
I���-E-01

��� Language�

��������������

Copyright Notice
The information contained herein is the property of Omron Adept Technologies, Inc., and shall not be
reproduced in whole or in part without prior written approval of Omron Adept Technologies, Inc. The
information herein is subject to change without notice and should not be construed as a commitment by
Omron Adept Technologies, Inc. The documentation is periodically reviewed and revised.

Omron Adept Technologies, Inc., assumes no responsibility for any errors or omissions in the
documentation. Critical evaluation of the documentation by the user is welcomed. Your comments assist
us in preparation of future documentation. Please submit your comments to: techpubs@adept.com.

Copyright 1994 - 2016 by Omron Adept Technologies, Inc. All rights reserved.

Created in the United States of America

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 3

mailto:techpubs@adept.com

Table Of Contents

Introduction 15
Compatibility 16
Related Publications 16
Dangers, Warnings, Cautions, and Notes in Manual 17
Conventions 18

Keyword Overview 21
New or Enhanced Keywords 22
eV+ Language Quick Reference 23

Keyword Descriptions 41
Descriptions of eV+ Keywords 42
Documentation Conventions for Keywords 42
ABORT program instruction 45
ABOVE program instruction 47
ABS real-valued function 48
ACCEL program instruction 49
ACCEL real-valued function 52
ACOS real-valued function 54
ALIGN program instruction 55
ALIGN transformation function 56
ALWAYS keyword 58
AND operator 59
ANY program instruction 60
APPRO program instruction 61
ASC real-valued function 63
ASIN real-valued function 65
ATAN2 real-valued function 66
ATTACH program instruction 67
AUTO program instruction 73
AUTO.POWER.OFF system switch 76
BAND operator 78
BASE program instruction 80
BASE transformation function 82

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 5

BCD real-valued function 83
BELOW program instruction 84
BELT real-valued function 85
BELT system switch 87
BELT.MODE system parameter 89
BITS program instruction 91
BITS real-valued function 93
BMASK real-valued function 95
BOR operator 96
BRAKE program instruction 98
BREAK program instruction 99
BSTATUS real-valued function 100
BXOR operator 102
BY keyword 104
CALIBRATE program instruction 105
CALL program instruction 109
CALLP program instruction 112
CALLS program instruction 114
CAS real-valued function 116
CASE program instruction 118
$CHR string function 121
CLEAR.EVENT program instruction 122
CLEAR.LATCHES program instruction 123
CLOSE and CLOSEI program instruction 125
COARSE program instruction 127
COM operator 129
CONFIG real-valued function 130
COS real-valued function 136
CP system switch 137
CPOFF program instruction 138
CPON program instruction 140
CYCLE.END program instruction 142
DBLB real-valued function 144
$DBLB string function 146
DCB real-valued function 147
DECEL.100 system switch 148

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 6

$DECODE string function 149
DECOMPOSE program instruction 152
$DEFAULT string function 154
DEFBELT program instruction 156
DEFINED real-valued function 159
DELAY program instruction 161
DELAY.IN.TOL system switch 163
DELAY.POWER.OFF system switch 164
DEPART and DEPARTS program instruction 165
DEST transformation function 167
DETACH program instruction 169
DEVICE program instruction 171
DEVICE real-valued function 173
DEVICES program instruction 175
DISABLE program instruction 177
DISTANCE real-valued function 179
DN.RESTART program instruction 180
DO program instruction 181
DOS program instruction 183
DRIVE program instruction 185
DRY.RUN system switch 187
DURATION program instruction 189
DURATION real-valued function 192
DX, DY, DZ real-valued function 194
ELSE program instruction 196
ENABLE program instruction 197
$ENCODE string function 199
END program instruction 202
.END keyword 203
ERROR real-valued function 204
$ERROR string function 208
ESTOP program instruction 209
EXECUTE program instruction 210
EXIT program instruction 214
FALSE real-valued function 216
FCLOSE program instruction 217

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 7

FCMND program instruction 219
FCOPY program instruction 229
FDELETE program instruction 231
FEMPTY program instruction 233
FINE program instruction 235
FLIP program instruction 237
FLTB real-valued function 241
$FLTB string function 243
FOPEN program instruction 244
FOPEN_ program instruction 247
FOR program instruction 251
FORCE._ program instruction 253
FRACT real-valued function 256
FRAME transformation function 257
FREE real-valued function 259
FSEEK program instruction 261
FSET program instruction 263
GETC real-valued function 266
GET.EVENT real-valued function 268
GLOBAL program instruction 269
GOTO program instruction 271
HALT program instruction 273
HAND real-valued function 274
HAND.TIME system parameter 275
HERE program instruction 277
HERE transformation function 279
ID real-valued function 280
$ID string function 287
IDENTICAL real-valued function 288
IF logical_expr THEN program instruction 289
IF logical_expr GOTO program instruction 291
IGNORE program instruction 293
INRANGE real-valued function 294
INSTALL program instruction 297
INT real-valued function 298
INTB real-valued function 299

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 8

$INTB string function 301
INVERSE transformation function 302
IOSTAT real-valued function 304
IPS keyword 307
JHERE program instruction 308
JMOVE program instruction 309
JOG program instruction 310
KEYMODE program instruction 314
KILL program instruction 316
LAST real-valued function 317
LATCH transformation function 319
LATCHED real-valued function 321
LEFTY program instruction 323
LEN real-valued function 325
LNGB real-valued function 326
$LNGB string function 328
LOCAL program instruction 330
LOCK program instruction 332
MAX real-valued function 334
MC program instruction 335
MCS program instruction 337
MESSAGES system switch 339
$MID string function 340
MIN real-valued function 341
MMPS keyword 342
MOD operator 343
MOVE and MOVES program instruction 344
MOVEC program instruction 346
MULTIPLE program instruction 354
NETWORK real-valued function 356
NEXT program instruction 358
NOFLIP program instruction 360
NONULL program instruction 361
NOOVERLAP program instruction 363
NORMAL transformation function 365
NOT operator 366

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 9

NOT.CALIBRATED system parameter 367
NULL program instruction 369
NULL transformation function 371
OFF real-valued function 372
ON real-valued function 373
OPEN program instruction 374
OR operator 376
OUTSIDE real-valued function 378
OVERLAP program instruction 379
PACK program instruction 381
PANIC program instruction 383
PARAMETER program instruction 384
PARAMETER real-valued function 386
PAUSE program instruction 388
#PDEST precision-point function 389
PDNT.CLEAR program instruction 390
PDNT.NOTIFY program instruction 391
PDNT.WRITE program instruction 393
PENDANT real-valued function 396
#PHERE precision-point function 399
PI real-valued function 400
PING monitor command 401
#PLATCH precision-point function 402
POS real-valued function 403
POWER system switch 404
#PPOINT precision- point function 406
PRIORITY real-valued function 408
PROCEED program instruction 408
.PROGRAM program instruction 411
PROMPT program instruction 414
RANDOM real-valued function 416
REACT program instruction 417
REACTE program instruction 420
REACTI program instruction 422
READ program instruction 424
READY program instruction 428

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 10

RELAX and RELAXI program instruction 430
RELEASE program instruction 432
RESET program instruction 433
RETRY program instruction 433
RETRY monitor command 434
RETURN program instruction 436
RETURNE program instruction 437
RIGHTY program instruction 438
ROBOT system switch 439
ROBOT.OPR program instruction 441
ROBOT.OPR real-valued function 447
RUNSIG program instruction 449
RX, RY, RZ transformation functions 451
SCALE transformation function 452
SCALE.ACCEL system switch 453
SCALE.ACCEL.ROT system switch 455
SELECT program instruction 456
SELECT real-valued function 459
SET program instruction 461
SET.EVENT program instruction 463
#SET.POINT precision point function 464
SETBELT program instruction 465
SETDEVICE program instruction 467
SHIFT transformation function 469
SIG real-valued function 470
SIG.INS real-valued function 472
SIGN real-valued function 474
SIGNAL program instruction 475
SIN real-valued function 477
SINGLE program instruction 478
SOLVE.ANGLES program instruction 480
SOLVE.FLAGS real-valued function 487
SOLVE.TRANS program instruction 489
SPEED program instruction 491
SPEED real-valued function 494
SQR real-valued function 496

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 11

SQRT real-valued function 497
STATE real-valued function 498
STATUS real-valued function 507
STOP program instruction 509
STRDIF real-valued function 511
SWITCH program instruction 513
SWITCH real-valued function 515
$SYMBOL string function 517
SYMBOL.PTR real-valued function 518
$SYS.INFO string function 519
TAS real-valued function 521
TASK real-valued function 524
TIME program instruction 527
TIME real-valued function 529
$TIME string function 532
$TIME4 string function 534
TIMER program instruction 536
TIMER real-valued function 537
TOOL program instruction 540
TOOL transformation function 541
TPS real-valued function 542
TRANS transformation function 543
$TRANSB string function 545
TRANSB transformation function 546
TRUE real-valued function 548
$TRUNCATE string function 549
TYPE program instruction 550
$UNPACK string function 553
UNTIL program instruction 555
UPPER system switch 556
VAL real-valued function 558
VALUE program instruction 559
WAIT program instruction 560
WAIT.EVENT program instruction 562
WHILE program instruction 565
WINDOW program instruction 567

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 12

WINDOW real-valued function 569
WRITE program instruction 573
XOR operator 576

ID Option Words 578
Introduction to ID Option Words 579
Robot Option Words 579
System Option Words 581
Processor Option Word 583

System Messages 584
Introduction to System Messages 585
System Messages - Alphabetical List 585
System Messages - Numerical List 662

Index 682

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 13

Introduction
The following topics are described in this chapter:

Compatibility 16
Related Publications 16
Dangers, Warnings, Cautions, and Notes in Manual 17
Conventions 18

Introduction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 15

Compatibility
This guide is for use with eV+ systems version v2.x and later. This guide provides reference
material and descriptions of keywords for the eV+ programming language. For information on
the eV+ operating system and descriptions of the monitor commands, see the eV+
Operating System User's Guide and the eV+ Operating System Reference Guide.

