1)

Related Keywords

ATTACH

KEYMODE

Chapter 3: Keyword Details

PROCEED

Resume execution of an application program.

Syntax

PROCEED task

Usage Considerations

A program cannot resume if it has completed execution normally or has stopped
due to a HALT program command.

Parameter

task Real value, variable, or expression interpreted as an
integer that specifies which program task is to be
executed. If no task number is specified, task number 0
is assumed.

Details

The PROCEED program command resumes execution of the specified program
task at the step following the one where execution was halted due to a PAUSE
program command, an ABORT program command, a breakpoint, single-step exe-
cution, or a runtime error.

In addition to continuing execution of a suspended program, this command can
be used to initiate execution of a program that has been prepared for execution
with the PRIME monitor command.

If the specified task is executing and the program is at a WAIT or WAIT.EVENT
statement (for example, waiting for an external signal condition to be satisfied),
issuing a PROCEED command has the effect of skipping the WAIT or
WAIT.EVENT statement.

This command has no effect if the specified task is executing and the program is
not at a WAIT or WAIT.EVENT statement.

PROCEED differs from RETRY command. If a program statement generated an
error, RETRY command attempts to re-execute that statement. The PROCEED
command resumes execution at the next program statement. If a robot motion
was in progress when the program stopped,RETRY attempts to complete that
motion but PROCEED will advance to the next motion.

Example

The following example will resume execution of task 2 if it is stopped due to a
PAUSE or breakpoint operation.

IF (TASK(1,2)==5)THEN
PROCEED 2

END

22353-000 Rev. B eV+3 Keyword Reference Manual 573

574 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Related Keywords

ABORT

ABORT (program command)

EXECUTE (monitor command)

EXECUTE (program command)

PRIME

PROCEED

RETRY (monitor command)

RETRY (program command)

STATUS

SSTEP

XSTEP

Chapter 3: Keyword Details

.PROGRAM

Define the arguments that are passed to a program when it is invoked.

Syntax

.PROGRAM program_name(argument_list) ;comment

Usage Considerations

This command is inserted automatically by the eV+ editors when a new program
is edited.

This special command must be the first line of every program and cannot be
omitted from a program.

Additional Information: Refer to the eV+3 User's Manual (Cat. No.
I651) for more information about passing arguments and variables
to and from V+ programs.

Parameters

program_name Name of the program in which this keyword is
found.

argument_list Optional list of variable names, separated by com-
mas. Each variable can be any one of the data types
available with eV+ (belt, precision point, real-value,
string, and transformation). Each variable can be a
simple variable or an array with all of its indexes
left blank.

;comment Optional comment that is displayed when the pro-
gram is loaded from a disk file and when the
DIRECTORY monitor command is processed. The
semicolon [;] should be omitted if no comment is
included.

Details

The eV+ editor automatically enters a .PROGRAM line when you edit a new pro-
gram. They also prevent you from deleting the line or changing the program
name. You can edit the line to add, delete, or modify the argument list. The
RENAME monitor command must be used to change the program name.

The variables in the argument list are considered automatic variables for the
named program. Refer to the AUTO keyword for more information.

When a program begins execution (for example, with an EXECUTE keyword or a
CALL program command), the arguments in the .PROGRAM command are asso-

22353-000 Rev. B eV+3 Keyword Reference Manual 575

576 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ciated with those in the EXECUTE or CALL keywords. This association allows
values to be passed between a program and its caller.

Refer to the description of the CALL program command for an explanation of
how the program arguments receive their values from a calling program and
return their values to the calling program. The following rules apply to any pro-
gram argument that is omitted when the program executes.

l Real-valued scalar parameters can be assigned a value within a program
if they are omitted.

l Location, string, and belt (scalar or array) parameters, and real-valued
array parameters, cannot be assigned a value within a program if they are
omitted. AUTO variables can be used to bypass this restriction, as shown
in the example below. Undefined parameters can be passed as program
arguments and then be assigned a value.

NOTE: If a program attempts to assign a value to one of these
omitted variables, the error *Undefined value* results. In that case,
the error refers to the variable on the left side of the assignment
statement.

l If an undefined or omitted parameter is passed to another program
through a subsequent CALL program command and the type of the vari-
able is ambiguous (i.e., the type could be real-valued or location), the para-
meter is assumed to be real-valued.

l Elements of an omitted array parameter cannot be passed by reference in a
subsequent CALL program command.

The DEFINED real-valued function can be used within a program to check
whether a program parameter is defined (meaning both passed as a argument
and as an argument that has been assigned a value previously). The example
below shows how a program can be written to accommodate undefined or omit-
ted parameters.

A comment can be included on the .PROGRAM line, which is displayed when
the program is loaded from the disk and by the DIRECTORY monitor command.

Examples

The following example defines a program that expects no arguments to be
passed to it.

.PROGRAM get()

The following example defines a program that expects a string-valued argument
and either a location or real-valued argument. The type of the second argument
is determined by its use in the program.

.PROGRAM test($n, dx)

Chapter 3: Keyword Details

The following example shows how a program can be written to manage
undefined or omitted parameters. The example shows part of the program
example, which has a real-valued parameter and a string parameter.

.PROGRAM example(real, $string)
AUTO $internal.var
IF NOT DEFINED(real) THEN

real = 1
END
IF DEFINED($string) THEN

$internal.var = $string
ELSE

$internal.var = "default"
END

.END

Related Keywords

CALL

CALLS

EXECUTE (monitor command)

EXECUTE (program command)

PRIME

SSTEP

XSTEP

22353-000 Rev. B eV+3 Keyword Reference Manual 577

578 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PROMPT

Display a string on the Monitor Window and wait for operator input.

Syntax

PROMPT output_string, variable_list

Usage Considerations

Do not use the PROMPT keyword with a Monitor Command program or when
access to the Monitor Window is not available.

Do not use an External array variable for the variable_list parameter.

Parameters

output_string Optional string expression that is output to the Mon-
itor Window. The cursor is left at the end of the string.

variable_list A list of real-valued variables or a single string vari-
able that receives the data.

NOTE: External array variables are not
supported.

Details

Displays the text of the output string on the Monitor Window and waits for you
to type in a line terminated by pressing the return key.

The input line can be processed in either of two ways as described below.

1. If a list of real-valued variables is specified as the variable list, the line is
assumed to contain a list of numbers separated by space characters and/or
commas. Each number is converted from text to its internal representation,
and its value is stored in the next variable contained in the variable list. If
more values are read than the number of variables specified, the extra val-
ues are ignored. If fewer values are read, the remaining variables are set to
zero. If data is read that is not a number, an error occurs and program exe-
cution stops. Each PROMPT command should request only one value to
avoid confusion and to reduce the possibility of error.

2. If a single string variable is specified as the variable list, the entire input
line is stored in the string variable. The program must then process the
string appropriately.

If you press the return key or press CTRL+C, an empty line is read. This results
in all the real variables being set to zero or the string variable being assigned an
empty string.

If you press CTRL+Z, an end-of-file error condition results. If there is no REACTE
command active, program execution is terminated and an error message is

Chapter 3: Keyword Details

displayed. For this reason, CTRL+Z can be a useful way to abort program exe-
cution at a PROMPT.

Examples

The following example will examine the statement below.

PROMPT "Enter the number of parts: ", part.count

The following message will be displayed in the Monitor Window.

Enter the number of parts:

After you type a number and press the return key, the variable "part.count" is set
equal to the value typed and program execution resumes.

The following example will examine the statement below.

PROMPT "Enter the number of parts: ", $input

If you enter characters that are not valid for numeric input, eV+ does not output
an error message. The application program can use the various string functions
to extract numeric values from the input string.

If you want to include format specifications in the string output to the terminal
(such as /Cn to skip lines), you can use either the $ENCODE function or the
TYPE command as shown below.

PROMPT $ENCODE(/B,/C1,/X10)+"Enter the number of parts:
", $input

The statement above will beep the terminal, space down a line, space over ten
spaces, output the string, and wait for your input. A + sign must be used between
the $ENCODE function and the quoted string because the entire output_string
parameter must be a single string expression.

The following statements are equivalent to the previous example.

TYPE /B, /C1, /X10, /S
PROMPT "Enter the number of parts: ", $input

TYPE /B, /C1, /X10, "Enter the number of parts: ", /S
PROMPT , $input

/S must be included in the TYPE command as shown to have the prompt string
output on one line and to have the cursor remain on that line.

Related Keywords

GETC

READ

TYPE

22353-000 Rev. B eV+3 Keyword Reference Manual 579

580 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

REACT

Initiate continuous monitoring of a specified digital signal and automatically trig-
ger a subroutine call if the signal transitions.

Syntax

REACT signal_num, program, priority

Usage Considerations

The REACT program command can be executed by any of the program tasks.
Each task can have its own independent REACT definition.

The following signals can be used with the REACT program command.

Signal
Type Range Details

Digital Input 1001 to 1999 Signals are only available if they
physically exist in the system.

Software 2001 to 2999 All signal are available

Host 4001 to 4999

Reactions are triggered by signal transitions and not levels. If a signal is going to
be monitored for a transition from OFF to ON and the signal is already ON when
a REACT command is executed, the reaction does not occur until the signal goes
OFF and then ON again.

A signal must remain in its state for at least 18 milliseconds to assure detection
of a transition.

NOTE: If software signals are being used to trigger reactions, the
WAIT program command with no argument should be used as
required to ensure that the signal state remains constant for the
required time period.

The requested signal monitoring is enabled as soon as a REACT command is
executed. This can affect the motion initiated by a motion statement preceding
the REACT command in the program.

Parameters

signal_num Real-valued expression representing the signal to be mon-
itored. The signal number must be within the ranges spe-
cified above. The software signals can be used by one
program task to interrupt another task. If signal_num is
positive, eV+ reacts to the transition from OFF to ON. If
signal_num is negative, eV+ reacts to a transition from
ON to OFF.

Chapter 3: Keyword Details

program Name of the subroutine that is to be called when the sig-
nal transitions properly.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value
of this expression is interpreted as an integer value and
can range from 1 to 127. Refer to the LOCK program com-
mand for additional details on priority values. The default
value is 1.

Details

When the specified signal transition is detected, eV+ reacts by checking the pri-
ority specified with the REACT command against the program priority setting at
that time. The program priority is always set to 0 when execution begins and can
be changed with the LOCK program command. If the REACT priority is greater
than the program priority, the normal program execution sequence is interrupted
and the equivalent of a CALL operation is executed.

The program priority is temporarily raised to the REACT priority, locking out any
reactions of equal or lower importance. When a RETURN program command is
executed in a reaction subroutine, the program priority is restored to the value it
had before the reaction program was invoked.

If the REACT priority is less than or equal to the program priority when the sig-
nal transition is detected, the reaction is queued and does not occur until the pro-
gram priority is lowered. Depending upon the relative priorities, there can be a
considerable delay between the time a signal transition is detected by eV+ and
the time the reaction program is invoked.

If multiple reactions are pending because of a priority lockout, the reaction with
the highest priority is serviced first when the locking priority is lowered. If mul-
tiple pending reactions have the same priority, the one associated with the
highest signal number is processed first.

The subroutine call to a program is performed such that when a RETURN pro-
gram command is encountered, the next statement to be executed is the one that
follows the last statement processed before the reaction program was initiated. If
there is a sequence of statements that you do not want interrupted by a reaction
program, you should use the LOCK program command to raise the program pri-
ority during that sequence.

The signal monitoring continues until one of the following occurs.

l An IGNORE program command is executed for the signal.

l A reaction occurs in which case the IGNORE signal_num is automatically
performed.

l A REACT program command is executed that refers to the same signal. If
the signal specified in a REACT command is already being monitored by
a previous REACT or REACTI command, the old command is canceled
when the new REACT command is executed.

22353-000 Rev. B eV+3 Keyword Reference Manual 581

582 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Example

The following example monitors the digital input signal 1001 for an OFF to ON
transition. When this occurs, the program designated as "trap1" will be invoked
with a priority level of 10.

REACT 1001, trap1, 10

Related Keywords

IGNORE

LOCK

PRIORITY

REACTE

REACTI

SIG.INS

Chapter 3: Keyword Details

REACTE

Initiate the monitoring of system messages that occur during execution of the cur-
rent program task.

Syntax

REACTE program_name

Usage Considerations

The REACTE program command can be executed by any of the program tasks.

Each task can have its own independent REACTE statement. A task cannot dir-
ectly detect system messages caused by another task, but tasks can signal other
tasks with global variables or software signals.

IMPORTANT: Using the REACTE command for purposes other
than pre-programmed error routines when an unexpected error
occurs requires extreme caution and can cause unpredictable beha-
vior.

See below for other considerations.

Parameter

program_name Optional name of the program that is to be called when a
system message occurs. If no program is specified, the
previous REACTE operation is canceled and any pending
system messages are discarded.

Details

The main purpose for the REACTE program command is to allow for pre-pro-
grammed error routines to execute when an unexpected system message occurs.
If a robot hardware error occurs, a program can be executed to set external output
signal lines to shut down external equipment, for example.

If a system message occurs after a REACTE command has been executed, the spe-
cified program is invoked rather than stopping normal program execution. The
program is invoked with similar functionality to the CALL program command.
The ERROR function can be used within the error-handling program to determ-
ine what system message caused the program to be invoked.

The following considerations should be made when using the
REACTE command.

l The program priority is raised to 254 when the error-handling program is
invoked, locking out all reaction programs.

l Execution of the program task stops if an error occurs while the system is
processing a previous system message.

l The user program stack must have enough available memory for one

22353-000 Rev. B eV+3 Keyword Reference Manual 583

584 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

more subroutine to execute. The error *Too many subroutine calls* cannot
be processed. Refer to the STACK monitor command for more information.

l The error-handling program can contain a RETURN statement. When it is
executed, the program tries to re-execute the command that caused the sys-
tem message. This may cause a looping condition if the system message
continues to occur.

l Before the error-handling program is entered, a DETACH command for the
robot (logical unit number 0) is executed. An ATTACH command must be
executed for the robot before program control of the robot can resume.

l If a STOP, HALT, or PAUSE command is executed within the error-hand-
ling program, the original system message is output unless the error-hand-
ling program contains a REACTE command with no argument.

l Unlike REACT and REACTI commands, execution of the REACTE error-
handling program is never deferred because of priority considerations.

Example

The following example initiates monitoring of system messages and the program
"error.trap" is executed if any error should occur during execution of the current
program task.

REACTE error.trap

Related Keywords

ERROR

REACT

REACTI

RETURN

Chapter 3: Keyword Details

REACTI

Initiate continuous monitoring of a specified digital signal. Automatically stop
the current robot motion if the signal transitions properly and optionally trigger a
subroutine call.

Syntax

REACTI signal_num, program, priority

Usage Considerations

For most applications, the REACTI command should be used only in a robot con-
trol program.