See the eV+ Release Notes for a summary of changes for each version.

Related Publications
This reference guide is a companion to the eV+ Language User's Guide, which covers the
principles of the eV+ programming language and robot-control system.

In addition to being a complete programming language, eV+ is also a complete operating
system that controls equipment connected to controllers. The eV+ Operating System User's
Guide and eV+ Operating System Reference Guide detail the eV+ operating system. You
must be familiar with the operating system in order to effectively use the eV+ programming
language.

The most current releases of some related publications may be for an earlier version of the
eV+ system. You need to use them in conjunction with the release notes published since
those books were published.

You may also need to refer to one or more of the manuals listed in the following table.

Manual Material Covered

eV+ Release Notes Late-breaking changes not in manuals; summary of
changes.

ACE User's Guide Describes the ACE user interface, which is used for
configuration, control, and programming of the
Omron Adept robot system.

ACE Sight User's Guide Describes the interface, use, and programming of the
optional ACE Sight vision system.

ACE Sight Reference Guide Describes the ACE Sight vision commands used for
custom vision programming.

AdeptForce VME User's
Guide

Installation, operation, and programming of the
AdeptForce VME product.

SmartController User's Instructions for setting up, configuring, and

Compatibility

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 16

Manual Material Covered

Guide maintaining the controller on which eV+ runs.

Robot or motion device
user's guides (if connected
to your system)

Instructions for installing andmaintaining the motion
device connected to your system.

Dangers, Warnings, Cautions, and Notes in Manual
There are six levels of special notation used in Omron Adept manuals. In descending order of
importance, they are:

DANGER: This indicates an imminently hazardous electrical situation
which, if not avoided, will result in death or serious injury.

DANGER: This indicates an imminently hazardous situation which, if
not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous electrical situation
which, if not avoided, could result in serious injury or major damage to
the equipment.

WARNING: This indicates a potentially hazardous situation which, if
not avoided, could result in serious injury or major damage to the
equipment.

CAUTION: This indicates a situation which, if not avoided, could result
in minor injury or damage to the equipment.

Dangers, Warnings, Cautions, and Notes in Manual

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 17

NOTE: Notes provide supplementary information, emphasize a point or procedure, or give
a tip for easier operation.

Conventions

Typographic Conventions

The following typographic conventions are used throughout this manual:

This Represents

ALL CAPITALS eV+file names, directory names, commands,
keywords, and attributes; also acronyms.

A physical key or button that you must press,
such as the Y, N, and ENTER keys.

monospace Monitor displays and code examples.

bold

bold/regular

Bold type is used for subroutine names, variable
names, and program names, such as
a.diskcopy. Bold type also is used for window
items that you choose andwindow items that do
not have initial capital letters in all principal
words.

In a typing or entering instructions, anything
that you must type exactly as it appears. For
example, if you are asked to type execute 1
a.diskcopy, you type all the bold characters
exactly as they are printed. What you type is
shown in lowercase letters unless it must be
typed in uppercase letters to work properly. You
may always substitute a currently valid shortcut
form when typing a eV+ command. In order for
the eV+ system to process your typing, you
must conclude your entry by pressing the ENTER
or RETURN key.

In Syntax, place holders, in formal syntax
definitions, for information that you provide. You
must replace such a place holder written in bold
weight but need not replace an optional one,
which is written in regularweight.

italics Indicates new terms and other emphasized

Conventions

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 18

words.

Initial Capitals The name of an object such as a window, screen,
menu, dialog box, or dialog box component.
Examples are the Display menu and the Task
Profiler window.

"Quotation marks" Menu items, prompts, or any literal text that is
being referenced.

Keyboard Conventions
Key combinations appear in the following format:

Notation Meaning

KEY1+KEY2 A plus sign (+) between keys means that you
must press and hold down KEY1, then press
KEY2. For example, "Press CTRL+Z" means that
you press CTRL and hold it down while you press
Z.

Selecting, Choosing, and Pressing Items

In a context using windows, the terms select, choose, and press have different and specific
meanings. Selecting an item usually meansmarking or highlighting it, as in picking a radio
button. Selecting alone does not initiate an action.

Choosing an item carries out an action. For example, choosing amenu item may open a
window or carry out a command. You can also initiate an action by choosing a command
button (a push button or a standard button). You often must select an item before you can
choose it.

Often you can use a combination of keyboard andmouse techniques for selecting and
choosing.

Pressing refers to physical buttons or keys. For example, you press the save key or press the
ENTER key. By contrast, you select or choose a window button.

Values, Variables, and Expressions

The parameters to eV+ keywords can generally be satisfied with a specific value of the
correct data type, a variable of the correct data type, or an expression that resolves to the
correct type. Unless specifically stated, parameters can be replacedwith a value, variable, or
expression (of the correct type). The most common case where a parameter cannot be

Conventions

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 19

satisfied with all three options occurs when data is being returned in one of the parameters.
In this case, a variable must be used; the parameter description states this restriction.

Integers and Real Values

In eV+ integers and real values are not different data types. Real values satisfy parameters
requiring integers by rounding the real value. Where real values are required, an integer is
considered a special case of a real value with no fractional part.

Special Notation

Numbers shown in other than decimal format are precededwith a carat (^) and the letter H
for hexadecimal or B for binary, andwith just a carat for Octal. For example, ^HF = ^B1111
= ^17 = 15.

Conventions

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 20

Keyword Overview
The following topics are described in this chapter:

New or Enhanced Keywords 22
eV+ Language Quick Reference 23

Keyword Overview

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 21

New or Enhanced Keywords
For information on new or enhanced keywords listed by eV+ software release, select a link
below:

eV+ v2.x.x Release Notes

New or Enhanced Keywords

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 22

eV+ Language Quick Reference
This Quick Reference table is arranged alphabetically by command name, click an underlined letter to jump
to the first command that begins with that letter.

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Type Description

K Keyword

O Operator

PI Program instruction

RF Real-valued function

SW System switch

SP System parameter

TF Transformation function

ST String function

PP Precision point

Keyword Type Description

ABORT PI Terminate execution of an executing program task.

ABOVE PI Request a change in the robot configuration during the next motion
so that the elbow is above the line from the shoulder to the wrist.

ABS RF Return absolute value.

ACCEL PI Set acceleration and deceleration for robot motions. Optionally,
specify a defined acceleration profile.

ACCEL RF Return the current setting for robot acceleration or deceleration
setting or return the maximum allowable percentage limits defined
in the robot configuration profile.

ACOS RF Return the size of the angle (in degrees) that has its trigonometric
cosine equal to value.

ALIGN PI Align the robot tool Z axis with the nearest world axis.

ALTER PI Specify the magnitude of the real-time path modification that is to be

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 23

Keyword Type Description

applied to the robot path during the next trajectory
computation.This option is available only if your system is equipped
with the eV+ Extensions option.

ALTOFF PI Terminate real-time path-modification mode (alter mode).

ALTON PI Enable real-time path-modification mode (alter mode), and specify
the way in which ALTER coordinate information will be interpreted.

ALWAYS K Usedwith certain program instructions to specify a long-term effect.

AMOVE PI Position an extra robot axis during the next joint-interpolated or
straight-line motion to a transformation location.

AND O Perform the logical AND operation on two values.

ANY PI Signal the beginning of an alternative group of instructions for the
CASE structure.

APPRO

APPROS

PI Start a robot motion toward a location defined relative to specified
location.

ASC RF Return an ASCII character value from within a string.

ASIN RF Return the size of the angle (in degrees) that has its trigonometric
sine equal to value.

ATAN2 RF Return the size of the angle (in degrees) that has its trigonometric
tangent equal to value_1/value_2.

ATTACH PI Make a device available for use by the application program.

AUTO PI Declare temporary variables that are automatically created on the
program stack when the program is entered.

AUTO.POWER.OFF SW Control whether or not eV+ disables high power when certain
motion errors occur.

BAND O Perform the binary AND operation on two values.

BASE PI

BASE TF Return the transformation value that represents the translation and
rotation set by the last BASE command or instruction.

BCD RF Convert a real value to Binary Coded Decimal (BCD) format.

BELOW PI Request a change in the robot configuration during the next motion
so that the elbow is below the line from the shoulder to the wrist.

BELT SW Control the function of the conveyor tracking features of the eV+
system.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 24

Keyword Type Description

BELT RF Return information about a conveyor belt being trackedwith the
conveyor tracking feature.

BELT.MODE SP Set characteristics of the conveyor tracking feature of the eV+
system.

BITS PI Set or clear a group of digital signals based on a value.

BITS RF Readmultiple digital signals and return the value corresponding to
the binary bit pattern present on the signals.

BMASK RF Create a bit mask by setting individual bits.

BOR O Perform the binary OR operation on two values.

BRAKE PI Abort the current robot motion.

BREAK PI Suspend program execution until the current motion completes.

BSTATUS RF Return information about the status of the conveyor tracking
system.

BXOR O Perform the binary exclusive-OR operation on two values.

BY K Complete the syntax of the SCALE and SHIFT functions.

CALIBRATE PI Initialize the robot positioning system with the robot's current
position.

CALL PI Suspend execution of the current program and continue execution
with a new program (that is, a subroutine).

CALLP PI Call a program given a pointer to the program in memory.

CALLS PI Suspend execution of the current program and continue execution
with a new program (that is, a subroutine) specified with a string
value.

CAS RF Compare a real variable to a test value, and conditionally sets a new
value as one indivisible operation.

CASE PI Initiate processing of a CASE structure by defining the value of
interest.

$CHR ST Return a one-character string corresponding to a given ASCII value.

CLEAR.EVENT PI Clear an event associated with the specified task.

CLOSE

CLOSEI

PI Close the robot gripper.

COARSE PI Enable a low-precision feature of the robot hardware servo.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 25

Keyword Type Description

COM O Perform the binary complement operation on a value.

CONFIG RF Return a value that provides information about the robot's geometric
configuration, or the status of the motion servo-control features.

COS RF Return the trigonometric cosine of a given angle.

CP SW Control the continuous-path feature.

CPOFF PI Instruct the eV+ system to stop the robot at the completion of the
next motion instruction (or all subsequent motion instructions) and
null position errors.

CPON PI Instruct the eV+ system to execute the next motion instruction (or
all subsequent motion instructions) as part of a continuous path.

CYCLE.END PI Terminate the executing program in the specified task the next time
it executes a STOP program instruction (or its equivalent).

Suspend processing of an executable program until a program
running in the specified task completes execution.

DBLB RF Return the value of eight bytes of a string interpreted as an IEEE
double-precision floating-point number.

$DBLB ST Return an 8-byte string containing the binary representation of a
real value in double-precision IEEE floating-point format.

DCB RF Convert BCD digits into an equivalent integer value.

$DECODE ST Extract part of a string as delimited by given break characters.

DECOMPOSE PI Extract the (real) values of individual components of a location value.

$DEFAULT ST Return a string containing the current system default device, unit,
and directory path for disk file access.

DEFBELT PI Define a belt variable for use with a conveyor tracking robot.

DEF.DIO PI Assign virtual digital I/O to standard eV+ signal numbers for use by
standard eV+ instructions, functions, andmonitor commands.

DEFINED RF Determine whether a variable has been defined.

DELAY PI Cause robot motion to stop for the specified time.

DELAY.IN.TOL SW Controls the timing of COARSE or FINE nulling after eV+ completes a
motion segment.

DELAY.POWER.OFF SW Enable/disable the ESTOP timer delay feature for servo errors.

DEPART PI Start a robot motion away from the current location.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 26

Keyword Type Description

DEPARTS

DEST TF Return a transformation value representing the planned destination
location for the current robot motion.

DETACH PI Release a specified device from the control of the application
program.

DEVICE PI Send a command or data to an external device and, optionally,
return data back to the program. (The actual operation performed
depends on the device referenced.)

DEVICE RF Return a real value from a specified device. The value may be data or
status information, depending upon the device and the parameters.

DEVICES PI Send commands or data to an external device and optionally return
data. The actual operation performed depends on the device
referenced.

DISABLE PI Turn off one or more system control switches.

DISTANCE RF Determine the distance between the points defined by two location
values.

DN.RESTART PI Restarts DeviceNet communication if the CanBus goes offline.

DO PI Introduce a DO program structure.

DOS PI Execute a program instruction defined by a string expression.

DRIVE PI Move an individual joint of the robot.

DRY.RUN SW Control whether or not eV+ communicates with the robot.

DURATION PI Set the minimum execution time for subsequent robot motions.

DURATION RF Return the current setting of one of the motion DURATION
specifications.

DX

DY

DZ

RF Return a displacement component of a given transformation value.

ELSE PI Separate the alternate group of statements in an IF ... THEN control
structure.

ENABLE PI Turn on one or more system control switches.

$ENCODE ST Return a string created from output specifications. The string
produced is similar to the output of a TYPE instruction.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 27

Keyword Type Description

END PI Mark the end of a control structure.

.END PI Mark the end of a eV+ program.

ERROR RF Return the error number of a recent error that caused program
execution to stop or caused a REACTE reaction.

ESTOP PI Assert the emergency-stop signal to stop the robot.

EXECUTE PI Begin execution of a control program.

EXIT PI Branch to the statement following the nth nested loop of a control
structure.

FALSE RF Return the value used by eV+ to represent a logical false result.

FCLOSE PI Close the disk file, graphics window, or graphics icon currently open
on the specified logical unit.

FCMND PI Generate a device-specific command to the input/output device
specified by the logical unit.

FCOPY PI Copy the information in an existing disk file to a new disk file.

FDELETE PI Delete the specified disk file, the specified graphics window and all its
child windows, or the specified graphics icon.

FEMPTY PI Empty any internal buffers in use for a disk file or a graphics window
by writing the buffers to the file or window if necessary.

FINE PI Enable a high-precision feature of the robot hardware servo.

FLIP PI Request a change in the robot configuration during the next motion
so that the pitch angle of the robot wrist has a negative value.

FLTB RF Return the value of four bytes of a string interpreted as an IEEE
single-precision floating-point number.

$FLTB ST Return a 4-byte string containing the binary representation of a real
value in single-precision IEEE floating-point format.

FOPEN PI Create and open a new graphics window or TCP connection, or open
an existing graphics window for subsequent input or output.

FOPENA
FOPEND
FOPENR
FOPENW

PI Open a disk file for read-only, read-write, read-write-append, or read-
directory, as indicated by the last letter of the instruction name.

FOR PI Execute a group of program instructions a certain number of times.

FORCE.FRAME PI AdeptForce option status and control instructions.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 28

Keyword Type Description

FRACT RF Return the fractional part of the argument.

FRAME TF Return a transformation value defined by four positions.

FREE RF Return the amount of unused free memory storage space.

FSEEK PI Position a file open for random access and initiate a read operation on
the specified record.

FSET PI Set or modify attributes of a graphics window, serial line, or network
device.

GARC PI Draw an arc or a circle in a graphics window.

GCHAIN PI Draw a chain of points in a graphics window to form a complex figure.

GCLEAR PI Clear an entire graphics window to the background color.

GCLIP PI Set the clipping rectangle for all graphics instructions (except
GFLOOD), to suppress all subsequent graphics that fall outside the
rectangle.

GCOLOR PI Set the foreground and background colors for subsequent graphics
output.

GCOPY PI Copy one region of a window to another region in the same window.

GETC RF Return the next character (byte) from a device or input record on the
specified logical unit.

GET.EVENT RF Return events that are set for the specified task.

GETEVENT PI Return information describing input from a graphics window or input
from the terminal.

GFLOOD PI Flood a region in a graphics window with color.

GGETLINE PI Return pixel information from a single pixel row in a graphics
window.

GICON PI Draw a predefined graphic symbol (icon) in a graphics window.

GLINE PI Draw a single line segment in a graphics window.

GLINES PI Draw multiple line segments in a graphics window.

GLOBAL PI Declare a variable to be global and specify the type of the variable.

GLOGICAL PI Set the logical operation to be performed between new graphics
output and graphics data already displayed, and select which bit
planes are affected by graphics instructions.

GOTO PI Perform an unconditional branch to the program step identified by

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 29

Keyword Type Description

the given label.

GPANEL PI Draw a rectangular panel with shadowed or grooved edges.

GPOINT PI Draw a single point in a graphics window.

GRECTANGLE PI Draw a rectangle in a graphics window.

GSCAN PI Draw a number of horizontal lines in a graphics window to form a
complex figure.

GSLIDE PI Draw a slide bar in preparation for receiving slide events.

GTEXTURE PI Set the opaque/transparent mode and the texture pattern for
subsequent graphics output.

GTRANS PI Scale, rotate, offset, and apply perspective correction to all
subsequent graphics instructions.

GTYPE PI Display a text string in a graphics window.

HALT PI Stop program execution and do not allow the program to be
resumed.

HAND RF Return the current hand opening.