When a REACTI triggers, the robot that is stopped is the robot selected by the
task at the time of the trigger, regardless of which robot was selected at the time
the REACTI command was executed.

Refer to the considerations listed for the REACT program command.

The following signals can be used with the REACTI program command.

Signal
Type Range Details

Digital Input 1001 to 1999 Signals are only available if they
physically exist in the system.

Software 2001 to 2999 All signal are available

Host 4001 to 4999

Parameters

signal_num Real-valued expression representing the signal to be mon-
itored. The signal number must be within the ranges spe-
cified above. The software signals can be used by a
secondary program to interrupt the robot control program.

If signal_num is positive, eV+ reacts to a transition from
OFF to ON. If signal is negative, eV+ reacts to a transition
from ON to OFF.

program Optional name of the subroutine that is called when the sig-
nal transitions.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value
of this expression is interpreted as an integer value and can
range from 1 to 127. If this argument is omitted, it
defaults to 1. Refer to the LOCK program command for addi-
tional details on priority values.

22353-000 Rev. B eV+3 Keyword Reference Manual 585

586 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Details

When the specified signal transition is detected, eV+ reacts by immediately stop-
ping the current robot motion. If a program is specified, eV+ continues processing
the reaction just as it would for a REACT program command. Refer to the descrip-
tion of the REACT program command for a complete explanation of this pro-
cessing.

When REACTI is used by a program task that is not controlling the robot, care
must be exercised to make sure the robot control program does not nullify the
intended effect of the reaction subroutine. If your application has one program
task monitoring the signal and a different program task controlling the robot,
make the following considerations when planning for processing of the reaction.

l The robot motion in process at the time of the reaction is stopped as if a
BRAKE program command were executed, but execution of the robot con-
trol program is not directly affected.

l If a reaction subroutine is specified, that routine is executed by the task
that is monitoring the reaction and not by the task controlling the robot.

The signal monitoring continues until one of the following occurs.

l An IGNORE program command is executed for the signal.

l A reaction occurs in which caseIGNORE signal_num is automatically per-
formed.

l A REACTI command is executed that refers to the same signal. If the sig-
nal specified in a REACTI command is already being monitored by a pre-
vious REACTI or REACT command, the old command is canceled when
the new REACTI command is executed.

If you do not want the robot motion to stop until the reaction program is called,
use a REACT program command and place a BRAKE statement in the reaction
program.

Example

The following example initiates monitoring of external input signal 1001. The
robot motion is stopped immediately if the signal ever changes from ON to OFF
because the signal is specified as a negative value. A branch to program "alarm"
occurs when the program priority falls below 10 if it is not already at or below
that level.

REACTI -1001, alarm, 10

Related Keywords

ERROR

REACT

REACTE

RETURN

Chapter 3: Keyword Details

READ

Read a record from an open file or from an attached device that is not file ori-
ented. For an network device, read a string from an attached and open TCP con-
nection.

Syntax

READ (lun, record_num, mode) var_list

Usage Considerations

The logical unit referenced by this command must have been attached pre-
viously.

For file-oriented devices, a file must already have been opened with an FOPEN_
keyword.

Do not use an External array variable for the var_list parameter.

Parameters

lun Real-valued expression that identifies the device to be
accessed. Refer to the ATTACH program command for a
description of unit numbers.

record_num Optional real-valued expression that specifies the record
to read for file-oriented devices opened in random-access
mode. For nonfile-oriented devices or for sequential access
of a file, this parameter should be 0 or omitted. Records
are numbered from 1 to 16,777,216.

When accessing the TCP device with a server program,
this parameter is an optional real variable that returns the
client handle number. The handle can be used to identify
the client accessing amultiple-client server.

mode Optional real-valued expression that specifies the mode of
the read operation. The mode is used only for the Monitor
Window logical unit. The value is interpreted as a
sequence of bit flags as detailed below. All bits are
assumed to be clear if nomode value is specified.

l Bit 1 (LSB, mask value = 1):Wait (0) vs. No-
wait (1)

If this bit is OFF, program execution is suspended
until the read operation is completed. If the bit is
ON and the requested data is not available, pro-
gram execution continues immediately and the
IOSTAT function returns the error code for *No
data received* (-526).

22353-000 Rev. B eV+3 Keyword Reference Manual 587

588 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

l Bit 2 (mask value = 2): Echo (0) vs. No-echo
(1)

If this bit is OFF, input from the terminal is echoed
back to the source. If the bit is ON, characters are
not echoed back to the source. .

var_list Either a list of real-valued input variables or a list of string
variables that receives the data.

NOTE: External array variables are not
supported.

Details

The READ program command is a general purpose data input operation that
reads a record from a specified logical unit. A record can contain an arbitrary list
of characters but must not exceed 512 characters in length. For files that are
opened in fixed-length record mode, this comman continues to read characters
until it has read exactly the number of characters specified during the cor-
responding FOPEN_ keyword operation.

For variable-length record mode as with most devices, this command reads char-
acters until the first carriage-return (CR) and line-feed (LF) character sequence or
Ctrl+Z key input is encountered. For example, if you perform a variable-length
record mode read from the disk, you receive all the characters until a CR and LF
is encountered.

The special character Ctrl+Z (26 decimal) indicates the logical end of the file,
which is reported as an error by the IOSTAT function. No input characters can be
read beyond that point.

READ operations from the Monitor Window and the pendant are always
assumed to be in variable-length record mode. Except as noted below, the records
are terminated by CR and LF which are not returned as part of the record. A
READ operation from these devices is not complete until a CR and LF are
received as input. For example, if you perform a READ operation from the Mon-
itor Window, you receive all the characters until the RETURN key is pressed.

NOTE: When a CR is received from the Monitor Window, eV+
automatically adds a LF.

The GETC function can be used instead of the READ program com-
mand if you want to receive the CR and LF characters at the end of
a record.

If bit 1 is ON in the mode parameter value, a read operation that is not complete
does not cause the program to wait and returns immediately with the error *No
data received* (error code -526). Then, additional READ commands must be
executed until one is complete in order to obtain the data in the variable list. The
IOSTAT function can be used to determine when such a READ operatoin is com-
plete.

Chapter 3: Keyword Details

Once a record has been read, it is processed in one of the following ways.

l If the var_list parameter is a list of real-valued variables, the record is
assumed to contain a list of numbers separated by space characters and /
or commas. Each number is converted from text to its internal rep-
resentation and its value is stored in the next variable contained in the
variable list. If more values are read than the number of variables spe-
cified, the extra values are ignored. If fewer values are read, the remaining
variables are set to 0. If data is read that is not a number, an error occurs
and program execution stops (or an error reaction occurs).

l If the var_list parameter is a list of string variables, the entire record is
stored in the string variables as follows. The first 128 bytes in the record
are copied to the first string variable. If there are more than 128 bytes in
the record, the second string variable is filled with the next 128 bytes. This
continues until the entire record has been processed or all the string vari-
ables have been filled.

If there is not enough data to fill all the string variables, the unused
string variables are set to the empty string (""). If there is too much
data for the number of string variables specified, an error is repor-
ted by the IOSTAT function.

When a READ operation is performed in variable-length record
mode, the strings contain all the characters up to, but not including,
the terminating CR and LF which are discarded.

Any error in the specification of this command such as attempting to read from
an invalid unit causes a program error and halts program execution. Errors asso-
ciated with performing the actual read operation such as end of file or device not
ready do not halt program execution since these errors may occur in the normal
operation of a program. These normal errors can be detected by using the
IOSTAT function after performing the read.

NOTE: In general, it is good practice to always check whether each
read operation completed successfully by testing the value from the
IOSTAT function.

When accessing a network device, the record_num parameter allows a server to
communicate with multiple clients on a single logical unit. The parameter
provides a handle number that you can be used to identify the client from which
the READ data was received. Handles are allocated when a client connects to the
server and are deallocated when the client disconnects. In order to determine
when the client connection or disconnection is done, you must use the IOSTAT
function after the READ operation.

The READ command with TCP/IP communication reads data until either the
input string is full or the buffer is empty, at which point the command returns.
The READ operation with TCP/IP does not allow fixed-length records and does
not terminate when encountering a delimiter.

22353-000 Rev. B eV+3 Keyword Reference Manual 589

590 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Example

The following example reads a line of text from the disk and stores the record in
the string variable " $disk.input".

READ (5) $disk.input

Related Keywords

ATTACH

FOPEN

FOPENA

FOPEND

FOPENR

FOPENW

FSEEK

GETC

IOSTAT

PROMPT

Chapter 3: Keyword Details

READY

Move the robot to the ready location.

Syntax

READY

Usage Considerations

Before executing this command, ensure that the robot will not collide with any
objects while moving to the ready location.

Moving the robot to the ready location forces the robot into a standard con-
figuration.

The READY program command can be executed by any program task as long as
the task has attached a robot. This command applies to the robot selected by the
task.

If the eV+ system is not configured to control a robot, executing the READY com-
mand causes an error.

Details

The READY program command always succeeds, regardless of where the robot
is located at the time the command is executed.

The following table lists the joint positions for the READY locations for various
robots.

Joint eCobra
600

eCobra
800

Viper
650/850

1 -43.5° -42.9° 0°

2 96.8° 93.4° -90°

3 10.0 mm 10.0 mm 180°

4 53.8° 50.5° 0°

5 N/A N/A 0°

6 N/A N/A 0°

Example

The following example selects robot 1, attaches it to the current task, and then
moves it to the ready position.

SELECT ROBOT=1
ATTACH

22353-000 Rev. B eV+3 Keyword Reference Manual 591

592 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

READY

Related Keywords

SELECT

SELECT (real-valued function)

SELECT (monitor command)

Chapter 3: Keyword Details

RELEASE

Allow the next available program task to run.

Syntax

RELEASE

Details

This command releases control to another task that is ready to run.

This command can be used in place of the WAIT command with no arguments
in cases where other tasks must be given an opportunity to run, but a delay until
the next trajectory cycle is not desired.

Related Keywords

WAIT

WAIT.EVENT

22353-000 Rev. B eV+3 Keyword Reference Manual 593

594 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

RESET

Turn OFF all external output signals.

Syntax

RESET

Usage Considerations

This program command has no effect on Host I/O (external) signal numbers 4001
to 4999.

Details

The RESET program command is useful in the initialization portion of a pro-
gram to ensure that all the external output signals are in a known state.

!
DANGER: Before issuing this command, ensure all devices con-
nected to the output signals can safely be turned OFF.

Example

The following example will turn OFF all external output signals if "reset.sig" is
true.

IF reset.sig==TRUE
RESET

END

Related Keywords

BITS

BITS (program command)

BITS

IO

RESET (monitor command)

SIG

SIGNAL (monitor command)

SIGNAL (program command)

Chapter 3: Keyword Details

RETRY

Repeat execution of the last interrupted program command and continue exe-
cution of the program.

Syntax

RETRY task

Usage Considerations

The RETRY program command cannot be processed when the specified task is
executing.

A program cannot be resumed if it has completed execution normally or has
stopped due to a HALT program command.

Parameter

task Real value, variable, or expression interpreted as an
integer that specifies which program task is to be
executed. If no task number is specified, task number 0 is
assumed.

Details

The RETRY program command restarts execution of the specified task similar to
the PROCEED program command. After a RETRY command, the point at which
execution resumes depends on the status at the time execution was interrupted. If
a program step or robot motion was interrupted before its completion, use of a
RETRY command causes the interrupted operation to be completed before exe-
cution continues normally. This allows you to retry a step that has been aborted
or that caused an error.

If no program step or robot motion was interrupted, the RETRY command has
the same effect as the PROCEED program command.

NOTE: When a RETRY command is used to resume an inter-
rupted motion, all motion parameters are restored to the settings
that were active before the motion was interrupted.

Example

The following example will resume from where the task number defined by
"task.num" was interrupted (if the task is not executing or has not been stopped
from the HALT operation).

IF TASK (task.num)<>4 THEN
RETRY task.num

END

Related Keywords

PROCEED (program command)

22353-000 Rev. B eV+3 Keyword Reference Manual 595

596 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

PROCEED (monitor command)

SSTEP

STATUS

XSTEP

Chapter 3: Keyword Details

RETURN

Terminate execution of the current subroutine and resume execution of the sus-
pended program at its next step.

Syntax

RETURN

Details

A RETURN program command in a main program has the same effect as a
STOP program command.

A RETURN operation is assumed when program execution reaches the last step
of a subroutine. It is poor programming practice to omit the RETURN statement.
At RETURN statement should be included as the last line of each subroutine.

In an error reaction subroutine, if the reaction subroutine was invoked because of
a program error as opposed to an asynchronous servo error or PANIC button
press, the statement that caused the error is executed again. The error may occur
again immediately. The RETURNE program command should be used in error
reaction subroutines to avoid that situation.

If a RETURN command is used to exit from a reaction routine, the program reac-
tion priority is restored to the value it was before the reaction routine started exe-
cution.

Related Keywords

CALL

CALLS

LOCK

REACT

REACTE

REACTI

RETURNE

22353-000 Rev. B eV+3 Keyword Reference Manual 597

598 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

RETURNE

Terminate execution of an error reaction subroutine and resume execution of the
last-suspended program at the step following the statement that caused the sub-
routine to be invoked.

Syntax

RETURNE

Details

The RETURNE program command is intended for use in error reaction sub-
routines invoked by the REACTE keyword.

If a RETURNE command is used to exit from an error reaction routine, the pro-
gram reaction priority is restored to the value it was before the error reaction
routine started execution.

When a RETURNE command is executed in an error reaction subroutine, exe-
cution continues with the statement following the one executing when the error
occurred. In this situation, a RETURN command results in the statement that gen-
erated the error being executed again, possibly causing a repeat of the error.

NOTE: Because of the forward processing ability of eV+, the state-
ment that is the source of an error may not be the one executing
when the error is registered. For example, when a MOVE program
command is processed, the robot begins moving but during the
motion several additional statements may be processed. If an envel-
ope or similar error occurs after this forward processing, the
RETURNE operation is based on the statement processing when
the error occurs and not the MOVE program command.

A RETURNE command in a program that is not executed in response to an error
has the same effect as a RETURN operation. A RETURNE operation takes
slightly longer to execute than a RETURN operation.

Related Keywords

REACTE

RETURN

Chapter 3: Keyword Details

RIGHTY

Request a change in the robot configuration during the next motion to make the
first two links of a SCARA robot use the right arm orientation.

Syntax

RIGHTY

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a right-handed configuration, this com-
mand is ignored by the robot.

The RIGHTY command can be executed by any program task as long as the
robot selected by the task is not attached by any other task. If the robot is not
attached, this command has no effect. This command applies to the robot selec-
ted by the task.

If the eV+ system is not configured to control a robot, executing the RIGHTY com-
mand causes an error.

The following figure shows the LEFTY / RIGHTY configurations for the top view
of a SCARA robot.

Figure 3-16. Lefty / Righty Configuration

Example

The following example will move the robot to location "point1" in the righty con-
figuration.