HERE PI Set the value of a transformation or precision-point variable equal to
the current robot location.

HERE TF Return a transformation value that represents the current location
of the robot tool point.

HOUR.METER RF Return the current value of the robot hour meter.

ID RF Return values that identify the configuration of the current system.

$ID ST Return the system ID string.

IDENTICAL RF Determine whether two location values are exactly the same.

IF... GOTO PI Branch to the specified step label if the value of the logical expression
is TRUE (nonzero).

IF ... THEN PI Conditionally execute a group of instructions (or one of two groups)
depending on the result of a logical expression.

IGNORE PI Cancel the effect of a REACT or REACTI instruction.

INRANGE RF Return a value that indicates whether a location can be reached by
the robot and, if not, why not.

INSTALL PI Install or remove software options available to Omron Adept
systems.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 30

Keyword Type Description

INT RF Return the integer part of the value.

INTB RF Return the value of two bytes of a string interpreted as a signed 16-
bit binary integer.

$INTB ST Return a 2-byte string containing the binary representation of a 16-
bit integer.

INVERSE TF Return the transformation value that is the mathematical inverse of
the given transformation value.

IOSTAT RF Return status information for the last input/output operation for a
device associated with a logical unit.

IPS K Specify the units for a SPEED instruction as inches per second.

JHERE PI Records the current robot joint positions in real or double-precision
variables. This instruction supports MicroeV+.

JMOVE PI Moves all robot joints to positions described by a list of joint values.
The robot performs a coordinatedmotion in joint-interpolatedmode.
This instruction supports MicroeV+.

JOG PI Moves ("jogs") the specified axis or joint of the robot. Each time JOG
executes, the specified axis or joint moves for 200 ms.

KEYMODE PI Set the behavior of a group of keys on the pendant.

KILL PI Clear a program execution stack and detach any I/O devices that are
attached.

LAST RF Return the highest index used for an array (dimension).

LATCH TF Return a transformation value representing the location of the robot
at the occurrence of the last external trigger or AdeptForce guarded-
mode trigger.

LATCHED RF Return the status of the external trigger and/or an AdeptForce
guarded-mode trigger.

LEFTY PI Request a change in the robot configuration during the next motion
so that the first two links of a SCARA robot resemble a human's left
arm.

LEN RF Return the number of characters in the given string.

LNGB RF Return the value of four bytes of a string interpreted as a signed 32-
bit binary integer.

$LNGBLOCK ST Set the program reaction lock-out priority to the value given.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 31

Keyword Type Description

MAX RF Return the maximum value contained in the list of values.

MC PI Introduce amonitor commandwithin a command program.

MCS PI Invoke amonitor command from an application program.

MESSAGES SW Enable or disable output to the system terminal from TYPE
instructions.

$MID ST Return a substring of the specified string.

MIN RF Return the minimum value contained in the list of values.

MMPS K Specify the units for a SPEED instruction as millimeters per second.

MOD O Compute the modulus of two values.

MOVE

MOVES

PI Initiate a robot motion to the position and orientation described by
the given location.

MOVEC PI Initiate a circular/arc-path robot motion using the positions and
orientations described by the given locations.

MOVEF

MOVESF

PI Initiate a three-segment pick-and-place robot motion to the specified
destination, moving the robot at the fastest allowable speed.

MOVET

MOVEST

PI Initiate a robot motion to the position and orientation described by
the given location and simultaneously operate the hand.

MULTIPLE PI Allow full rotations of the robot wrist joints.

NETWORK RF Return network status and IP address information

NEXT PI Branch to the END statement of the nth nested loop, perform the
loop test, and loop if appropriate.

NOFLIP PI Request a change in the robot configuration during the next motion
so that the pitch angle of the robot wrist has a positive value.

NONULL PI Instruct the eV+ system not to wait for position errors to be nulled at
the end of continuous-path motions.

NOOVERLAP PI Generate a program error if a motion is planned that causes selected
multiturn axes to turn more than around) in order to avoid a limit
stop.

NORMAL TF Correct a transformation for any mathematical round-off errors.

NOT PI Perform logical negation of a value.

NOT.CALIBRATED SP Indicate (or assert) the calibration status of the robots connected to

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 32

Keyword Type Description

the system.

NULL PI Instruct the eV+ system to wait for position errors to be nulled at the
end of continuous path motions.

NULL TF Return a null transformation value-one with all zero components.

OFF RF Return the value used by eV+ to represent a logical false result.

ON RF Return the value used by eV+ to represent a logical true result.

OPEN

OPENI

PI Open the robot gripper.

OR PI Perform the logicalOR operation on two values.

OUTSIDE RF Test a value to see if it is outside a specified range.

OVERLAP PI Disable the NOOVERLAP limit-error checking either for the next
motion or for all subsequent motions.

PACK PI Replace a substring within an array of (128-character) string
variables, or within a (nonarray) string variable.

PANIC PI Simulate an external E-stop or panic button press; stop all robots
immediately, but do not turn off HIGH POWER.

PARAMETER PI Set the value of a system parameter.

PARAMETER RF Return the current setting of the named system parameter.

PAUSE PI Stop program execution but allow the program to be resumed.

#PDEST PP Return a precision-point value representing the planned destination
location for the current robot motion.

PDNT.CLEAR PI Clears the current notification or custom message window, if any,
and returns the T20 pendant back to the Home screen.

PDNT.NOTIFY PI Creates a pendant notification.

PDNT.WRITE PI Sets the pendant’s Custom Message screen.

PENDANT RF Return input from the pendant.

#PHERE PP Return a precision-point value representing the current location of
the currently selected robot.

PI RF Return the value of the mathematical constant pi (3.141593).

#PLATCH PP Return a precision-point value representing the location of the robot
at the occurrence of the last external trigger or AdeptForce guarded-
mode trigger.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 33

Keyword Type Description

POS RF Return the starting character position of a substring in a string.

POWER SP Control or monitor the status of high power.

#PPOINT PP Return a precision-point value composed from the given
components.

PRIORITY RF Return the current reaction lock-out priority for the program.

PRG.INFO PI [THIS IS NOT DOCUMENTED]

.PROGRAM PI Define the arguments that are passed to a program when it is
invoked.

PROGRAM PI [THIS IS NOT DOCUMENTED]

PROCEED PI Resume execution of an application program.

PROMPT PI Display a string on the system terminal andwait for operator input.

RANDOM RF Return a pseudorandom number.

REACT PI Initiate continuousmonitoring of a specified digital signal and
automatically trigger a subroutine call if the signal properly
transitions.

REACTE PI Initiate the monitoring of errors that occur during execution of the
current program task.

REACTI PI Initiate continuousmonitoring of a specified digital signal.
Automatically stop the current robot motion if the signal transitions
properly and optionally trigger a subroutine call.

READ PI Read a record from an open file or from an attached device that is not
file oriented. For a network device, read a string from an attached
and open TCP connection.

READY PI Move the robot to the READY location above the workspace, which
forces the robot into a standard configuration.

RELAX

RELAXI

PI Limp the pneumatic hand.

RELEASE PI Allow the next available program task to run.

RESET PI Turn off all the external output signals.

RETRY PI Repeat execution of the last interrupted program instruction and
continue execution of the program.

RETURN PI Terminate execution of the current subroutine, and resume
execution of the suspended program at its next step. A program may

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 34

Keyword Type Description

have been suspended by issuing a CALL, CALLP, or CALLS
instruction, or by the triggering of a REACT, REACTE, or REACTI
condition.

RETURNE PI Terminate execution of an error reaction subroutine and resume
execution of the last-suspended program at the step following the
instruction that caused the subroutine to be invoked.

RIGHTY PI Request a change in the robot configuration during the next motion
so that the first two links of the robot resemble a human's right arm.

ROBOT SW Enable or disable one robot or all robots.

ROBOT.OPR PI Execute operations that are specific to the currently selected robot or
robot module.

ROBOT.OPR RF Returns robot-specific data for the currently selected robot.

RUNSIG PI Turn on (or off) the specified digital signal as long as execution of the
invoking program task continues.

RX

RY

RZ

TF Return a transformation describing a rotation.

SCALE TF Return a transformation value equal to the transformation
parameter with the position scaled by the scale factor.

SCALE.ACCEL SW Enable or disable the scaling of acceleration and deceleration as a
function of program speed, as long as the program speed is below a
preset threshold.

SCALE.ACCEL.ROT SW Specify whether or not the SCALE.ACCEL switch takes into account
the Cartesian rotational speed during straight-line motions.

SELECT PI Select a unit of the named device for access by the current task.

SELECT RF Return the unit number that is currently selected by the current
task for the device named.

SET PI Set the value of the location variable on the left equal to the location
value on the right of the equal sign.

SET.EVENT PI Set an event associated with the specified task.

#SET.POINT PP Return the commanded joint-angle positions computed by the
trajectory generator during the last trajectory-evaluation cycle.

SETBELT PI Set the encoder offset of the specified belt variable equal to the value
of the expression.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 35

Keyword Type Description

SETDEVICE PI Initialize a device or set device parameters. (The actual operation
performed depends on the device referenced.)

SHIFT TF Return a transformation value resulting from shifting the position of
the transformation parameter by the given shift amounts.

SIG RF Returns the logical AND of the states of the indicated digital signals.

SIG.INS RF Return an indication of whether a digital I/O signal is installed in the
system, or whether a software signal is available in the system.

SIGN RF Return the value 1, with the sign of the value parameter.

SIGNAL PI Turn on or off external digital output signals or internal software
signals.

SIN RF Return the trigonometric sine of a given angle.

SINGLE PI Limit rotations of the robot wrist joint to the range -180 degrees to
+180 degrees.

SOLVE.ANGLES PI Compute the robot joint positions (for the current robot) that are
equivalent to a specified transformation.

SOLVE.FLAGS RF Return bit flags representing the robot configuration specified by an
array of joint positions.

SOLVE.TRANS PI Compute the transformation equivalent to a given set of joint
positions for the current robot.

SPEED PI Set the nominal speed for subsequent robot motions.

SPEED RF Return one of the system motion speed factors.

SPIN PI Rotate one or more joints of the selected robot at a specified speed.

SQR RF Return the square of the parameter.

SQRT RF Return the square root of the parameter.

STATE RF Return a value that provides information about the robot system
state.

STATUS RF Return status information for an application program.

STOP PI Terminate execution of the current program cycle.

STRDIF RF Compare two strings byte by byte for the purpose of sorting. This
function always compares bytes exactly. It ignores the setting of the
UPPER system switch.

SWITCH PI Enable or disable a system switch based on a value.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 36

Keyword Type Description

SWITCH RF Return an indication of the setting of a system switch.

$SYMBOL ST Determine the user symbol that is referenced by a pointer previously
obtainedwith the SYMBOL.PTR real-valued function.

SYMBOL.PTR RF Determine the value of a pointer to a user symbol in eV+ memory.

$SYS.INFO ST This string function is intended to provide general system
information. It also provides access to the ActiveVR log data.

SYS.INIT PI [THIS IS NOT DOCUMENTED]

TAS RF Return the current value of a real-valued variable and assign it a new
value. The two actions are done indivisibly so that no other program
task can modify the variable at the same time.

TASK RF Return information about a program execution task.

TIME PI Set the date and time.

TIME RF Return an integer value representing either the four-digit date or the
time specified in the given string parameter.

$TIME ST Return a string value containing either the current system date and
time or the specified date and time.

$TIME4 ST Return a string value containing either the current system four-digit
date and time or the specified four-digit date and time.

TIMER PI Set the specified system timer to the given time value.

TIMER RF Return the current time value of the specified system timer.

TOOL PI Set the internal transformation used to represent the location and
orientation of the tool tip relative to the tool mounting flange of the
robot.

TOOL TF Return the value of the transformation specified in the last TOOL
command or instruction.

TPS RF Return the number of ticks of the system clock that occur per second
(Ticks Per Second).

TRANS TF Return a transformation value computed from the given X, Y, Z
position displacements and y, p, r orientation rotations.

TRANSB TF Return a transformation value represented by a 48-byte string.

$TRANSB ST Return a 48-byte string containing the binary representation of a
transformation value.

$TRUNCATE ST Return all characters in the input string until an ASCII NULL (or the

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 37

Keyword Type Description

end of the string) is encountered.

TYPE PI Display the information described by the output specifications on the
system terminal. A blank line is output if no argument is provided.

$UNPACK ST Return a substring from an array of 128-character string variables.

UNTIL PI Indicate the end of a DO ... UNTIL control structure and specify the
expression that is evaluated to determine when to exit the loop. The
loop continues to be executed until the expression value is nonzero.

UPPER SW Control whether or not the case of each character is ignoredwhen
string comparisons are performed.

VAL RF Return the real value represented by the characters in the input
string.

VALUE PI Indicate the values that a CASE statement expression must match
in order for the program statements immediately following to be
executed.

VLOCATION TF Returns a Cartesian transform result of the execution of the specified
vision sequence. The returned value is a transform result: x, y, z,
yaw, pitch, roll. For details, see the ACE Sight Reference Guide.

VPARAMETER PI Sets the current value of a vision tool parameter. For details, see the
ACE Sight Reference Guide.

Can also be usedwith the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

VPARAMETER RF Gets the current value of a vision tool parameter. For details, see the
ACE Sight Reference Guide.

VRESULT RF Returns a specified result of a vision tool, or returns the status of a
specified tool. For details, see the ACE Sight Reference Guide.

VRUN PI Initiates the execution of a vision sequence. For details, see the ACE
Sight Reference Guide.

Can also be usedwith the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

VSTATE RF Returns the state of the execution of a sequence. For details, see the
ACE Sight Reference Guide.

Can also be usedwith the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

VTIMEOUT SP Sets a timeout value so that an error message is returned if no
response is received following a vision command. For details, see the
ACE Sight Reference Guide.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 38

Keyword Type Description

VWAITI PI Waits efficiently until the specified vision sequence reaches the state
specified by the type parameter. For details, see the ACE Sight
Reference Guide.

Can also be usedwith the AnyFeeder. For details, see the Adept
AnyFeeder User's Guide.

WAIT PI Put the program into a wait loop for one system cycle. If a condition
is specified, wait until the condition is TRUE.

WAIT.EVENT PI Suspend program execution until a specified event has occurred, or
until a specified amount of time has elapsed.

WHILE PI Initiate processing of a WHILE structure if the condition is TRUE or
skipping of the WHILE structure if the condition is initially FALSE.

WINDOW PI Set the boundaries of the operating region of the specified belt
variable for conveyor tracking.

WINDOW RF Return a value that indicates where the location described by the
belt-relative transformation value is relative to the predefined
boundaries of the working range on amoving conveyor belt.

WRITE PI Write a record to an open file, or to any I/O device. For a network
device, write a string to an attached and open TCP connection.

XOR O Perform the logical exclusive-OR operation on two values.

eV+ Language Quick Reference

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 39

Keyword Descriptions
The following topics are described in this chapter:

Descriptions of eV+ Keywords 42
Documentation Conventions for Keywords 42

Keyword Descriptions

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 41

Descriptions of eV+ Keywords
This chapter details the keywords in the eV+ programming language. The functional groups
of programming keywords are:

l Program Instructions

l Functions

l System Parameters

l System Switches

This manual often refers to monitor commands. Monitor commands are part of the eV+
operating system. The eV+ operating system commands are detailed in the eV+ Operating
System Reference Guide.

If your system is equippedwith AdeptVision, additional program instructions, functions,
switches, parameters, andmonitor commands are detailed in the AdeptVision Reference
Guide.

The keywords are presented in alphabetical order, with the description for each keyword
starting on a new page. For details on what is included, see Documentation Conventions for
Keywords.

Documentation Conventions for Keywords
The keyword type (function, program instruction, and so on) is shown at the top of the page.

Syntax

An abbreviated syntax is shown for some keywords. This is done when the abbreviated form
is the most commonly used variation of the complete syntax.

This section presents the syntax of the keyword. The keyword is shown in uppercase, and the
arguments are shown in lowercase. The keywordmust be entered exactly as shown1.
Parentheses must be placed exactly as shown. Required keywords, parameters, andmarks
such as equal signs and parentheses are shown in bold type; optional keywords, parameters,
andmarks are shown in regular type. In the example:

KEYWORD req.param1 = req.param2 OPT.KEYWORD opt.param

KEYWORD must be entered exactly as shown,1

req.param1 must be replacedwith a value, variable,
or expression,

Descriptions of eV+ Keywords

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 42

= the equal sign must be entered,

req.param2 must be replacedwith a value, variable,
or expression,

OPT.KEYWORD can be omitted but must be entered
exactly as shown if used,

opt.param may be replacedwith a value, variable,
or expression but assumes a default
value if not used.

Function

This section gives a brief description of the keyword.

Usage Considerations

This section lists any restrictions on the keyword's use. If specific hardware or other options
are required, they are listed here.

Parameters

The requirements for input and output parameters are explained in this section. If a
parameter is optional, it is noted here. When an instruction line is entered, optional
parameters do not have to be specified and the system will assume a default. Unspecified
parameters at the end of an argument list can be ignored. Unspecified parameters in the
middle of an argument list must be represented by commas. For example, the following
keyword has four parameters-the first and third are used, and the second and fourth are left
unspecified:

SAMPLE.INST var_1,,"test"

String and numeric input parameters can be constant values (3.32, part_1, etc.) or any
legitimate variable names. The data type of the constant or variable must agree with that
expected by the instruction. String variables must be precededwith a $. Precision-point
variables must be precededwith a #. Belt variables must be precededwith a%. String
constants must be enclosed in quotes. Real and integer constants can be usedwithout
modification. Note that some eV+ keywords cannot be used as variable names.

Details

This section describes the function of the keyword in detail.

Documentation Conventions for Keywords

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 43

Examples

Examples of correctly formed instruction lines are presented in this section.