22353-000 Rev. B eV+3 Keyword Reference Manual 599

600 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

RIGHTY
MOVE point1

Related Keywords

CONFIG

LEFTY

SELECT (program command)

SELECT (real-valued function)

SELECT (monitor command)

Chapter 3: Keyword Details

RUNSIG

Turn ON or OFF the specified digital signal as long as execution of the invoking
program task continues.

Syntax

RUNSIG signal_num

Usage Considerations

Only one signal can be associated with the RUNSIG program command for each
program task.

Parameter

signal_num Optional real-valued expression that specifies one of the
digital output signals or an internal software signal that is
to be controlled.

The signal is set to ON during program execution if the
value is positive. A negative value results in the signal
being set to OFF during program execution and is turned
ON when execution stops.

If no signal is specified, any RUNSIG in effect for the task is
canceled.

Details

The RUNSIG program command causes the specified digital signal to be turned
ON or OFF as soon as the command is executed. The signal state is restored as
soon as execution of the invoking program task stops or the STOP program com-
mand is executed.

This command is typically used in an application where auxiliary equipment
must be stopped when an error occurs during program execution.

Only one signal can be activated by a RUNSIG command at any one time for
each program task. An error condition results unless a program cancels the first
RUNSIG operation before attempting to initiate a second RUNSIG operation.

If program execution is interrupted after a RUNSIG command has been executed,
the specified signal returns to the selected state again if a PROCEED or RETRY
command is issued. If an SSTEP or XSTEP monitor command is issued, the sig-
nal returns to the specified state during execution of the command that is
invoked. Similarly, processing of a DO monitor command temporarily activates
the RUNSIG signal for the corresponding program task. The EXECUTE keyword
cancels any previous RUNSIG operation for the specified program task.

22353-000 Rev. B eV+3 Keyword Reference Manual 601

602 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Example

The following example turns ON the digital signal identified by the value of the
variable "run.signal" assuming the value is positive. The signal remains ON
throughout execution of the current program. The signal goes OFF when exe-
cution ends.

RUNSIG run.signal

Related Keywords

IO

RESET

SIG

SIG.INS

SIGNAL

SIGNAL (monitor command)

Chapter 3: Keyword Details

SELECT

Select a unit of the named device for access by the current task.

Syntax

SELECT device_type = unit

Usage Considerations

The SELECT program command should be used only if there are multiple
devices of the same type connected to the eV+ system.

The SELECT program command affects only the task in which the command is
executed.

The statement SELECT ROBOT can be executed only if there is no robot attached
to the current task. If there is uncertainty about whether or not a robot is attached,
a program should execute a DETACH program command before executing the
SELECT command.

If the EtherCAT connection to the robot is not active and a COMM_STOP error is
present, you can still select it. It is recommended to use the SELECT real-valued
function to get the state of the robot before issuing the SELECT program com-
mand.

Parameters

device_type Specifier that identifies the type of device that is to be
selected. The only valid device_type specifier is ROBOT.

unit Real value, variable, or expression interpreted as an
integer that specifies the particular unit to be selected.
The values that are accepted depend on the configuration
of the system.

Details

In a multiple-robot system, the SELECT program command selects the robot with
which the current task is to communicate. The SELECT monitor command spe-
cifies which robot the eV+ monitor is to access. The SELECT program command
specifies which robot receives motion commands and returns robot-related
information (for example, the HERE function).

Each time a program task begins execution, robot 1 is automatically selected. If a
robot is selected, information about the robot can be accessed. In order for a pro-
gram to move a robot, the robot must be selected and attached with the ATTACH
program command.

As an example, if robot 2 is selected by a SELECT command, all motion oper-
ations executed by the current task are directed to that robot until another
SELECT command is issued. All robot-related functions will return information
about robot 2.

22353-000 Rev. B eV+3 Keyword Reference Manual 603

604 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

NOTE: When task 0 is executed, robot 1 is automatically selected
and attached when program execution begins.

In order for any task to change its selected robot, no robot can be attached by the
task. More than one task can have a particular robot selected, but only one task
can have a robot attached. If a robot is already attached to a different task, an
ATTACH operation waits or generates an error depending on the mode para-
meter for the ATTACH command.

If the robot number specified for the unit parameter is not valid, a (-407) *Invalid
argument* error occurs.

If the robot number specified for the unit parameter is valid, but the robot is not
configured in the system, a (-622) *No robot connected to system* error occurs.

If the robot number specified for the unit parameter is valid and the robot is con-
figured in the system, a (1) *Success* information message occurs.

Example

The following example selects robot 3 and moves it. This program is normally
not executed by task 0, since that task is attached to robot 1 by default.

.PROGRAM test()
SELECT ROBOT = 3
ATTACH (0,1)
IF IOSTAT(0) < 0 THEN

TYPE /B, "Error attaching robot: ", $ERROR(IOSTAT(0))
PAUSE

END
MOVE x
MOVE y
DETACH

.END

Related Keywords

ATTACH

OBSTACLE

SELECT

Chapter 3: Keyword Details

SET.EVENT

Set an event associated with the specified task.

Syntax

SET.EVENT task, flag

Parameters

task Optional real value, variable, or expression interpreted as an
integer that specifies the task for which the event is to be set.
The valid range is 0 to 27. If this parameter is omitted, the
number of the current task is used.

flag Not used, defaults to 1.

Details

The SET.EVENT program command sets the event associated with the specified
task. For example, if a task had been suspended by a WAIT.EVENT 1 statement,
executing the SET.EVENT command for that task causes it to resume execution
during the next available time slice for which it is eligible.

Related Keywords

CLEAR.EVENT

GET.EVENT

WAIT.EVENT

22353-000 Rev. B eV+3 Keyword Reference Manual 605

606 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SET

Set the value of the location variable on the left equal to the location value on the
right of the equal sign.

Syntax

SET location_var = location_value

Parameters

location_var Single location variable or compound transformation
that ends with a transformation variable.

location_value Location value of the same type as the location variable
on the left of the equal sign, defined by a variable, func-
tion, compound transformation.

Details

A program error is generated if the right-hand side is not defined or is not the
same type of location representation (transformation or precision point).

If a compound transformation is specified to the left of the equal sign, only its
right-most relative transformation is defined. An error condition results if any
other transformation in the compound transformation is not already defined.

If a transformation variable is specified on the left-hand side, the right-hand side
can contain a transformation, a compound transformation, or a transformation
function.

Examples

The following example sets the value of the transformation "pick" equal to the loc-
ation of "corner" plus the location of shift relative to "corner".

SET pick = corner:shift

The following example sets the value of the precision point "#place" equal to that
of the precision point "#post".

SET #place = #post

The following example sets the value of the transformation part to the current
robot location, relative to the transformation pallet.

SET pallet:part = HERE

The following example sets the value of "loc1" to X = 550,Y = 450, Z = 750, y = 0,
p = 180, r = 45.

SET loc1 = TRANS(550, 450, 750, 0, 180, 45)

Chapter 3: Keyword Details

Related Keywords

HERE (program command)

HERE (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 607

608 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SETBELT

Set the encoder offset of the specified belt variable equal to the value of the expres-
sion.

Syntax

SETBELT %belt_var = expression

Usage Considerations

The BELT system switch must be enabled for this command to be executed.

The SETBELT program command cannot be executed while the robot is moving
relative to the specified belt variable.

The belt variable referenced must have been defined previously using a
DEFBELT program command.

Parameters

%belt_var Name of belt variable associated with the encoder offset to
be set.

expression Real-valued expression that specifies a signed 24-bit
encoder offset value.

Details

When computing the position of a belt associated with a belt variable, eV+ sub-
tracts the offset value from the current belt position value and uses the difference,
modulo 16,777,216.

The expression value is normally a signed number in the range -8,388,608 to
8,388,607. If the number is outside this range, its value modulo 16,777,216 is
used.

The SETBELT program command is generally used in conjunction with the BELT
unction to set the effective belt position to 0. This must be done each time the
robot will perform a sequence of motions relative to the belt and must be done
before the first motion of such a sequence.

WARNING: It is important to execute SETBELT each time the
robot needs to track the belt to make sure the difference
between the current belt position as returned by the BELT
function and the belt position of the specified belt variable does
not exceed 8,388,607 (^H7FFFFF) during active belt tracking.
Unpredictable robot motion may result if the difference
exceeds this value while tracking the belt.

The SETBELT program command can be used to synchronize robot motion with
the encoder value latched by an external signal or by a vision system. Refer to
the LATCHEDfunction and the DEVICE function for more information.

Chapter 3: Keyword Details

Example

The following example waits for a digital signal and then sets the belt position to
0. That is done by setting the belt offset equal to the current belt position. Then,
the robot is moved onto the belt.

WAIT sig(1001)
SETBELT %belt1 = BELT(%belt1)
MOVES %belt1:pickup

Related Keywords

BELT

DEFBELT

LATCHED

WINDOW

WINDOW (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 609

610 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SETDEVICE

Initialize a device or set device parameters. The operation performed depends on
the device referenced.

Syntax

SETDEVICE (type, unit, error, command) p1, p2, ...

Usage Considerations

The syntax contains optional parameters that apply only to specific device types
and commands.

Parameters

type Real value, variable, or expression interpreted as an integer
that indicates the type of device being referenced. The fol-
lowing types are available

l 0: Belt encoder
l 1: Reserved for future use
l 2: Force Processor board
l 3: Robot device (Omron Robotics and Safety Tech-
nologies, Inc. servo only)

l 4: Vision
l 5: Reserved for future use

unit Real value, variable, or expression interpreted as an integer
that indicates the device unit number. The value must be
in the range 0 to (max -1), where max is the maximum
number of devices of the specified type. The value should
be 0 if there is only one device of the given type.

error Optional real variable that receives a standard system error
number that indicates if this command succeeded or failed.
If this parameter is omitted, any device error stops pro-
gram execution. If an error variable is specified, the pro-
gram must explicitly check it to detect errors.

command Real value, variable, or expression that specifies which
device command or parameters are being set by this com-
mand. Some commands are standard and recognized by all
devices. Other commands apply only to particular device
types.

p1, p2, ... Optional real values, variables, or expressions, the values
of which are sent to the device as data for a command. The
number of parameters specified and their meanings
depend upon the particular device type being accessed.

Chapter 3: Keyword Details

Details

SETDEVICE is a general-purpose command for initializing external devices. It ini-
tializes the software and allows various parameters associated with the device to
be set.

Two standard SETDEVICE commands are recognized by all devices as described
below.

command= 0 Initialize device
This command should be issued once before accessing the
device with any other command. Normally, no additional
parameters are required but some device types may per-
mit them.

command= 1 Reset device
This command resets the device. Normally no additional
parameters are required but some device types may per-
mit them.

Related Keywords

DEVICE

22353-000 Rev. B eV+3 Keyword Reference Manual 611

612 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SIGNAL

Turn ON or OFF external digital output signals or internal software signals.

Syntax

SIGNAL signal_num, ..., signal_num

Parameter

signal_num Real-valued expression that evaluates to a digital output
or internal signal number. A positive value indicates turn
ON. A negative value indicates turn OFF. The SIGNAL com-
mand ignores parameters with a 0 value.

Details

The magnitude of a signal_num parameter determines which digital or internal
signal is to be considered.

Only digital signals that are installed and configured as outputs can be used. To
check your current digital I/O configuration, use the IO monitor command. Sig-
nals 3001 and 3002 refer to the robot selected by the current task. Signal 3001 is
the state of the hand-close solenoid. Signal 3002 is the state of the hand-open
solenoid.

If the sign of the signal_num parameter is positive, the signal is turned ON. If the
sign of the signal_num parameter is negative, the signal is turned OFF.

NOTE: All eV+ digital output keywords do not wait for a 16 mil-
lisecond eV+ cycle and they are turned ON immediately. Digital
inputs are checked every 16 milliseconds by the eV+ operating sys-
tem which makes the possibility to turn ON and OFF a signal
before the system can read the output possible.

Examples

The following example turns OFF the external output signal specified by the
value of the variable "reset" assuming the value of reset is positive, and turns
ON external output signal 4.

SIGNAL -reset, 4

The following example turns external output signal 1 OFF, external output signal
4 ON, and internal software signal 2010 ON.

SIGNAL -1, 4, 2010

Related Keywords

BITS

BITS (program command)

Chapter 3: Keyword Details

BITS (real-valued function)

IO

NOOVERLAP

OVERLAP

RESET

RUNSIG

SIG

SIG.INS

SIGNAL

22353-000 Rev. B eV+3 Keyword Reference Manual 613

614 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SINGLE

Limit rotations of the robot wrist joint to the range -180 degrees to +180 degrees.

Syntax

SINGLE ALWAYS

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

The SINGLE program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. This program com-
mand applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the SINGLE com-
mand causes an error.

Parameter

ALWAYS Optional qualifier that establishes SINGLE as the default con-
dition. If ALWAYS is specified, SINGLE remains in effect con-
tinuously. If ALWAYS is not specified, the SINGLE command
applies only to the next robot motion.

Details

When moving to a transformation-specified location, the robot normally moves
the wrist joint the minimum distance necessary to achieve the required ori-
entation. In some cases, this action can move the wrist close to a limit stop so
that a subsequent straight-line motion hits the stop.

Executing the SINGLE program command causes subsequent motion(s) to force
the wrist back to near the center of its range, so that straight-line motions will not
fail in this way.

The SINGLE command is commonly specified during an APPRO operation to
pick up an object whose position and orientation were unknown at robot pro-
gramming time. Once the object is acquired, the wrist motion can be kept to a
minimum.

The SINGLE setting is ignored if NOOVERLAP is active.

Related Keywords

CONFIG

NOOVERLAP

OVERLAP

SELECT (program command)

SELECT (real-valued function)

Chapter 3: Keyword Details

SOLVE.ANGLES

Compute the robot joint positions for the current robot that are equivalent to a
specified transformation.

Syntax

SOLVE.ANGLES o.jts[o.idx], o.flags, error = trans, i.jts[i.idx],i.flags

Usage Considerations

Since the computation performed by this command is a function of the geometry
of the robot based on link dimensions, number of axes, tool offsets, and base off-
sets, robots with different geometric parameters yields different results. Robots of
the same general type may differ slightly in their dimensions and this program
command may return slightly different results when executed on two different
robot systems of the same type.

The SOLVE.ANGLES program command returns information for the robot selec-
ted by the task executing the command.

If the eV+ system is not configured to control a robot, executing this command
does not generate an error because of the absence of a robot. However, the inform-
ation returned may not be meaningful.

Parameters

o.jts Real-valued array in which the computed joint angles are
returned. The first specified element of the array contains the
position for joint 1, the second element contains the value for
joint 2, etc. For rotating joints, the joint positions are in
degrees. For translational joints, the joint positions are in mil-
limeters.

If a computed joint position is outside the working range for
the joint, the limit stop closest to the initial joint position as
indicated by i.jts[] is returned.

o.idx Optional real value, variable, or expression interpreted as an
integer that identifies the array element to receive the pos-
ition for joint 1. If no index is specified, array element 0 con-
tains the position for joint 1.

o.flags Real variable that receives a bit-flag value that indicates the
configuration of the robot corresponding to the computed joint
positions. The bit flags are interpreted as described below.

Bit Flag Description

Bit 1 (LSB) RIGHTY If this bit is ON, the position

22353-000 Rev. B eV+3 Keyword Reference Manual 615

616 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Bit Flag Description

(mask value = 1) has the robot in a right-arm
configuration. Otherwise,
the position has the robot
in a left-arm configuration.

Bit 2 BELOW
(mask value = 2)

If this bit is ON, the position
has the robot configured
with the elbow below the
line from the shoulder to
the wrist. Otherwise, the
robot elbow is above the
shoulder-wrist line. This bit
is always 0 when a SCARA
robot is in use.

Bit 3 FLIP
(mask value = 4)

If this bit is ON, the position
has the robot configured
with the pitch axis of the
wrist set to a negative
angle. Otherwise, the pitch
angle of the robot wrist has
a positive value. This bit is
always 0 when the robot
does not have a three-axis
wrist, which is the case for
a SCARA robot.

error Real variable that receives a bit-flag value that indicates
whether any joint positions were computed to be outside of
their working range, or whether the XYZ position of the des-
tination was outside the working envelope of the robot. The bit
flags are interpreted as described below.

Bit Flag Description

Bits 1 - 12
Joint/Motor out of range

If ON, the computed value
for the joint or motor was
found to be outside of its
limit stops as shown below.

Bit Joint/
Motor
#

Mask Value

1 1 ^H1

Chapter 3: Keyword Details

Bit Flag Description

2 2 ^H22 2 ^H22 2 ^H2

3 3 ^H4

4 4 ^H8

5 5 ^H10

6 6 ^H20

7 7 ^H40

8 8 ^H80

9 9 ^H100

10 10 ^H200

11 11 ^H400

12 12 ^H800

Bit 13 Collision
(mask value = ^H1000)

When this bit is turned ON,
a collision has been detec-
ted.

Bit 14 Too close
(mask value = ^H2000)

The XYZ position of the des-
tination cannot be reached
because it was too close to
the column of the robot.

Bit 15 Too far
(mask value = ^H4000)

The XYZ position of the des-
tination cannot be reached
because it was too far away
from the robot.

Bit 16 Joint vs. motor
(mask value = ^H8000)

If ON, a motor is limiting.
Otherwise, a joint is lim-
iting.

trans Transformation variable, function, or compound trans-
formation that defines the robot location of interest.

i.jts Real array that contains the joint positions representing the
starting location for the robot. These values are referenced for

22353-000 Rev. B eV+3 Keyword Reference Manual 617

618 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

multiple-turn joints to minimize joint rotations andwhen a
computed joint position is out of range to determine which
limit stop to return.

The first specified element of the array must contain the pos-
ition for joint 1. The second element must contain the value
for joint 2, etc. For rotating joints, the joint positions are
assumed to be in degrees. For translational joints, the joint
positions are assumed to be in millimeters.

i.idx Optional real value, variable, or expression interpreted as an
integer that identifies the array element that contains the pos-
ition value for joint 1. If no index is specified, element 0 must
contain the position for joint 1.

i.flags Real value, variable, or expression whose value is interpreted
as bit flags that indicate the initial configuration of the robot,
any changes in configuration that are to be made, and special
operatingmodes. The bit flags are interpreted as described
below.

Bit Flag Description

Bit 1: (LSB) RIGHTY
(mask value = 1)

If this bit is ON, the robot is
assumed initially to be in a
right-arm configuration.
Otherwise, the robot is
assumed to be in a left-arm
configuration.

Bit 2: BELOW
(mask value = ^H2)

If this bit is ON, the robot is
assumed initially to have its
elbow below the line from
the shoulder to the wrist.
Otherwise, the robot is
assumed to have its elbow
above that line. This bit is
ignored for robots like
SCARA configurations that
do not have an elbow that
moves in a vertical plane.

Bit 3: FLIP
(mask value = ^H4)

If this bit is ON, the robot is
assumed initially to have
the pitch axis of the wrist
set to a negative value.
Otherwise, the pitch angle
is assumed to be set to a
positive value. This bit is

Chapter 3: Keyword Details

Bit Flag Description

ignored if the robot does
not have a three-axis wrist.

Bit 9: Change
RIGHTY/LEFTY
(mask value = ^H100)

If this bit is ON, the com-
mand attempts to compute
a set of joint positions cor-
responding to the
RIGHTY/LEFTY con-
figuration specified by bit
10.

Bit 10: Change to
RIGHTY (mask value =
^H200)

When bit 9 is ON and this
bit is ON, the command
attempts to compute joint
positions for a right-arm
configuration. If bit 9 is ON
and this bit is 0, the com-
mand attempts to compute
a set of joint positions for a
left-arm configuration.

Bit 11: Change
BELOW/ABOVE
(mask value = ^H400)

If this bit is ON, the com-
mand attempts to compute
a set of joint positions cor-
responding to the
BELOW/ABOVE con-
figuration specified by bit
12. This bit is ignored for
robots like SCARA con-
figurations that do not
have an elbow that moves
in a vertical plane.

Bit 12: Change to
BELOW (mask value =
^H800)

When bit 11 is ON and this
bit is ON, the comand
attempts to compute joint
positions for an elbow-
down configuration. If bit
11 is ON and this bit is 0,
the command attempts to
compute joint positions for
an elbow-up configuration.
This bit is ignored for robots
like SCARA configurations
that do not have an elbow
that moves in a vertical
plane.

22353-000 Rev. B eV+3 Keyword Reference Manual 619

620 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

Bit Flag Description

Bit 13: Change
FLIP/NOFLIP
(mask value = ^H1000)

If this bit is ON, the com-
mand attempts to compute
a set of joint positions cor-
responding to the
FLIP/NOFLIP configuration
specified by bit 14. This bit
is ignored if the robot does
not have a three-axis wrist.

Bit 14: Change to FLIP
(mask value = ^H2000)

When bit 13 is ON and this
bit is ON, the command
attempts to compute joint
positions for a FLIP wrist
configuration. If bit 13 is
ON and this bit is 0, the
command attempts to com-
pute joint positions for a
NOFLIP wrist configuration.
This bit is ignored if the
robot does not have a
three-axis wrist.

Bit 21: Avoid degeneracy
(mask value =
^H100000)

When this bit is ON, if the
computed value of joint #2
is within 10 degrees of hav-
ing the outer link fully
extended (joint 2 between
-10 and+10 degrees in
value), an out-of-range
error for joint 2 is signaled.

Bit 22: Single-turn joint
4 (mask value =
^H200000)

When this bit is ON, the
computed value of joint 4 is
restricted to the range of -
180 to +180 degrees.

Bit 23: Straight-line
motion (mask value =
^H400000)

When this bit is ON, the
joint positions returned
must correspond to the
same configuration as
those initially specified. No
change in robot con-
figuration is allowed.

Chapter 3: Keyword Details

Details

The SOLVE.ANGLES program command computes the joint positions that are
equivalent to a specified transformation value using the geometric data of the
robot connected to the system. The specified transformation is interpreted to be
the position and location of the end of the robot tool in the world coordinate sys-
tem, taking into consideration the current TOOL transformation and BASE off-
sets.

Example

The examples below do not perform any useful function but are intended to illus-
trate how the SOLVE.ANGLES command operates. After execution of these com-
mands, both the jts2 and jts arrays contain approximately the same values. Any
differences in the values are due to computational rounding errors.

HERE #cpos
DECOMPOSE jts[] = #cpos
SOLVE.TRANS new.t, error = jts[]
SOLVE.ANGLES jts2[], flags, error = new.t, jts[], SOLVE.FLAGS(jts[])

Related Keywords

DECOMPOSE

SELECT (program command)

SELECT (real-valued function)

SOLVE.FLAGS

SOLVE.TRANS

22353-000 Rev. B eV+3 Keyword Reference Manual 621

622 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SOLVE.TRANS

Compute the transformation equivalent to a given set of joint positions for the
current robot.

Syntax

SOLVE.TRANS transform, error = joints[index]

Usage Considerations

Since the computation performed by this command is a function of the geometry
of the robot based on link dimensions, number of axes, tool offsets, and base off-
sets, robots with different geometric parameters yield different results. Robots of
the same general type may differ slightly in their dimensions and this command
may return slightly different results when executed on two different robot sys-
tems of the same type.

The SOLVE.TRANS program command refers to the robot selected by the task
executing the command.

If the eV+ system is not configured to control a robot, executing the
SOLVE.TRANS command does not generate an error because of the absence of a
robot. However, the information returned may not be meaningful.

Parameters

transform Transformation variable or transformation array element in
which the result is stored.

error Real variable that is set to a eV+ error code if a computational
error occurred during processing of the command. This variable
is set to 0 if no error occurs. The only error that is reported is
arithmetic overflow [-409], so this parameter can be considered
as returning a TRUE or FALSE value.

joints Real-valued array that contains the joint positions that are to be
converted to an equivalent transformation. The first specified
element of the array must contain the position for joint 1, the
second element must contain the value for joint 2, etc. For rotat-
ing joints, the joint positions are assumed to have units of
degrees. For translational joints, the joint positions are assumed
to have units of millimeters.

index Optional integer value that identifies the array element that con-
tains the position for joint 1. If no index is specified, element 0
must contain the position for joint 1.

Details

The SOLVE.TRANS program command converts a set of joint positions to an
equivalent transformation value using the geometric data of the robot connected
to the system. The computed transformation represents the position and ori-
entation of the end of the tool in the world coordinate system taking into con-
sideration the current TOOL transformation and BASE offsets.

Chapter 3: Keyword Details

Example

The example below computes the position and orientation to which the robot is
moved if its current location is altered by rotating joint 1 by 10 degrees.

HERE #cpos
DECOMPOSE joints[1] = #cpos
joints[1] = joints[1]+10
SOLVE.TRANS new.trans, error = joints[1]

Related Keywords

DECOMPOSE

SELECT (program command)

SELECT (real-valued function)

SOLVE.ANGLES

SOLVE.TRANS

22353-000 Rev. B eV+3 Keyword Reference Manual 623

624 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SPEED

Set the nominal speed for subsequent robot motions.

Syntax

SPEED speed_factor, r_speed_factor units ALWAYS

Usage Considerations

SPEED 100,100 ALWAYS is assumed whenever program execution is started and
when a new execution cycle begins. This is the default state of the eV+ system.

Motion speed has different meanings for joint-interpolated motions and straight-
line motions.

The speed of robot motions is determined by a combination of the program speed
setting and the monitor speed setting.

The SPEED program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the SPEED com-
mand causes an error.

Parameters

speed_factor Real value, variable, or expression whose value is used as a
new speed factor. The value 100 is considered normal full
speed and 50 is one-half of full speed. If IPS or MMPS is spe-
cified for units, the value is considered the linear tool tip
speed.

Refer to the Sysmac Studio Robot Integrated System Build-
ing Function with Robot Integrated CPU Unit Operation
Manual (Cat. No.W595) for more information about full
speed settings.

r_speed_factor Optional real value, variable, or expression whose value is
used as a new straight-line motion rotational speed factor.
The value 100 is considered normal full speed and 50 is
one-half of full speed.

units Optional keyword that determines how to interpret the
speed_factor parameter. The IPS (inches per second) or
MMPS (millimeters per second) keywords can be used.

ALWAYS Optional qualifier that specifies the program speed_factor
will be active until the next SPEED command changes pro-
gram speed. Otherwise, it is active only for the next motion
operation (including APPROS and DEPART).

Chapter 3: Keyword Details

Details

If the units parameter is omitted, this command determines the program speed
(the nominal robot motion speed) assuming that the monitor speed factor is
100%.

If MONITOR is specified for units, the monitor speed is set. In this case, the para-
meter r_speed_factor is ignored and ALWAYS is assumed. The speed at which
motions are performed is determined by combining the values specified in this
command with the current program speed setting. Monitor speed changes take
place immediately, including the remaining portion of a currently executing
move.

If IPS or MMPS is specified in the units parameter, speed_factor is interpreted as
the absolute tool-tip speed for straight-line motions. In this case, the speed_factor
parameter has no direct meaning for joint-interpolated motions.

The effects of changing program speed and monitor speed differ slightly for con-
tinuous-path motions. As the robot moves through a series of points, the robot
comes as close to the points as possible while maintaining the program speed
and specified accelerations. As program speed increases, the robot makes coarser
approximations to the actual point in order to maintain the program speed and
accelerations.

When the monitor speed is increased, the path of the robot relative to the com-
manded destination points is not altered but the accelerations are increased. For
applications where path following is important, the path can be defined with the
monitor speed set to a low value and then accurately replayed at a higher mon-
itor speed.

When the monitor speed is set, its value is limited to a maximum of 100%. No
error is reported if a higher speed setting is specified. Speed cannot be less than
0.000001 (1.0E-6).

When the program speed is set, its value is limited to a maximum that depends
on the robot being controlled. No error is reported if a higher speed setting is spe-
cified. The maximum speed value for the current robot is returned by the real-val-
ued function SPEED(8).

If a tool with a large offset is attached to the robot and straight-line motions are
executed, the robot joint and flange speeds can be very large when rotations
about the tool tip are made. The r_speed_factor parameter provides control of the
maximum tool rotation speeds during straight-line motions.

If a rotational speed factor (r_speed_factor) is specified, it is interpreted as a per-
centage of maximum cartesian rotation speed to be used during straight-line
motions. If the r_speed_factor parameter is not specified, one of the following res-
ults occurs.

l If the units parameter is omitted, the rotational speed is set to the value of
speed_factor.

l If the units parameter is specified, the rotational speed is not changed.

When IPS or MMPS are specified, the speed_factor is converted internally to the
corresponding nominal speed. If the SPEED function is used to read the program

22353-000 Rev. B eV+3 Keyword Reference Manual 625

626 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

speed, the value returned is a percentage speed factor and not an absolute speed
setting.

Additional Information: The final robot speed is a combination of
the monitor speed (SPEED monitor command), the program speed
(SPEED program command), and the acceleration or deceleration
(ACCEL program command).

Examples

The following example sets the program speed to 50% for the next motion assum-
ing the monitor speed is 10):

SPEED 50

The following example sets the nominal tool tip speed to 20 inches per second
assuming the monitor speed is 100 for straight-line motions. Rotations about the
tool tip are limited to 40% of maximum. The settings remains in effect until
changed by another SPEED command.

SPEED 20, 40 IPS ALWAYS

The following sets the monitor speed to 50% of normal.