Related Keywords

Additional keywords that are similar or are frequently used in conjunction with this
instruction are listed here.

Any related keywords that are monitor commands are described in the eV+ Operating
System Reference Guide.

1In the program editor, instructions can be abbreviated to a length that uniquely identifies
the keyword.

Documentation Conventions for Keywords

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 44

ABORT program instruction

Syntax

ABORT task_num

Function

Terminate execution of an executing program task.

Usage Considerations

ABORT is ignored if no program is executing as the specified task.

ABORT does not force DETACH or FCLOSE operations on the disk or serial communication
logical units. If the program has one or more files open and you decide not to resume
execution of the program, use a KILL command to close all the files and detach the logical
units.

Parameter

task_num Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be terminated. The
default task is 0.

Details

Terminates execution of the specified active executable program after completion of the step
currently being executed. If the task is controlling a robot, robot motion terminates at the
completion of the current motion. (Program execution can be resumedwith the PROCEED
command.)

Related Keywords

ABORTmonitor command

CYCLE.ENDmonitor command

CYCLE.END program instruction

ESTOPmonitor command

ESTOP program instruction

EXECUTE program instruction

KILL monitor command

KILL program instruction

ABORT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 45

PANICmonitor command

PANIC program instruction

PROCEEDmonitor command

STATUSmonitor command

STATUS real-valued function

ABORT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 46

ABOVE program instruction

Syntax

ABOVE

Function

Request a change in the robot configuration during the next motion so that the elbow is
above the line from the shoulder to the wrist.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support an ABOVE configuration, this instruction is ignored by
the robot (SCARA robots, for example, cannot have an ABOVE configuration).

The ABOVE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the ABOVE instruction
causes an error.

The following figure shows the ABOVE and BELOW configurations.

ABOVE/BELOW

Related Keywords

BELOW program instruction

CONFIG real-valued function

SELECT program instruction

SELECT real-valued function

ABOVE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 47

ABS real-valued function

Syntax

ABS (value)

Function

Return absolute value.

Parameter

value Real-valued expression.

Details

Returns the absolute value (magnitude) of the argument provided.

Examples

ABS(0.123) ;Returns 0.123
ABS(-5.462) ;Returns 5.462
ABS(1.3125E-2) ;Returns 0.013125
belt.length = part.size/ABS(belt.scale)

ABS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 48

ACCEL program instruction

Syntax

ACCEL (profile) acceleration, deceleration

Function

Set acceleration and deceleration for robot motions. Optionally, specify a defined acceleration
profile.

Usage Considerations

The ACCEL instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the ACCEL instruction
causes the error *Robot not attached to this program*.

Before an acceleration/deceleration profile can be used, it must be defined for the selected
robot (profile 0 is always defined). (The robot configuration is edited using the ACE software,
see the ACE User's Guide.)

Parameters

profile Optional integer specifying the acceleration profile to use. Acceptable
values are 0 to 8 (depending on the number of defined profiles). The
default is the last specified profile (see Details for the number of the
start-up profile). If a profile is specified that has not been defined,
profile 0 is used.

acceleration Optional real value, variable, or expression considered as a
percentage of the maximum possible acceleration.

deceleration Optional real value, variable, or expression considered as a
percentage of the maximum possible deceleration.

The value should normally be in the range of 1 to 100 (upper limits
greater than 100 may be established by the robot manufacturer). If
an out-of-range value is specified, the nearest extreme value will be
used.

If a parameter is omitted, its current setting remains in effect.

ACCEL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 49

Details

If profile 0 is used, a square wave acceleration profile is generated at the beginning and end of
the motion.

If a profile is specified, that profile is invoked for subsequent robot motions. Defined profiles
set the maximum rate of change of the acceleration and deceleration. The values set with
this instruction define the maximum acceleration and deceleration magnitudes that are
achieved.

When the eV+ system is initialized, the profile, acceleration, and deceleration values are set
to initial values, which can be defined by the ACE controller configuration tools. As delivered
by Omron Adept, the initially selected profile may be either 0 or 1 depending on the type of
robot. The settings are not affected when program execution starts or stops, or when a ZERO
command is processed.

Normally, the robot manufacturer sets the 100% acceleration and deceleration values to
rates that can be achievedwith typical payloads and robot link inertias. However, because the
actual attainable accelerations vary greatly as a function of the end-effector, payload, and the
initial and final locations of a motion, accelerations greater than 100%may be permitted for
your robot. The limits for the maximum values are defined by the robot manufacturer and
vary from one type of robot to the next. If you specify a higher acceleration than is permitted,
the limit established by the robot manufacturer is utilized.

You can use the functions ACCEL(3) and ACCEL(4) to determine the maximum allowable
acceleration and deceleration settings.

For a given motion, the maximum attainable acceleration may actually be less than what you
have requested. This occurs when a profile with a nonzero acceleration ramp time is used and
there is insufficient time to ramp up to the maximum acceleration. That is, for a given jerk, a
specific timemust elapse before the acceleration can be changed from zero to the specified
maximum value. If the maximum acceleration cannot be achieved, the trapezoidal profile is
reduced to a triangular shape. This occurs under two circumstances:

1. The motion is too short. In this case, the change in position is achieved before the
maximum acceleration can be achieved.

2. The maximum motion speed is too low. In this case, the maximum speed is achieved
before the maximum acceleration.

In both of these situations, raising the maximum acceleration and deceleration values does
not affect the time for the motion.

Hint: If you increase the maximum acceleration and deceleration values but the motion time
does not change, try the following: increase the program speed, switch to an acceleration
profile that allows faster acceleration ramp times, or switch to acceleration profile 0, which
specifies a square-wave acceleration profile.

ACCEL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 50

NOTE: This type of acceleration limiting cannot occur with acceleration profile 0 because
a square-wave acceleration instantaneously changes acceleration values without
ramping.

Examples

Set the default acceleration time to 50% of normal and the deceleration time to 30% of
normal:

ACCEL 50, 30

Change the deceleration time to 60% of normal; leave acceleration alone:

ACCEL ,60

Reduce the acceleration and deceleration to one half of their current settings:

ACCEL ACCEL(1)/2, ACCEL(2)/2

Invoke defined profile #2 and set the acceleration magnitude to 80% of the defined rate:

ACCEL (2) 80

Related Keywords

ACCEL real-valued function

DURATION program instruction

SCALE.ACCEL system switch

SELECT program instruction

SELECT real-valued function

SPEEDmonitor command

SPEED program instruction

ACCEL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 51

ACCEL real-valued function

Syntax

ACCEL (select)

Function

Return the current setting for robot acceleration or deceleration setting or return the
maximum allowable percentage limits defined in the robot configuration profile. (The robot
configuration is edited using the ACE software, see the ACE User's Guide.)

Usage Considerations

The ACCEL function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the ACCEL function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

Parameter

select Real-valued expression, the result of which is rounded to an integer to
select the value that is returned.

select Value returned

0 Number of selected acceleration profile

1 Acceleration

2 Deceleration

3 Maximum allowable percentage acceleration

4 Maximum allowable percentage deceleration

5 Program speed below which acceleration and deceleration are scaled
proportional to a program's speed setting when the SCALE.ACCEL
system switch is enabled

ACCEL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 52

Examples

ACCEL(1) ;Return the current acceleration setting.
ACCEL(2) ;Return the current deceleration setting.

Related Keywords

ACCEL program instruction

SCALE.ACCEL system switch

SELECT real-valued function

SELECT program instruction

ACCEL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 53

ACOS real-valued function

Syntax

ACOS (value)

Function

Return the size of the angle (in degrees) that has its trigonometric cosine equal to value.

Usage Considerations

The value parameter must be in the range of -1.0 to +1.0.

Any value outside this range will cause the error *Illegal value*.

Parameter

value Real-valued expression that defines the cosine value to be considered.

Details

Returns the inverse cosine (arccosine) of the argument, which is assumed to be in the range
of -1.0 to +1.0. The resulting value is always in the range of 0.0 to +180.0, inclusive.

Examples

ACOS(0) ;Returns 90
ACOS(-1) ;Returns 180
ACOS(0.1) ;Returns 84.2608295
ACOS(0.5) ;Returns 60

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LISTRmonitor commandwill display real values to full precision.

ACOS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 54

ALIGN program instruction

Syntax

ALIGN

Function

Align the robot tool Z-axis with the nearest world axis.

Usage Considerations

The ALIGN instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the system is not configured to control a robot, executing the ALIGN instruction causes an
error.

Details

Causes the tool to be rotated so that its Z-axis is aligned parallel to the nearest axis of the
World coordinate system. This instruction is primarily useful for lining up the tool before a
series of locations is taught. This is most easily done by using the monitor DO command.

Related Keywords

SELECT program instruction

SELECT real-valued function

ALIGN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 55

ALIGN transformation function

Syntax

ALIGN (location)

Function

Computes and returns the aligned version of the location parameter.

Parameter

location Transformation value to be used as a reference.

Details

Returns a modified version of the input location that is aligned parallel to the nearest axis of
the World coordinate system. This instruction is primarily useful for lining up the tool before a
series of locations is taught.