SPEED 50 MONITOR

Related Keywords

ACCEL

DURATION

IPS

MMPS

SCALE.ACCEL

SELECT

SELECT (real-valued function)

SPEED (monitor command)

SPEED (real-valued function)

Chapter 3: Keyword Details

STOP

Terminate execution of the current program cycle.

Syntax

STOP

Usage Considerations

STOP does not halt program execution if there are more program cycles to
execute.

The PROCEED program command cannot be used to resume program execution
after a STOP command causes the program to halt.

If program execution is halted by a STOP command, FCLOSE and / or DETACH
operations are forced on all attached I/O devices.

Details

The STOP program command terminates execution of the current program unless
more program loops are to be completed, in which case execution of the program
continues at its first step (refer to the EXECUTE keywords). The STOP command
is used to mark the end of a program execution pass.

NOTE: The HALT program command has a different effect
because it cancels all remaining cycles.

NOTE: A RETURN program command in a main program has the
same effect as a STOP command. A main program is one that is
invoked by an EXECUTE keyword or a PRIME or XSTEP monitor
command. A subroutine is a program that is invoked by a CALL or
CALLS program command (or a reaction) within another program.

The STOP program command counts one more program cycles as complete and
one less remaining. If the result is that no more cycles are remaining, program
execution halts.

If more cycles are remaining, the internal robot motion parameters are rein-
itialized and program execution continues with the first step of the main pro-
gram even if the STOP operation occurred within a subroutine or reaction
program.

Related Keywords

ABORT

ABORT (program command)

EXECUTE

HALT

PAUSE

22353-000 Rev. B eV+3 Keyword Reference Manual 627

628 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

SWITCH

Enable or disable a system switch based on a value.

Syntax

SWITCH switch_name = value

SWITCH switch_name[index] = value

Usage Considerations

If the specified switch accepts an index qualifier and the index is 0 or omitted
with or without the brackets, all the elements of the switch array are set accord-
ing to the value given.

Parameters

switch_name Name of the system switch whose setting is to be mod-
ified. The switch name can be abbreviated to the min-
imum length that identifies it uniquely.

index For system switches that can be qualified by an index,
this is an optional real value, variable, or expression
that specifies the specific switch element of interest.

value Real value, variable, or expression that determines
whether the system switch is to be enabled or disabled.
The switch is enabled if the value is TRUE (nonzero).
The switch is disabled if the value is FALSE (zero).

Details

The SWITCH program command sets the given system switch to the setting
implied by the value on the right of the equal sign.

The switch name can be abbreviated to the minimum length that identifies it
uniquely.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about system
switches.

Example

The following example shows how the SWITCH function and command can be
used to save the setting of a system switch and to restore it.

old.upper = SWITCH(UPPER)
.
.
.

SWITCH UPPER = old.upper

Chapter 3: Keyword Details

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 629

630 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

TIME

Set the date and time.

Syntax

TIME time_string

Usage Considerations

The TIME operation will not execute in emulation mode. If the TIME command
is executed in emulation mode, no error will be displayed.

Parameter

time_string String expression whose value specifies the date and time
to be set. The value of the stringmust have one of the fol-
lowing formats.

dd-mmm-yy hh:mm:ss dd-mmm-yyyy hh:mm:ss
dd-mmm-yy hh:mm dd-mmm-yyyy hh:mm

Details

The system clock is set equal to the value of the string expression.

The system clock is maintained automatically and should be changed only when
its setting is incorrect.

The system clock is used in the following situations.

l The date and time are displayed when the eV+ system is booted from disk.

l Whenever a new disk file is created, the date and time are recorded with
the file name. The FDIRECTORY monitor command displays the dates
and times for files.

l The date and time are appended to the message indicating that an applic-
ation program has terminated execution.

l The date and time are displayed by the TIME monitor command.

l The date and time are available to an application program by use of the
$TIME and $TIME4 functions.

The individual elements of the date and time specification are described in the
following table.

Element Description

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB,
MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

Chapter 3: Keyword Details

Element Description

yy The year, where 80 to 99 represent 1980 through 1999 and
00 to 79 represent 2000 through 2079.

yyyy The year (1980 to 2079)

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0 assumed if :ss omitted)

Example

The following example example sets the system date and time to November 25,
2019 at 4:10:25 pm.

TIME "25-NOV-19 16:10:25"

Related Keywords

TIME (monitor command)

TIME (real-valued function)

$TIME (string function)

$TIME4 (string function)

22353-000 Rev. B eV+3 Keyword Reference Manual 631

632 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

TIMER

Set the specified system timer to the given time value.

Syntax

TIMER timer_number = time_value

Usage Considerations

Times measured by eV+ are precise only to within 1 millisecond (0.001 seconds)
and shorter times cannot be measured.

Timers with numbers <= 0 are read-only and cannot be set with this command.

Parameters

timer_number Real-valued expression interpreted as the integer number
of the timer to be set. The value must range from 1 to 15.

time_value Real-valued expression interpreted as the time in seconds
to which the timer is set. This parameter may specify frac-
tions of a second andmay be negative.

Details

When used as described in the examples below, the timers can be used to meas-
ure an interval of 596 hours from when they were set by the TIMER command.
Timers have a resolution of one millisecond and a maximum count of > 2.E+009.

Additional Information: Use the TIMER function to read the
instantaneous value of a system timer.

Example

The following examples provides two ways to wait for a certain amount of time
using the TIMER command and function. Each example sets the timer and then
waits until the timer value has changed by the delay period.

TIMER 1 = 0
WAIT TIMER(1) > delay
TIMER 1 = -delay
WAIT TIMER(1) > 0

Related Keywords

TIMER (real-valued function)

Chapter 3: Keyword Details

TOOL

Set the internal transformation used to represent the location and orientation of
the tool tip relative to the tool mounting flange of the robot.

Syntax

TOOLtransformation_value

Usage Considerations

The TOOL program command causes a break in continuous-path motion.

The TOOL program command can be executed by any program task as long as
the robot selected by the task is not attached by any other task. This command
applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the TOOL com-
mand causes an error.

Parameter

transformation_value Optional transformation variable or function, or
compound transformation expression that is the
new tool transformation. If the transformation
value is omitted, the tool is set to NULL.

Details

The TOOL program command causes a break in the robot continuous-path
motion and sets the value of the tool transformation equal to the transformation
value given.

Refer to the TOOL monitor command for a complete description of this com-
mand's operation. To define a tool transformation, refer to the eV+3 User's Manual
(Cat. No. I651) for more information.

Related Keywords

SELECT (program command)

SELECT (real-valued function)

TOOL (monitor command)

TOOL (transformation function)

22353-000 Rev. B eV+3 Keyword Reference Manual 633

634 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

TYPE

Display the information described by the output specifications on the Monitor
Window.

Syntax

TYPE output_specification, ..., output_specification

Usage Considerations

No output is generated if the MESSAGES system switch is disabled.

A blank line is output if no parameters are provided.

Program execution normally waits for the output to be completed before con-
tinuing. There is an output specification described below that can be used to pre-
vent waiting if it is undesirable for execution to be delayed.

The output from a single TYPE command cannot exceed 512 characters. The /S
format control specifier described below can be used to output longer messages.

Parameter

An output_specification can consist of any of the following components in any
order, separated by commas.

l A string expression.

l A real-valued expression, which is evaluated to determine a value to be
displayed.

l Format control specifier, which determines the format of the output mes-
sage (see details below).

Details

The following format control specifiers can be used to control the way in which
numeric values are displayed. These settings remain in effect for the remainder of
the command unless another specifier is used to change their effect.

For these display modes, if a value is too large to be displayed in the specified
field width, the field is filled with asterisk characters (*).

/D uses the default format, which displays values to full precision with a single
leading space. Scientific notation is used for values greater than or equal to
1,000,000.

NOTE: The following format specifications accept a zero as the
field width (n). That causes the actual field size to vary to fit the
value and causes all leading spaces to be suppressed. That is use-
ful when a value is displayed within a line of text or at the end of a
line.

/En.m Output values in scientific notation in fields n spaces wide,

Chapter 3: Keyword Details

with m digits the fractional parts. If n is not zero, it must be
large enough to include space for a minus sign if the dis-
played value is negative, one digit to the left of the decimal
point, a decimal point if m is not zero, m digits, and four or
five characters for the exponent.

/Fn.m Output values in fixed-point notation (for example, -123.4) in
fields n spaces wide with m digits in the fractional parts.

/Gn.m Output values in F format with m digits in the fractional parts
if the values are larger than 0.01 and will fit in fields n spaces
wide. Otherwise /En.m format is used.

/Hn Output values as hexadecimal integers in fields n spaces
wide.

/In Output values as decimal integers in fields n spaces wide.

/On Output values as octal integers in fields n spaces wide.

The following specifiers can be used to control the appearance of the output.

/Cn Output the characters carriage return (CR) and line feed (LF) n
times. This will result in n blank lines if the format control spe-
cifier is at the beginning or end of an output specification.
Otherwise, n-1 blank lines will result.

/S Do not output a carriage return (CR) or line feed (LF) after dis-
playing the current line.

/Un Move the cursor up n lines.

/Xn Output n spaces.

The following specifier can be used to perform control functions.

/N Initiate output without having program execution wait for its
completion. A second output request will force program exe-
cution to wait for the first output if it has not yet completed.

Example

The following example will display the message "Point 5 = 12.67". This example
assumes that the real variable "i" has the value 5 and that array element "point
[5]" has the value 12.666666.

22353-000 Rev. B eV+3 Keyword Reference Manual 635

636 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

TYPE, "Point", i, " = " /F5.2, point[i]

If point[5] has the value 1000, the statement above would display "Point 5 =
*****" because the value is too large to be displayed in the specified format (/F5.2).
The command can display any value for point[5] if the format specification were
/F0.5.

Related Keywords

$ENCODE

MESSAGES

PROMPT

WRITE

Chapter 3: Keyword Details

UNTIL

Indicate the end of a DO ... UNTIL control structure and specify the expression
that is evaluated to determine when to exit the loop. The loop continues to be
executed until the expression value is nonzero.

Syntax

UNTIL expression

Usage Considerations

UNTIL must be used in conjunction with a DO control structure. Refer to the DO
command for more information.

Parameter

expression Real-valued expression, constant, or relation that is inter-
preted as either TRUE (nonzero) or FALSE (zero).

Details

If the expression in the UNTIL statement is 0, program execution continues with
the statement following the matching DO command. If the expression is nonzero,
program execution continues with the statement following the UNTIL command.

Example

The following example is a loop that continues to prompt you to enter a number
until you enter one that is greater than or equal to 0.

DO
PROMPT "Enter a positive number: ", number

UNTIL number >= 0

Related Keywords

DO

EXIT

NEXT

WHILE

22353-000 Rev. B eV+3 Keyword Reference Manual 637

638 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

VALUE

Indicate the values that a CASE statement expression must match in order for the
program statements immediately following to be executed.

Syntax

VALUE expression_list:

Usage Considerations

VALUE must be part of a CASE control structure. Refer to the CASE command
for more information.

Parameter

expression_list Real value, variable, or expressions, separated by
commas, that defines the value to be matched in
the CASE structure to determine which state-
ments are executed.

Related Keywords

ANY

CASE

Chapter 3: Keyword Details

VPARAMETER

Sets the current value of a vision tool parameter.

Syntax

VPARAMETER(sequence_id, tool_id, parameter_id, index_id, object_id) $ip = value

Usage Considerations

Refer to the ACE Sight Reference Guide (Cat. No. I609) for additional information.

Parameters

sequence_
id

Optional index of the vision sequence. The first sequence is 1.

tool_id Optional index of the tool in the vision sequence. The first tool is 1.

parameter_
id

Optional identifier (ID) of the parameter.

index_id Reserved for internal use. Value is always 1.

object_id Some parameters require an object index to access specific values in an
array.

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager software is running and uses a standard IP address
format (192.168.1.120 for example).

value Real-value expression.

Details

If no value is provided for optional parameters, they default to 1.

Example

The following example will set a Locator to find a maximum of 4 object instances where the
MaximumInstanceCount - 519.

VPARAMETER(1, 2, 519) $ip = 4

Related Keywords

VLOCATION

VPARAMETER (real-valued function)

VRESULT

VRUN

22353-000 Rev. B eV+3 Keyword Reference Manual 639

640 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

VSTATE

VTIMEOUT

VWAITI

Chapter 3: Keyword Details

VRUN

Initiates the execution of a vision sequence.

Syntax

VRUN $ip, sequence_id

Parameters

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager is running and uses a standard IP address format
(192.168.1.120 for example).

sequence_
id

Index of the vision sequence. The first sequence is 1.

Example

The following example executes the first sequence

VRUN $ip, 1

Related Keywords

VLOCATION

VPARAMETER (real-valued function)

VPARAMETER (program command)

VRESULT

VSTATE

VTIMEOUT

VWAITI

22353-000 Rev. B eV+3 Keyword Reference Manual 641

642 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

VWAITI

Waits until the specified vision sequence reaches the state specified by the type parameter.

Syntax

VWAITI (sequence_id) $ip, type

Parameters

sequence_
id

Optional index of the vision sequence. The first sequence is 1.

$ip IP address of the vision server. The vision server is the PC on which the
Robot Vision Manager is running and uses a standard IP address format
(192.168.1.120 for example).

type Optional vision sequence state to reach before completing as described
below.

l 0:Wait for full completion (default).
l 1:Wait until image acquisition has completed.

Details

Use a VWAITI program command after a VRUN program command. In a conveyor-tracking
application, the absence of a specific VWAITI command can interfere with the Virtual Camera
tool and the Communication tool to cause a delay in the execution of the application.

NOTE: Issuing a VWAITI command can block other tasks executing other eV+
Robot Vision Manager keywords. Consider using VSTATE if your application
has multiple eV+ tasks interacting with Robot Vision Manager sequences.

Examples

The following example will execute the first sequence and wait for full completion.

VRUN $ip, 1
VWAITI (1) $ip, 0

Related Keywords

VLOCATION

VPARAMETER (real-valued function)

VPARAMETER (program command)

VRESULT

VRUN

VSTATE

VTIMEOUT

Chapter 3: Keyword Details

WAIT

Put the program into a wait loop for one trajectory cycle. If a condition is spe-
cified, wait until the condition is TRUE.

Syntax

WAIT condition

Usage Considerations

To wait for a specific time period, use the WAIT.EVENT program command.

During execution, use the PROCEED monitor command to cancel a WAIT com-
mand in an application program.

Parameter

condition Optional real value, variable, or expression that is tested for a
TRUE (nonzero) or FALSE (zero) value.

Details

A WAIT program command with no condition specified is useful in programs
that need to perform an operation only once each trajectory cycle.

If no condition is supplied with the WAIT program command, program exe-
cution is suspended until the next trajectory cycle. Trajectory cycles occur at 16, 8,
and 4 millisecond intervals, depending on the system configuration.

If a trajectory cycle delay is necessary (for example, while manipulating signals
monitored by REACT or REACTI program commands), execute two consecutive
WAIT commands with no arguments.

If a condition is specified, the WAIT command will suspend program execution
until the condition exists. For example, the state of one or more digital signals
can be used as the condition for continuation.

Examples

The following example will stop program execution while external input signal
1001 is ON and 1003 is OFF and will poll once each eV+ trajectory cycle.

WHILE SIG(1000, -1003) DO
WAIT

END

Related Keywords

RELEASE

WAIT.EVENT

WAIT.START

22353-000 Rev. B eV+3 Keyword Reference Manual 643

644 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

WAIT.EVENT

Suspend program execution until a specified event has occurred or until a spe-
cified amount of time has elapsed.

Syntax

WAIT.EVENT mask, timeout

Usage Considerations

If a WAIT.EVENT program command in an application program has execution
suspended, the WAIT.EVENT can be canceled with the PROCEED monitor com-
mand.

Parameters

mask Optional real value, variable, or expression that specifies the
events for which to wait. The value is interpreted as a
sequence of bit flags, as detailed below. All the bits are
assumed to be clear if nomask value is specified.

Bit 1 (LSB, mask value = 1):Wait for I/O

If this bit is ON, the desired event is the completion of any
input / output operation by the current task.

timeout Optional real value, variable, or expression that specifies the
number of seconds to wait. No time-out processing is per-
formed if the parameter is omitted or the value is negative or
zero.

Details

The WAIT.EVENT program command is used to suspend program execution
until a specified event has occurred or until a specified amount of time has
elapsed in the timeout clock.

When the program resumes execution after a WAIT.EVENT command, the
GET.EVENT function can be used to verify that the desired event has actually
occurred. This is the only way to distinguish between the occurrence of an event
and a time-out if one was specified.

If the mask parameter has the value 0 or is omitted, this command is a very effi-
cient method to suspend program execution for the time period specified by the
timeout parameter.

If the timeout parameter is omitted or has a negative or 0 value, this command
suspends program execution indefinitely until the specified event occurs.

If both mask and timeout are 0 or omitted, this command has no impact on sys-
tem behavior.

Chapter 3: Keyword Details

The WAIT.EVENT 1 statement waits for an event to be signaled for a task. Events
are signaled by either a SET.EVENT program command or by a pending no-wait
I/O program command when the I/O operation is completed.

There is no way to confirm why the event was set. It may have been set by an I/O
operation, a SET.EVENT program command, or some internal system process.
For this reason, it is necessary to evaluate for the desired condition after execut-
ing the WAIT.EVENT operation. For I/O, repeat the no-wait I/O operation or use
the IOSTAT function. For SET.EVENT operation issued by other tasks, define and
check a global variable.

To avoid program logic issues where the event is set or cleared between eval-
uation and waiting, use the following loop in the waiting task.

NOTE: The statement order is critical in this loop.

1. CLEAR.EVENT

2. Issue no-wait I/O if appropriate.

3. Check I/O status or check global variable.

4. Exit loop if operation complete.

5. WAIT.EVENT 1

6. GOTO step 1

If using SET.EVENT to signal another task, use the following sequence (the state-
ment order is critical).

1. Set the global variable.

2. SET.EVENT for the appropriate task.

Examples

The following example suspends program execution for 5.5 seconds.

WAIT.EVENT , 5.5

The following example suspends program execution until the completion of any
system input / output, or until another program task sets events using the
SET.EVENT command.

WAIT.EVENT 1

The following example suspends program execution for five seconds until the
completion of any system input/ output or until another program task uses the
SET.EVENT command to set events. The current program should use the
GET.EVENT function to determine whether an event has occurred or five
seconds has elapsed.

22353-000 Rev. B eV+3 Keyword Reference Manual 645

646 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

WAIT.EVENT 1, 5

Related Keywords

CLEAR.EVENT

GET.EVENT

SET.EVENT

Chapter 3: Keyword Details

WHILE

Initiate processing of a WHILE structure if the condition is TRUE or skipping of
the WHILE structure if the condition is initially FALSE.

Syntax

WHILE condition DO

Usage Considerations

Every WHILE statement must be part of a complete WHILE ... DO ... END struc-
ture.

Parameter

condition Real-valued expression that is evaluated and tested for a
TRUE (nonzero) or FALSE (zero) value.

Details

This structure provides another method for executing a group of statements until
a control condition is satisfied (similar to the DO command). The complete syn-
tax for the WHILE structure is shown below.

WHILE condition DO
group_of_steps

END

Processing of the WHILE structure can be described as follows.

1. Evaluate the condition. If the result is FALSE, proceed to item 4.

2. Execute the group_of_steps.

3. Return to item 1.

4. Continue program execution at the first statement after the END com-
mand.

Unlike the DO structure described elsewhere, the group of statements within the
WHILE structure may not be executed at all. If the condition has a FALSE value
when the WHILE is first executed, then the group of statements are not executed.

When this structure is used, it is assumed that some action occurs within the
group of enclosed statements that will change the result of the logical expression
from TRUE to FALSE when the structure should be exited.

Example

The following example uses a WHILE structure to monitor a combination of
input signals to determine when a sequence of motions should be stopped. In
this example, if the signal from either part feeder becomes zero (assumed to indic-

22353-000 Rev. B eV+3 Keyword Reference Manual 647

648 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

ate the feeder is empty), then the repetitive motions of the robot stops and the pro-
gram continues.

If either feeder is empty when the WHILE structure is first encountered, then exe-
cution immediately skips to any statements after END.

feeder.1 = 1037
feeder.2 = 1038

WHILE SIG(feeder.1, feeder.2) DO
CALL move.part.1()

CALL move.part.2()
END

Related Keywords

DO

EXIT

NEXT

UNTIL

Chapter 3: Keyword Details

WINDOW

Set the boundaries of the operating region of the specified belt variable for con-
veyor tracking.

Syntax

WINDOW %belt_var = location, location, program, priority

Usage Considerations

The belt variable referenced must have already been defined using a DEFBELT
program command.

Parameters

%belt_var Name of the belt variable whose window is being estab-
lished.

location Compound transformation that, together with the dir-
ection of the belt, defines one boundary of the operating
window along the belt.

The window boundaries are planes that are perpendicular
to the direction of belt travel and include the positions spe-
cified by the two transformations. The order of the trans-
formations is not important. This command automatically
determines which transformation represents the
upstream boundary andwhich is for the downstream
boundary.

program Optional program that is called if a window violation occurs
while tracking the belt. It is subject to the specified priority
level and the current priority level of the system.

priority Optional priority level of the window violation program. If
no priority is specified, a priority of 1 is set.

Details

The operating window defined by this program command is used both at motion
planning time and motion execution time to determine if the destination of the
motion is within acceptable limits.

When a motion is being planned, the destination of the motion is compared
against the operating window. If a window violation occurs, the window viol-
ation program is ignored and a program error may be generated depending upon
the setting of the BELT.MODE system parameter and the nature of the error.

When a motion relative to the belt is being executed or after the motion is com-
pleted and the robot continues to track the destination, the destination is

22353-000 Rev. B eV+3 Keyword Reference Manual 649

650 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

compared against the window every eV+ trajectory cycle. If a window violation
occurs and a program has been specified, the program is automatically invoked
subject to its priority level and the robot continues to track the belt and follow its
continuous path motion.

NOTE: The presumption is made that the specified program dir-
ects the robot as required to recover from the window violation.

If no program has been specified, the robot is immediately stopped and a win-
dow violation program error is signaled. If a REACTE operation has been
executed, the REACTE operation is activated. Otherwise, program execution is ter-
minated.

Example

The following example executes the subroutine "belt.error" if a window vioation
occurs while the robot is tracking the belt. The working window for the belt vari-
able "%belt1" is defined by locations "win1" and "win2".

WINDOW %belt1 = win1, win2, belt.error

Related Keywords

BELT (real-valued function)

BELT.MODE

BSTATUS

DEFBELT

SETBELT

WINDOW (real-valued function)

Chapter 3: Keyword Details

WRITE

Write a record to an open file or to any I/O device. For network device, write a
string to an attached device and open a TCP connection.

Syntax

WRITE (lun,record_num) format_list

Usage Considerations

The device to receive the output must have been attached. If the output is to a
disk file, the file must have been opened with an FOPENA or FOPENW program
command.

Program execution waits for the write operation to complete unless there is a /N
format specifier in the format list.

Parameters

lun Real-valued expression that identifies the device to be
accessed. Refer to the ATTACH program command for a
description of unit numbers.

record_num Optional real-valued expression that represents the num-
ber of the record to be written. This should be 0 (default)
to write the next sequential record. If the value is not 0,
the record is written in random-access mode which
requires that the records all have the same length. In ran-
dom-access mode, records are numbered from 1 to
16,777,216.

When accessing the TCP device with a server program,
this parameter is an optional real value, variable, or
expression interpreted as an integer that defines the cli-
ent handle. Refer to the READ program command for
more information.

format_list Consists of a list of output variables, string expressions,
and format specifiers used to create the output record.
The format list is processed exactly like an output spe-
cification for the TYPE program command.

When accessing the TCP device, you can include the /N
specifier to prevent the eV+ system from waiting for a
write acknowledgment.

Details

This is a general-purpose data output command that writes a record to a spe-
cified logical unit. A record can contain an arbitrary list of characters, but must
not exceed 512 characters in length.

22353-000 Rev. B eV+3 Keyword Reference Manual 651

652 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.4 Program Command Keywords

For files that are opened in fixed-length record mode, this command appends
NULL characters to the output record if it is shorter than the file records.

When accessing the TCP/IP device, the record_num parameter enables a server to
communicate with multiple clients on a single logical unit. Handles are allocated
when a client connects to the server and deallocated when a client disconnects.
During a connection the READ program command that receives data from the
TCP logical unit returns the client handle. A WRITE program command can then
use the handle value to send data to the corresponding client.

Examples

The following example writes a message stored in the variable "$message" to the
manual control pendant.

ATTACH (1)
WRITE (1) $message
IF IOSTAT(0) < 0 THEN

TYPE /B, "Error Writing to Disk: ", $ERROR(IOSTAT(0))

PAUSE
END
DETACH(1)

The following example writes a file with variable-length records to the system
disk drive.

ATTACH (dlun, 4) "DISK"
FOPENW (dlun) "A:testfile.dat"
FOR i = 0 TO LAST($lines[])

WRITE (dlun) $lines[i]
END
FCLOSE (dlun)
DETACH (dlun)

The following writes the string " $str" to the client defined by the handle which
must have been defined previously when the a message was received. It does not
wait for acknowledgment

WRITE (lun, handle) $str, /N

Related Keywords

ATTACH

DETACH

FCLOSE

FEMPTY

FOPEN

FOPENA

FOPEND

FOPENR

Chapter 3: Keyword Details

FOPENW

IOSTAT

PROMPT

READ

TYPE

22353-000 Rev. B eV+3 Keyword Reference Manual 653

654 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.5 System Parameter Keywords

3.5 System Parameter Keywords
Use the information in this section to understand system parameter keywords and their use
with the eV+ system.

BELT.MODE

System parameter that sets the characteristics of the conveyor tracking feature of
the eV+ system.

Syntax

...BELT.MODE[robot_num]

Usage Considerations

The current value of the BELT.MODE parameter can be determined with the
PARAMETER monitor command or function keywords.

The value of the BELT.MODE parameter can be modified only with the
PARAMETER monitor command or program command keywords.

Parameter

robot_num Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, the settings for all robots are
altered. Otherwise, only the setting for the specified robot is
affected.

Details

This parameter is interpreted as a bit-flag word. The initial setting of this para-
meter is 0 (all the bits are zero). Bits can be set by assigning the value resulting
from adding together the desired bit mask values..

The bit flags have the following interpretations:

Bit 1 (LSB) Upstream/downstream definition (mask value = 1)

When this bit is set to one, the instantaneous direction of
travel of the belt is used to define upstream and down-
stream for the window testing routines, both in the internal
motion planner and the WINDOW real-valued function.

When this bit is set to zero, going from upstream to down-
stream always corresponds to traveling in the direction of
the positive X axis of the nominal transformation.

Bit 2 Stopped-belt processing (mask value = 2)

When this bit is set to one, a program error will be gen-
erated during motion planning if the destination is outside
of the belt window and the belt is stopped.

Chapter 3: Keyword Details

When this bit is set to zero, if the belt is stopped during
motion planning, the direction of the positive X axis of the
nominal transformation is used to define the downstream
direction. The normal window-error criteria are then
applied (see below).

Bit 3 Window error definition (mask value = 4)

When this bit is set to one, destination locations that are
downstream or upstream of the belt window cause motion
instructions to fail during planning.

When this bit is set to zero, upstream window violations
cause planning to wait until the location comes into the
window. Destination locations that are downstream of the
belt window cause window errors.

Bit 4 Effect of window errors (mask value = 8)

When this bit is set to one, motion operations that fail dur-
ing planning due to a window error are ignored (skipped)
and program execution continues normally. When this
option is selected, each belt-relative motion operation
should be followed by an explicit test for planning errors
using the BSTATUS function.

When this bit is zero, window errors during motion plan-
ning generate a program step execution error, which either
halts program execution or triggers the REACTE routine.

Regardless of the setting of this bit, window errors that
occur while the robot is actually tracking the belt cause the
program specified in the latest WINDOW operation to be
executed. If no such program has been specified, program
execution is halted.

Example

The following example sets the parameter to have bits 1 and 3 set to one (mask
values 1 + 4):

PARAMETER BELT.MODE = 5

Related Keywords

BELT (real-valued function)

BSTATUS (real-valued function)

PARAMETER (monitor command)

PARAMETER (program command)

PARAMETER (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 655

656 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.5 System Parameter Keywords

WINDOW (program command)

WINDOW (real-valued Function)

Chapter 3: Keyword Details

JOG.TIME

System parameter that sets the keep-alive time of a jog operation.

Syntax

...JOG.TIME

Usage Considerations

The value of the JOG.TIME parameter can be modified only with the PARAMETER monitor
command or program command keywords.

If the eV+ system is controlling more than one robot, the JOG.TIME parameter controls the
keep-alive time of jog operation for all the robots.

The current value of the JOG.TIME parameter can be determined with the PARAMETER mon-
itor command or function keywords.

Details

The JOG program command and monitor command keywords are used to execute a jog move.

The JOG.TIME parameter setting determines the keep-alive time of jog operation. Each time a
jog operation is executed, this parameter setting specifies the time the axis or joint moves.

The value for this parameter can range from 0.1 to 5.0 seconds. This parameter is set to 0.3
seconds when the eV+ system is initialized.

Example

The following example sets the keep-alive time to 0.5 seconds.

PARAMETER JOG.TIME = 0.5

Related Keywords

JOG (program command)

JOG (monitor command)

PARAMETER (program command)

PARAMETER (real-valued function)

PARAMETER (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 657

658 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.5 System Parameter Keywords

NOT.CALIBRATED

System parameter that indicates or asserts the calibration status of the robots con-
nected to the system.