Related Keywords

SELECT program instruction

SELECT real-valued function

ALIGN transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 56

ALWAYS keyword

Syntax

...ALWAYS

Function

Usedwith certain program instructions to specify a long-term effect.

Details

ALWAYS can be specified with any of the instructions listed below as related keywords. When
ALWAYS is specified, the effect of the instruction continues until explicitly disabled.
Otherwise, the effect of the instruction applies only to the next robot motion.

Examples

Permanently set the robot motion speed:

SPEED 50 ALWAYS

Permanently set loose-tolerance servomode:

COARSE ALWAYS

Related Keywords

COARSE program instruction

CPOFF program instruction

CPON program instruction

DURATION program instruction

FINE program instruction

MULTIPLE program instruction

NONULL program instruction

NOOVERLAP program instruction

NULL program instruction

OVERLAP program instruction

SINGLE program instruction

SPEED program instruction

ALWAYS keyword

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 58

AND operator

Syntax

...value AND value...

Function

Perform the logical AND operation on two values.

Details

The AND operator operates on two values, resulting in their logical AND combination. For
example, during the AND operation

c = a AND b

the following four situations can occur:

a b c

FALSE FALSE -> FALSE

FALSE TRUE -> FALSE

TRUE FALSE -> FALSE

TRUE TRUE -> TRUE

The result is TRUE only if both of the two operand values are logically TRUE. To review the
order of evaluation for operators within expressions, see the section Order of Evaluation in
the eV+ Language User's Guide.

Example

;The instructions following the IF will be executed if
;both "ready" is TRUE (nonzero) and "count" equals 1.

IF ready AND (count == 1) THEN

Related Keywords

BAND operator

OR operator

XOR operator

AND operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 59

ANY program instruction

Syntax

ANY

Function

Signal the beginning of an alternative group of instructions for the CASE structure.

Usage Considerations

The ANY instruction must be within a CASE structure.

Details

See the description of the CASE structure.

Related Keywords

CASE program instruction

VALUE program instruction

ANY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 60

APPRO program instruction

Syntax

APPRO location, distance

APPROS location, distance

Function

Start a robot motion toward a location defined relative to specified location.

Usage Considerations

APPRO causes a joint-interpolatedmotion.

APPROS causes a straight-line motion, during which no changes in configuration are
permitted.

The APPRO and APPROS instructions can be executed by any program task as long as the
task has attached a robot. The instructions apply to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions will cause
an error.

Parameters

location Transformation value that defines the basis for the final location.

distance Real-valued expression that specifies the distance along the robot tool Z
axis between the specified location and the actual desired destination.

A positive distance sets the tool back (negative tool-Z) from the
specified location; a negative distance offsets the tool forward (positive
tool-Z).

Details

These instructions initiate a robot motion to the orientation described by the given location
value. The position of the destination location is offset from the given location by the
distance given, measured along the tool Z axis.

Examples

APPRO place,offset

APPRO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 61

Moves the tool, by joint-interpolatedmotion, to a location offset millimeters from that defined
by the transformation place. The offset is along the resultant Z axis of the tool.

APPROS place,-50

Moves the tool along a straight line to a location 50 millimeters from that defined by the
transformation place, with the offset along the resultant Z axis of the tool to a location
beyond the location place.

Related Keywords

DEPART program instruction

DEPARTS program instruction

MOVE program instruction

MOVES program instruction

MOVEF program instruction

MOVESF program instruction

APPRO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 62

ASC real-valued function

Syntax

ASC (string, index)

Function

Return an ASCII character value from within a string.

Parameters

string String expression from which the character is to be picked. If the string
is empty, the function returns the value -1.

index Optional real-valued expression defining the character position of
interest. The first character of the string is selected if the index is
omitted or has a value of 0 or 1.

If the value of the index is negative, or greater than the length of the
string, the function returns the value -1.

Details

The ASCII value of the selected character is returned as a real value.

Examples

;Returns the ASCII value of the letter "a".

ASC("sample", 2)

;Returns the ASCII value of the first character of the
;string contained in the variable $name.

ASC($name)

;Uses the value of the real variable "i" as an index to
;the character of interest in the string contained in the
;variable "$system".

ASC($system, i)

Related Keywords

$CHR string function

ASC real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 63

VAL real-valued function

ASC real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 64

ASIN real-valued function

Syntax

ASIN (value)

Function

Return the size of the angle (in degrees) that has its trigonometric sine equal to value.

Usage Considerations

The value parameter must be in the range of -1.0 to +1.0.

Any value outside this range will cause the error *Illegal value*.

Parameter

value Real-valued expression that defines the sine value to be considered.

Details

Returns the inverse sine (arcsine) of the argument, which is assumed to be in the range of -
1.0 to +1.0. The resulting value is always in the range of -90.0 to +90.0, inclusive.

Examples

ASIN(0) ;Returns 0
ASIN(-1) ;Returns -90
ASIN(0.1) ;Returns 5.73917047
ASIN(0.5) ;Returns 30

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LISTRmonitor commandwill display real values to full precision.

ASIN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 65

ATAN2 real-valued function

Syntax

ATAN2 (value_1, value_2)

Function

Return the size of the angle (in degrees) that has its trigonometric tangent equal to value_
1/value_2.

Usage Considerations

The returned value is zero if both parameter values are zero.

Parameters

value_1 Real-valued expression.

value_2 Real-valued expression.

Examples

ATAN2(0.123,0.251) ;Returns 26.1067
ATAN2(-5.462,47.2) ;Returns -6.600926
ATAN2(1.3125E+2,-1.3) ;Returns -90.56748
slope = ATAN2(rise, run)

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LISTRmonitor commandwill display real values to full precision.

ATAN2 real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 66

ATTACH program instruction

Syntax

ATTACH (lun, mode) $device

Function

Make a device available for use by the application program.

Usage Considerations

The robot is automatically attachedwhen the EXECUTE monitor command or program
instruction is processed for task 0 (except when the DRY.RUN system switch is enabled). All
the other logical units are automatically detachedwhen program execution begins.

If the system terminal or the pendant was attachedwhen a program stopped executing, it is
automatically reattached if execution of the program is resumedwith the PROCEED, RETRY,
SSTEP, or XSTEP commands.

Parameters

lun The logical unit number to associate with the attached device. The
interpretation of this parameter depends on the value of the mode
parameter, as follows:

If bit 3 of the mode parameter is 0, this parameter is optional
(defaulting to 0, to attach the robot); and it can be a real value,
variable, or expression (interpreted as an integer) in the range 0 to 24
that specifies the logical unit to be attached. See the Details section for
the default association of logical units with devices. If the logical unit
specified is not 0, you can use the $device parameter to override the
default device for the logical unit.

If bit 3 of the mode parameter is 1, this parameter is required andmust
be a real variable. In this case, the eV+ system attaches the device
specified by the $device parameter and automatically assigns a logical
unit number to this parameter. If all the logical units are in use, the
parameter is set to -1 . eV+ assigns a value to the lun parameter even if
the ATTACH request fails.

mode Optional real value, variable, or expression (interpreted as a bit field)
that defines how the ATTACH request is to be processed. The value
specified is interpreted as a sequence of bit flags as detailed below. All
the bits are assumed to be clear if no value is specified.

Bit 1 (mask value = 1) - (LSB) Queue (0) versus Fail (1)

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 67

This bit controls how the device driver responds to the attach request
from the control program task. (The device driver is an internal system
task that is separate from the control program task.) For most
applications, this bit should be set.

If this bit is clear, and the device is already attached by another control
program task, the driver queues this attach request and signals the
control program that the attach is not complete. The attachment will
complete when the device becomes available.

If this bit is set, and the device is already attached by another control
program task, the device driver immediately signals that the attach
request has failed.

The function IOSTAT(lun) can be used to determine the success or
failure of the attachment. A positive value from IOSTAT indicates
successful completion; zero indicates the attachment has not
completed; a negative value indicates completion with an error.

Bit 2 (mask value = 2) - Wait (0) versus No-wait (1)

This bit controls whether or not the control program task waits for a
response from the device driver. For most applications, this bit should
not be set.

If this bit is clear, program execution waits for the device driver to signal
the result of the attach request.

If this bit is set, program execution does not wait for the result of the
attach request. The program must then use the function IOSTAT(lun)
to determine if the attachment has succeeded (see earlier text). If the
program attempts to READ from or WRITE to the logical unit while the
attachment is pending, program execution then waits for the
attachment to complete.

Bit 3 (mask value = 4) - Specify LUN (0) versus Have LUN
Assigned (1)

This bit determines how the lun parameter is processed.

If this bit is clear, the device corresponding to the value of lun is
attached. That is, the value of the lun parameter specifies the device
that is to be attached (according to the table in the Details section)
except when a different device is specified with the $device parameter.

If this bit is set, the device to be attached is specified by the $device
parameter (which should not be omitted). In this case, a logical unit is
automatically selected, and the value of the lun parameter is set by the
ATTACH instruction. eV+ assigns a value to lun even if the ATTACH
request fails. (This mode cannot be used to attach the robot or

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 68

pendant.)