Syntax

... NOT.CALIBRATED

Usage Considerations

The current value of the NOT.CALIBRATED system parameter can be determined
with the PARAMETER monitor command or function.

The results indicate that a runtime calibration has been performed with the a cal-
ibration operation. It does not indicate if calibration offsets have been stored pre-
viously.

The parameter name can be abbreviated.

Details

The value of this parameter can range from 0 to 255 and should be interpreted as
a bit mask. Bits 1 through 8 correspond to robots 1 through 8. Values have the fol-
lowing interpretations, for example.

Value of
parameter Interpretation

0 All robots are calibrated.

1 Robot 1 is not calibrated.

3 Robots 1 and 2 are not calibrated.

7 Robots 1 through 3 are not calibrated.

On power-up, this parameter is set to indicate that all installed robots are not cal-
ibrated. If a robot is not connected or not defined, its NOT.CALIBRATED bit is
always OFF.

The CALIBRATE monitor command and program command attempt to calibrate
any enabled robot that has its NOT.CALIBRATED bit ON. When the calibration
operation completes, the NOT.CALIBRATED bits are updated.

Consider a system that has only one robot installed. If the CALIBRATE monitor
command is issued and it succeeds, the NOT.CALIBRATED is set to 0. If three
robots are connected and the CALIBRATE monitor command succeeds in cal-
ibrating robots 1 and 2, but not robot 3, NOT.CALIBRATED is set to 4 (binary
100-robots 1 and 2 calibrated, 3 not calibrated).

The purpose of this parameter is to allow one of the bits to be ON to force the cor-
responding robot to be calibrated the next time a CALIBRATE monitor command

Chapter 3: Keyword Details

or program command is executed. This parameter can also be used to determine
the calibration status of the robot(s).

The parameter value can be changed at any time. The following rules describe
how a new asserted value is affected.

l If the new value asserts that a robot is not calibrated, the eV+ system
behaves as if the robot is not calibrated whether or not the servo software
acknowledges that the robot is not calibrated.

l If the new value asserts that a robot is calibrated, eV+ tracks the cal-
ibrated/ not calibrated state for that robot.

NOTE: It is normally not meaningful to use a PARAMETER
NOT.CALIBRATED statement to turn OFF a bit.

Examples

The following example will perform the runtime calibration for all robots if any
robot is not calibrated.

IF PARAMETER(NOT.CALIBRATED) <> 0 THEN
CALIBRATE

END

Related Keywords

CALIBRATE

CALIBRATE (program command)

PARAMETER (monitor command)

PARAMETER (program command)

PARAMETER (real-valued function)

ROBOT

22353-000 Rev. B eV+3 Keyword Reference Manual 659

660 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.5 System Parameter Keywords

VTIMEOUT

System parameter that sets a timeout value so that an error message is returned if no response
is received following a vision command.

Syntax

PARAMETER VTIMEOUT = value

Details

The statement VTIMEOUT = 0 sets the timeout value to 16 ms. This is the minimum timeout
that will be used.

The timeout value is expressed in seconds (0.15 represents 150 ms).

Examples

The following example will set a timeout value so an error message will occur if there is no
response after 200 ms.

PARAMETER VTIMEOUT = 0.20

Related Keywords

PARAMETER (program command)

PARAMETER (real-valued function)

VLOCATION

VPARAMETER (real-valued function)

VPARAMETER (program command)

VRESULT

VRUN

VSTATE

VWAITI

Chapter 3: Keyword Details

3.6 System Switch Keywords
Use the information in this section to understand system switch keywords and their use with
the eV+ system.

AUTO.POWER.OFF

This system switch disables high power when certain motion errors occur.

Syntax

...AUTO.POWER.OFF[robot_num]

Usage Considerations

This system switch functions during automatic mode but not during manual mode. It is espe-
cially useful in reducing operator intervention during common nulling-timeout and envelope
errors.

If a parameter is not specified while using this switch with a monitor command, all robots in
the system will be affected.

This system switch is disabled by default.

Parameter

robot_num Required real value, variable, or expression interpreted as an integer that
indicates the number of the robot affected.

Details

When this switch is enabled, eV+ disables high power for all associated motion errors that
occur on the specified robot_num. The associated motion errors are listed below.

l Soft Envelope Error
l Soft Overspeed Error
l Force Protect Limit Exceeded

Example

The following example instructs eV+ to disable high power to robot 1 when associated motion
errors occur.

ENABLE AUTO.POWER.OFF[1]

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 661

662 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

SWITCH (program command)

SWITCH (real-valued function)

Chapter 3: Keyword Details

CP

System switch that controls the continuous-path function of a robot.

Syntax

... CP[robot_num]

Parameters

robot_num Optional real value, variable, or expression interpreted as an integer that
indicates the number of the robot affected. If the parameter is omitted or 0,
the settings for all robots are altered. Otherwise, only the setting for the
specified robot is affected.

Details

The CP switch can be used to turn OFF continuous-path motion processing.

This switch is ON when the eV+ system is initialized.

Refer to the eV+3 User's Manual (Cat. No. I651) for more information about continuous-path tra-
jectories.

Example

The following example turns OFF continuous-path motion processing for all robots in the sys-
tem.

DISABLE CP

Related Keywords

BREAK (program command)

CPOFF (program command)

CPON (program command)

DISABLE (monitor command)

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 663

664 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

DECEL.100

System switch that enables or disables the maximum deceleration of 100% for the ACCEL pro-
gram command keyword.

Syntax

...DECEL.100[robot_num]

Usage Considerations

When DECEL.100 is enabled for a selected robot, the maximum deceleration percentage is used
to limit the value specified by the ACCEL program command keyword.

DECEL.100 is disabled for all robots by default.

Parameter

robot_num Optional real value, variable, or expression interpreted as an integer that
indicates the number of the robot affected. If the parameter is omitted or 0,
the settings for all robots are altered. Otherwise, only the setting for the
specified robot is affected.

Example

The following example will cause the ACCEL program command keyword to use 100% for the
maximum deceleration on robot 2.

DECEL.100[2]

Related Keywords

ACCEL (program command)

ACCEL (real-valued function)

SPEED (monitor command)

SPEED (program command)

Chapter 3: Keyword Details

DELAY.IN.TOL

System switch that controls the timing of coarse or fine nulling after the eV+ system completes
a motion segment.

Syntax

... DELAY.IN.TOL [robot_num]

Usage Considerations

For many applications, enabling this switch produces the best nulling behavior. However, the
switch should be disabled for backward compatibility with previous eV+ systems.

Enabling this switch will have no difference in operation when used in emulation mode. The
trajectory of the robot in the emulation mode is considered to be the same as the current target
position and no positioning error occurs when the operation is completed.

Parameter

robot_
num

Optional real value, variable, or expression (interpreted as an integer) that
indicates the number of the robot affected. If the index is omitted or zero in
an ENABLE or DISABLE keyword, the settings for all robots are altered.
Otherwise, only the setting for the specified robot is affected.

Details

The DELAY.IN.TOL system switch is disabled by default for all SCARA robots.

If the switch is enabled, the final commanded location reached by the robot is more precise,
but the overall time to complete the motion is increased. When the robot has reached the end-
point of the motion segment within the specified FINE / COARSE tolerance specified, the sys-
tem will add extra delay (typically 2-3 milliseconds). During this time, the system is waiting
for the commanded velocity to reach 0 while the robot remains within the specified tolerance
before the next motion can begin. This function ensures that the robot has reached the desired
location within the specified FINE / COARSE tolerance and has come to a complete stop before
proceeding to the next motion segment.

If the switch is disabled and the robot has reached the final commanded location within the
specified FINE / COARSE tolerance, the next motion is immediately commanded without
delay.

Changing the state of this switch during a move will not affect the current robot motion.

Example

The following example will enable the DELAY.IN.TOL system switch for robot 2.

ENABLE DELAY.IN.TOL[2]

Related Keywords

COARSE

FINE

22353-000 Rev. B eV+3 Keyword Reference Manual 665

666 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

NULL

NONULL

Chapter 3: Keyword Details

DRY.RUN

System switch that controls whether or not eV+ communicates with the robot.

Syntax

... DRY.RUN[robot_num]

Usage Considerations

The DRY.RUN System Switch can be enabled or disabled by an application program, but the
new setting of the switch does not take effect until the next time any of the following events
occur:

l An EXECUTE keyword is processed for task 0

l The robot is attached with an ATTACH keyword

l A CALIBRATE keyword is executed

Before an application program changes the setting of the DRY.RUN switch, the program must
have the robot detached. Otherwise, a -602 *Robot already attached to program* error results
when the attempt is made to change the switch setting.

Parameters

robot_num Optional real value, variable, or expression interpreted as an integer that
indicates the number of the robot affected. If the parameter is omitted or 0,
the settings for all robots are altered. Otherwise, only the setting for the
specified robot is affected.

Details

This system switch can be used to stop eV+ from sending motion commands to the robot and
expecting position information back from the robot. When the system is in DRY.RUN mode,
application programs can be executed to test for such things as proper logical flow and correct
external communication without concerns about the robot collisions.

The pendant can still be used to control the robot while the system is in DRY.RUN mode.

The DRY.RUN switch is examined whenever a robot is attached. Task 0 attempts to attach the
robot when program execution begins or is resumed. The DRY.RUN setting for a task can be
changed during execution by detaching the robot, changing DRY.RUN, and then attaching the
robot.

NOTE: Do not allow multiple tasks to change DRY.RUN simultaneously, since
the DRY.RUN state can then be different from that expected. Your programs
should use a software interlock in this case.

The DRY.RUN switch is initially disabled.

!
WARNING: Digital and analog I/O are not affected by DRY.RUN, so external
devices driven by analog or digital output commands still operate.

22353-000 Rev. B eV+3 Keyword Reference Manual 667

668 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

Example

The following example enables the DRY.RUN system switch for robot 2.

ENABLE DRY.RUN[2]

Related Keywords

DISABLE

ENABLE

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

Chapter 3: Keyword Details

MESSAGES

System switch to enable or disable output to the Monitor Window from TYPE program com-
mands.

Syntax

... MESSAGES

Details

If this system switch is enabled, output from TYPE program commands are displayed on the
Monitor Window. Otherwise, output is suppressed.

This switch is enabled by default.

Example

The following example will enable the MESSAGES system switch if it is disabled and then dis-
play "Messages are now enabled" in the Monitor Window.

IF (SWITCH(MESSAGES)==FALSE)THEN
ENABLE MESSAGES
TYPE "Messages now enabled"

END

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

TYPE

22353-000 Rev. B eV+3 Keyword Reference Manual 669

670 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

OBSTACLE

System switch that enables or disables up to four obstacles for a selected robot.

Syntax

...OBSTACLE[switch_ID]

Usage Considerations

You must specify a robot with the SELECT program command keyword before manipulating
the OBSTACLE system switch.

If the switch_ID parameter value is not included in the OBSTACLE statement or the value spe-
cified is not a defined obstacle, an *Invalid argument* (-407) error will occur.

Obstacles must be configured using the Sysmac Studio software. Refer to Sysmac Studio Robot
Integrated System Building Function with Robot Integrated CPU Unit Operation Manual (Cat. No.
W595) for more information.

Parameter

switch_ID Required real value, variable, or expression interpreted as an integer
that indicates the obstacle to enable or disable.

Only values of 1 to 4 are permitted.

Details

Up to four obstacles are available for each robot configured in the system. Each obstacle can be
enabled or disabled with the OBSTACLE system switch parameter switch_ID. Use the
examples below to understand how to enable and disable obstacles associated with each robot
in the system.

The SWITCH keyword can be used to read the state of obstacles for a selected robot. Use the
examples below to understand how to read the state of obstacles associated with each robot in
the system.

Additional Information: Refer to the Sysmac Studio Robot Integrated System Build-
ing Function with Robot Integrated CPU Unit Operation Manual (Cat. No. W595) for
information about configuring obstacles.

Example

The following program command example will enable obstacle 1 for robot 2.

SELECT ROBOT = 2
SWITCH OBSTACLE [1] = TRUE

The following program command example will enable obstacle 1 and obstacle 2 for robot 2.

SELECT ROBOT = 2
ENABLE OBSTACLE [1], OBSTACLE [2]

Chapter 3: Keyword Details

The following program command example will enable obstacle 1 for robot 1 and disable
obstacle 1 for robot 2.

SELECT ROBOT = 1
ENABLE OBSTACLE [1]
SELECT ROBOT = 2
DISABLE OBSTACLE [1]

The following real-valued function example will return the state to variable "VAR" of obstacle
2 for robot 2.

SELECT ROBOT = 2
VAR = SWITCH(OBSTACLE [2])

The following monitor command example will list all obstacle states for all robots in the Mon-
itor Window.

SWITCH OBSTACLE

The following monitor command example will list the state of obstacle 1 for robot #2 in the
Monitor Window.

SELECT ROBOT = 2
SWITCH OBSTACLE [1]

Related Keywords

ENABLE (program command)

ENABLE (monitor command)

DISABLE (program command)

DISABLE (monitor command)

SELECT (program command)

SELECT (monitor command)

SWITCH (program command)

SWITCH (monitor command)

22353-000 Rev. B eV+3 Keyword Reference Manual 671

672 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

POWER

System Switch that controls or monitors the status of the robot high power.

Syntax

... POWER[robot_num]

Usage Considerations

Before an application program changes the setting of the POWER switch, the pro-
gram must have the robot detached. Otherwise, a -314 error *Switch can't be
enabled* error results when the attempt is made to change the switch setting.

!
DANGER: Do not use the POWER switch to enable power from
within a program unless your system is subject to European cer-
tification. With European certification, special safety features are
built-in to the system to prevent the robot from being activated
without warning. Refer to the Details section below for additional
information.

!
DANGER: Using this switch to turn ON high power is poten-
tially dangerous when performed from a program because the
robot can be activated without direct operator action. Turning ON
high power from the terminal can be hazardous if you do not
have a clear view of the robot workspace or do not have imme-
diate access to an emergency stop button.

Parameter

robot_num Optional real value, variable, or expression interpreted as an
integer that indicates the number of the robot affected. If the
parameter is omitted or 0, the settings for all robots are
altered. Otherwise, only the setting for the specified robot is
affected.

Details

Enabling this switch is equivalent to pushing the COMP/PWR button on the
pendant to turn ON high power. If there is no error condition that prevents
power from turning ON, the enabling process proceeds to the second step below,
in which you must press the HIGH POWER button on the Front Panel. Systems
not subject to European certification do not require the second step.

Disabling this switch requests the robot to perform a controlled deceleration and
power-down sequence. This sequence consists of the following steps.

1. Decelerating all robots according to the user-specified parameters. See the
following Note.

2. Turning ON the brakes.

Chapter 3: Keyword Details

3. Waiting for the user-specified brake-delay interval. See the following Note.

4. Turning OFF the amplifiers and power.

5. Asserting the backplane Emergency Stop signal and deasserting the High
Power Enable (HPE) signal.

NOTE: DISABLE POWER may take an arbitrarily long time due to
long deceleration times and long brake turn-on delays. Use the
ESTOP keyword when an immediate shutdown is necessary.. The
value of this switch can be checked at any time with the SWITCH
real-valued function to determine if high power is ON or OFF.

To disable power from a robot program without generating an error condition,
the program must either be in DRY.RUN mode or detach the robot from program
control. See the DRY.RUN System Switch or DETACH program command
keyword for details.

Example

The following program example detaches the robot and turns high power OFF,..

DETAC
DISABLE POWER[2]

Related Keywords

DETACH

DISABLE (monitor command)

DISABLE (program command)

DRY.RUN

ENABLE (monitor command)

ENABLE (program command)

ESTOP (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-value function)

22353-000 Rev. B eV+3 Keyword Reference Manual 673

674 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

ROBOT

System switch that enables or disables one robot or all robots.

Syntax

... ROBOT [robot_num]

Usage Considerations

The ROBOT system switches may be modified only when both of the following conditions are
satisfied:

1. The POWER system switch is OFF.

2. When the eV+ system was booted from disk, at least one robot started up without report-
ing a fatal error.

The ROBOT switches may be modified only for robots that are present and that started up
without a fatal error.

The settings of these switches can be checked at any time with the SWITCH keyword monitor
command or real-valued function to determine which robots are enabled.

Parameter

robot_num Optional real value, variable, or expression interpreted as an integer that
indicates the number of the robot affected. If the parameter is omitted or 0,
the settings for all robots are altered. Otherwise, only the setting for the spe-
cified robot is affected.

Details

When the eV+ system starts up after booting from disk, all the robots that started up without
reporting a fatal error are enabled by default, and all the corresponding ROBOT System
Switches are enabled. After start up, the ROBOT switches can be used to selectively disable
robots. This can aid in troubleshooting of individual robots.

When a robot is disabled by use of the ROBOT switch, that robot is bypassed when:

l Power is enabled for all robots with the COMP/PWR button on the pendant or with the
POWER System Switch.

l All the robots are calibrated with the CALIBRATE keyword.

NOTE: Motion operations should not be executed for a robot that has been dis-
abled.

Example

The following example disables robot 2.

DISABLE ROBOT[2]

Chapter 3: Keyword Details

Related Keywords

DISABLE (monitor command)

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

22353-000 Rev. B eV+3 Keyword Reference Manual 675

676 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

SCALE.ACCEL

System switch that enables or disables the scaling of acceleration and deceleration as a func-
tion of program speed.

Syntax

... SCALE.ACCEL [robot_num]

Usage Considerations

If robot_num is omitted or zero when the switch is accessed with the SWITCH real-valued
function, the setting of the switch for robot 1 is returned.

This system switch will affect the scaling of acceleration and deceleration as long as the pro-
gram speed is below the SCALE.ACCEL Upper Limit. Refer to Sysmac Studio Robot Integrated
System Building Function with Robot Integrated CPU Unit Operation Manual (Cat. No. W595) for
more information about this setting.

Parameter

robot_num Optional real value, variable, or expression interpreted as an integer that
indicates the number of the robot affected. If the parameter is omitted
or 0, the settings for all robots are altered. Otherwise, only the setting
for the specified robot is affected.

Details

This switch is enabled when the eV+ system is initialized.

When this switch is enabled and the program speed is below the preset threshold value, the
effective acceleration and deceleration for that robot are calculated as follows where accel-
eration_setting and deceleration_setting are values set by the ACCEL keyword.

effective acceleration = program_speed * acceleration_setting
effective deceleration = program_speed * deceleration_setting

For example, if program speed 50% is specified and the threshold value is 150, the effective
acceleration and deceleration are 50% of the current settings. If the program speed is higher
than 150% with the threshold set to 150, the current acceleration and deceleration are used
without modification.

NOTE: All robots have the SCALE.ACCEL speed threshold set by default to a
very large value (1e16), effectively forcing the scaling of accelerations and decel-
eration for all speeds when this switch is enabled.

CAUTION: For program speeds over 100%, if the default setting for
the SCALE.ACCEL limit is used and SCALE.ACCEL is enabled, the robot
is driven at much higher rates of acceleration and deceleration, as com-
pared to V+ 11.0.

If the SCALE.ACCEL switch is disabled for a robot, accelerations and decelerations are not
scaled based on the program speed. In this case, accelerations and decelerations are higher

Chapter 3: Keyword Details

than normal at reduced speeds. This is particularly noticeable at very slow speeds and as a res-
ult, robot motions may appear to be more rough or jerky.

Example

Turn OFF acceleration scaling for robot 2:

DISABLE SCALE.ACCEL[2]

Related Keywords

ACCEL (program command)

ACCEL (real-valued function)

SPEED (monitor command)

SPEED (real-valued function)

SCALE.ACCEL.ROT

22353-000 Rev. B eV+3 Keyword Reference Manual 677

678 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

SCALE.ACCEL.ROT

System switch that specifies whether or not the SCALE.ACCEL switch takes into account the
Cartesian rotational speed during straight-line motions.

Syntax

... SCALE.ACCEL.ROT [robot_num]

Parameter

robot_num Optional real value, variable, or expression interpreted as an integer
that indicates the number of the robot affected. If the index is omitted
or zero in an ENABLE or DISABLE keyword, the settings for all robots are
altered. Otherwise, only the setting for the specified robot is affected.

Details

If SCALE.ACCEL.ROT is enabled for a selected robot, the lesser of the Cartesian linear and rota-
tional speeds is used to scale acceleration and deceleration during straight-line motions. If
SCALE.ACCEL.ROT is disabled for a selected robot, only the Cartesian linear speed is con-
sidered when SCALE.ACCEL is in effect. The SCALE.ACCEL.ROT switch is enabled for all
robots by default when the eV+ system is initialized.

Example

The following example will cause SCALE.ACCEL not to use Cartesian rotational speed for
robot 2:

DISABLE SCALE.ACCEL.ROT[2]

Related Keywords

ACCEL

ACCEL (real-valued function)

SPEED (monitor command)

SPEED (real-valued function)

Chapter 3: Keyword Details

UPPER

System switch that controls whether or not the case of each character is ignored when string
comparisons are performed.

Syntax

... UPPER

Usage Considerations

This system switch value is shared globally by all program tasks. If you change the value in
one task, it affects comparisons in all other tasks. Do not change this switch during normal
program execution.

Details

When this switch is enabled and two strings are compared using the operators <, <=, ==, <>,
>=, or >, all lowercase characters are treated as though they were uppercase characters. When
UPPER is enabled, both of the following comparisons return a TRUE value.

"a" == "A" and "A" == "A"

When UPPER is disabled, the case of characters is considered during string comparisons. For
example, the comparison on the left in the statements above returns a FALSE value while the
comparison on the right returns a TRUE value.

UPPER is enabled by default so that string comparisons are performed without considering the
case of the characters.

The STRDIF function always compares strings considering their case. You can leave UPPER
enabled always and then use STRDIF in situations where case is important.

Examples

The following example will display a "0" (true) in the Monitor Window.

$s1="Case"
$s2="case"

DISABLE UPPER
a= $s1==$s2
TYPE a

The following example will display a "-1" (false) in the Monitor Window.

$s1="Case"
$s2="case"

ENABLE UPPER
a= $s1==$s2
TYPE a

Related Keywords

DISABLE

22353-000 Rev. B eV+3 Keyword Reference Manual 679

680 eV+3 Keyword Reference Manual 22353-000 Rev. B

3.6 System Switch Keywords

DISABLE (program command)

ENABLE (monitor command)

ENABLE (program command)

SWITCH (monitor command)

SWITCH (program command)

SWITCH (real-valued function)

STRDIF

Authorized Distributor:

Cat. No. I652-E-02 0820

© OMRON Corporation 2020 All Rights Reserved. In the
interest of product improvement, specifications are
subject to change without notice.

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200 Hoffman Estates,
IL 60169 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON ROBOTICS AND SAFETY TECHNOLOGIES, INC.
4225 Hacienda Drive, Pleasanton, CA 94588 U.S.A
Tel: (1) 925-245-3400/Fax: (1) 925-960-0590

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.com
Kyoto, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711 OMRON (CHINA) CO., LTD.

Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

22353-000 B

	eV+3 Keyword Reference Manual
	Table of Contents
	Revision History
	Chapter 1: Introduction
	 1.1 Intended Audience
	 1.2 Related Manuals
	 1.3 Alert Levels
	 1.4 Special Information
	 1.5 Keyword Syntax
	 1.6 Keyword Parameters
	Parameter Data Type Designations
	Numeric Parameters

	Chapter 2: Keyword Quick Reference
	 2.1 Function Keyword Summary
	 2.2 Monitor Command Keyword Summary
	 2.3 Other Keyword Summary
	 2.4 Program Command Keyword Summary
	 2.5 System Parameter Keyword Summary
	 2.6 System Switch Keyword Summary

	Chapter 3: Keyword Details
	 3.1 Function Keywords
	ABS
	ACCEL
	ACOS
	ALIGN
	ASC
	ASIN
	ATAN2
	BASE
	BCD
	BELT
	BITS
	BMASK
	BSTATUS
	CAS
	$CHR
	COM
	CONFIG
	COS
	CUBRT
	$DBLB
	DBLB
	DCB
	$DECODE
	$DEFAULT
	DEFINED
	DEST
	DEVICE
	DISTANCE
	DURATION
	DX
	DY
	DZ
	ENCLATCH
	$ENCODE
	$ERROR
	ERROR
	FALSE
	$FLTB
	FLTB
	FRACT
	FRAME
	FREE
	GETC
	GET.EVENT
	HERE
	HOUR.METER
	$ID
	ID
	IDENTICAL
	INRANGE
	$INTB
	INT
	INTB
	INVERSE
	IOSTAT
	LAST
	LATCH
	LATCHED
	LEN
	$LNGB
	LNGB
	MAX
	$MID
	MIN
	NETWORK
	NORMAL
	NOT
	NULL
	OFF
	ON
	OUTSIDE
	PARAMETER
	#PDEST
	#PHERE
	PI
	#PLATCH
	POS
	#PPOINT
	PRIORITY
	RANDOM
	RX
	RY
	RZ
	SCALE
	SELECT
	#SET.POINT
	SHIFT
	SIG.INS
	SIGN
	SIG
	SIN
	SOLVE.FLAGS
	SPEED
	SQRT
	SQR
	STATE
	STATUS
	STRDIF
	SWITCH
	TAN
	TAS
	TASK
	$TIME
	$TIME4
	TIME
	TIMER
	TOOL
	TPS
	TRANS
	$TRANSB
	TRANSB
	TRUE
	$TRUNCATE
	$UNPACK
	VAL
	VLOCATION
	VPARAMETER
	VRESULT
	VSTATE
	WINDOW

	 3.2 Monitor Command Keywords
	ABORT
	BASE
	BITS
	CALIBRATE
	CD
	COMMANDS
	COPY
	CYCLE.END
	DEFAULT
	DELETE
	DELETEL
	DELETEM
	DELETEP
	DELETER
	DELETES
	DIRECTORY
	DISABLE
	DO
	ENABLE
	ESTOP
	EXECUTE
	FCOPY
	FDELETE
	FDIRECTORY
	FLIST
	FREE
	FRENAME
	FSET
	HERE
	ID
	IO
	JOG
	KILL
	LIST
	LISTL
	LISTP
	LISTR
	LISTS
	LOAD
	MDIRECTORY
	MODULE
	NET
	PANIC
	PARAMETER
	PING
	PRIME
	PROCEED
	RENAME
	RESET
	RESET.LOCK
	RETRY
	SELECT
	SIGNAL
	SPEED
	SRV.RESET
	SSTEP
	STACK
	STATUS
	STORE
	STOREL
	STOREM
	STOREP
	STORER
	STORES
	SWITCH
	TESTP
	TIME
	TOOL
	WAIT.START
	WHERE
	XSTEP
	ZERO

	 3.3 Other Keywords
	.END
	IPS
	MMPS

	 3.4 Program Command Keywords
	ABORT
	ABOVE
	ACCEL
	ALIGN
	ALTER
	ALTOFF
	ALTON
	ANY
	APPRO
	APPROS
	ATTACH
	AUTO
	BASE
	BELOW
	BITS
	BRAKE
	BREAK
	BY
	CALIBRATE
	CALL
	CALLS
	CASE
	CLEAR.EVENT
	CLEAR.LATCHES
	COARSE
	CPOFF
	CPON
	CYCLE.END
	DECOMPOSE
	DEF.DIO
	DEFBELT
	DEPART
	DEPARTS
	DETACH
	DISABLE
	DO
	DOS
	DRIVE
	DURATION
	ELSE
	ENABLE
	END
	ESTOP
	EXECUTE
	EXIT
	EXTERNAL
	FCLOSE
	FCMND
	FCOPY
	FDELETE
	FEMPTY
	FINE
	FLIP
	FOPEN
	FOPENA
	FOPEND
	FOPENR
	FOPENW
	FOR
	FSEEK
	FSET
	GLOBAL
	GOTO
	HALT
	HERE
	IF ... GOTO
	IF ... THEN
	IGNORE
	JMOVE
	JOG
	KEYMODE
	KILL
	LEFTY
	LOCAL
	LOCK
	MC
	MCS
	MOVE
	MOVEC
	MOVES
	NEXT
	NOFLIP
	NONULL
	NOOVERLAP
	NULL
	OVERLAP
	PACK
	PANIC
	PARAMETER
	PAUSE
	PDNT.CLEAR
	PDNT.NOTIFY
	PDNT.WRITE
	PENDANT
	PROCEED
	.PROGRAM
	PROMPT
	REACT
	REACTE
	REACTI
	READ
	READY
	RELEASE
	RESET
	RETRY
	RETURN
	RETURNE
	RIGHTY
	RUNSIG
	SELECT
	SET.EVENT
	SET
	SETBELT
	SETDEVICE
	SIGNAL
	SINGLE
	SOLVE.ANGLES
	SOLVE.TRANS
	SPEED
	STOP
	SWITCH
	TIME
	TIMER
	TOOL
	TYPE
	UNTIL
	VALUE
	VPARAMETER
	VRUN
	VWAITI
	WAIT
	WAIT.EVENT
	WHILE
	WINDOW
	WRITE

	 3.5 System Parameter Keywords
	BELT.MODE
	JOG.TIME
	NOT.CALIBRATED
	VTIMEOUT

	 3.6 System Switch Keywords
	AUTO.POWER.OFF
	CP
	DECEL.100
	DELAY.IN.TOL
	DRY.RUN
	MESSAGES
	OBSTACLE
	POWER
	ROBOT
	SCALE.ACCEL
	SCALE.ACCEL.ROT
	UPPER