$device Optional string constant, variable, or expression that identifies the
device to be attached. If bit 3 of the mode parameter is 0, this
parameter is used to override the default device associated with the
value of the lun parameter (except that logical unit 0 is always the
robot).

The acceptable device names are shown in the following table.

Device Meaning

DISK Physical drive in the controller (disk orSecure Digitalcard)

DEVICENET Access devices connected to DeviceNet

MONITOR The current monitor window or operator's terminal

SERIAL:n Global serial line (n = 0, 1, 2 or 3). For the SmartController EX,

- SERIAL:0 is RS232/TERM,

- SERIAL:1 is RS232-1,

- SERIAL:2 is RS232-2,

- SERIAL:3 is RS-422/485

SYSTEM Disk device, currently set with the CD or DEFAULT command

TCP TCP protocol device driver

TFTP Access the TFTP server to read files

UDP UDP protocol device driver

Acceptable Device Names to Be Attached

Details

The robot must remain attached by a robot control program for the program to command
motion of the robot. When the robot is detached (see the DETACH instruction), however,
you can use the manual control pendant to move the robot under directions from the
application program. This is useful, for example, for application setup sequences. (The belt
and vision calibration programs provided by Omron Adept use this technique.)

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 69

Program task 0 automatically attaches robot #1 when that task begins execution. A robot
control program executed by any of the other program tasks must explicitly attach the robot.

Any task can attach to any robot, provided that the robot is not already attached by a
different task. The robot that is attached by an ATTACH instruction is the one that was last
specified by a SELECT instruction executed by the current task (see the SELECT instruction).
If no SELECT instruction has been executed, then robot #1 is attached. The SELECT
instruction can be used to select a different robot only if no robot is currently attached to the
task.

To successfully attach the robot, the system must be in COMPmode. Otherwise (for mode bit
1 = 0), program execution is suspended (without notice) until the system is placed in COMP
mode. This situation can be avoided in two ways: (1) use the STATE function to determine if
the system is in COMPmode before executing an ATTACH instruction, (2) set bit 1 in the
mode value, and use the IOSTAT function to determine the success of the ATTACH
instruction.

When the system terminal (logical unit 4) is attached, all keyboard input will be buffered for
input requests by the program.

NOTE:When the system terminal is attached, a user is not able to type ABORT to
terminate program execution. The program must provide a means for fielding a
termination request, or you must use the pendant or emergency stop switch to stop
program execution.

When a DISK device is attached, it allows a program to read andwrite data from and to files.
DISK refers to the Secure Digital (SD) card. One of the FOPEN instructions must be used to
specify which file to access. WRITE and READ instructions can then be used to transfer
information to and from the file. Also, FCMND instructions can be used to send commands to
the file system.

When a TFTP device is attached, it allows a program to read a file from an TFTP server.

When a SERIAL:n serial communication line is attached, it can be used to send and receive
information to and from another system. As with disk I/O,WRITE and READ instructions are
used for the information transfer. For the details on physical connectors and corresponding
eV+ designations, see: Table 3-5. Serial Connectors and eV+ Designations in the
SmartController User's Guide.

Whenmode bit 3 = 0 and the $device parameter is omitted, the logical unit number
implicitly specifies the corresponding default device from the following table.

Number Device

0 Robot (default when lun is omitted)

Default Device Numbers Supplied by the LUN

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 70

Number Device

2 System terminal

3 System terminal

4 System terminal

5 Disk

6 Disk

7 Disk

8 Disk

9 No default device

10 Serial communication line (SERIAL:0)

11 Serial communication line (SERIAL:1)

12 Serial communication line (SERIAL:2)

13 Serial communication line (SERIAL:3)

14 No default device

15 No default device

16 No default device

17 Disk

18 Disk

19 Disk

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 71

Number Device

25 - 31 No default devices

NOTE:
1. There are currently no default LUNs assigned for serial communication lines
Local #3 or Local #4.

Examples

l Take over control of the robot:

ATTACH

l Connect to global serial line 1; wait for it to become available if another task has it
attached; return the assigned logical unit number in lun:

ATTACH (lun, 4) "serial:1"

l The next instruction is similar to the previous one, but this one requires use of the
IOSTAT function to determine if another task has the serial line attached:

ATTACH (lun, 5) "serial:1"

l Attach to the TCP device driver with automatic allocation of a logical unit number:

ATTACH (lun, 4) "TCP"

Related Keywords

DETACH program instruction

FSET program instruction

IOSTAT real-valued function

SELECT program instruction

ATTACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 72

AUTO program instruction

Syntax

AUTO type variable, ..., variable

Function

Declare temporary variables that are automatically created on the program stack when the
program is entered.

Usage Considerations

AUTOmatic variables have an undetermined value when a program is first entered (but they
are not necessarily undefined), and they have no value after the program exits.

AUTO statements must appear before any executable instruction in the program-only the
.PROGRAM statement, comments, blank lines, GLOBAL and LOCAL statements, and other
AUTO statements may precede this instruction.

If a variable is listed in an AUTO statement, any global variables with the same name cannot
be accessed directly by the program.

The values of AUTOmatic variables are not saved by the STORE or restored by the LOAD
monitor commands.

Parameters

type Optional keyword REAL, DOUBLE, or LOC, indicating that all the
variables in this statement are to be single precision, double precision,
or location variables. (A location can be a transformation, precision
point, or belt variable.)

If this keyword is omitted, the type of each variable is determined by its
use within the program. An error is generated if the type cannot be
determined from usage.

variable Name of a variable of any data type available with eV+ (belt, precision
point, real-value, string, and transformation). Each variable can be a
simple variable or an array. If the type parameter is specified (see
below), all the variables must match that type. Array variables must
have their indexes specified explicitly, indicating the highest valid index
for the array.

AUTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 73

Details

This instruction is used to declare variables to be defined only within the current program.
That is, an AUTOmatic variable can be referenced only by the specific calling instance of a
program. Also, the names of AUTOmatic variables can be selected without regard for the
names of variables defined in any other programs.

AUTOmatic variables are allocated each time the program is called, and their values are not
preserved between successive subroutine calls. These values can be displayed via monitor
commands only when the program task is inactive but is on an execution stack. When a
program is first entered, automatic variables have arbitrary, undetermined values (and they
are not necessarily undefined). AUTOmatic variables are lost when the program exits.

Unlike a LOCAL variable, a separate copy of an AUTOmatic variable is created each time a
program is called, even if it is called simultaneously by several different program tasks, or
called recursively by a single task. If a program that uses LOCAL or global variables is called by
several different program tasks, or recursively by a single task, the values of those variables
can be modified by the different program instances and can cause very strange program
errors. Therefore, AUTOmatic variables should be used for all temporary local variables to
minimize the chance of such errors.

Variables can be defined as GLOBAL, AUTOmatic, or LOCAL. An attempt to define AUTOmatic,
GLOBAL, or LOCAL variables with the same name will result in the error message *Attempt to
redefine variable class*.

Variables can be defined only once within the same context (AUTOmatic, LOCAL, or GLOBAL).
Attempting to define a variable more than once (that is, with a different type) will yield the
error message

Attempt to redefine variable type

AUTOmatic array variables must have the size of each dimension specified in the AUTO
statement. Each index specifiedmust represent the last element to be referenced in that
dimension. The first element allocated always has index value zero. For example, the
statement

AUTO LOC points[3,5]

allocates a transformation array with 24 elements. The left-hand index ranges from 0 to 3,
and the right-hand index ranges from 0 to 5.

The storage space for AUTOmatic variables is allocated on the program execution stack. If the
stack is too small for the number of AUTOmatic variables declared, the task execution will
stop with the error message

Too many subroutine calls

If this happens, use the STATUSmonitor command to determine how much additional stack
space is required. Then, use the STACKmonitor command to increase the stack size and then
issue the RETRYmonitor command to continue program execution.

AUTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 74

AUTOmatic variables cannot be deleted with the DELETE_ commands.

AUTOmatic variables can be referencedwith monitor commands such as BPT, DELETE_, DO,
HERE, LIST_, POINT, TEACH, TOOL, andWATCH by using the optional context specifier @.
The general syntax is:

command @task:program command_arguments

Examples

l Declare the variables loc.a, $ans, and i to be AUTOmatic in the current program (the
variable types for loc.a and imust be clear from their use in the program):

AUTO loc.a, $ans, i

l Declare the variables i, j, and tmp[] to be AUTOmatic, real variables in the current
program (array elements tmp[0] through tmp[10] are defined):

AUTO REAL i, j, tmp[10]

l Declare the variable loc to be an AUTOmatic variable in the current program. The
variable type of locmust be determined by its use in the program. Note that since
LOC appears by itself, it is not interpreted as the type-specifying keyword.)

AUTO loc

Related Keywords

GLOBAL program instruction

LOCAL program instruction

STACKmonitor command

AUTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 75

AUTO.POWER.OFF system switch

Syntax

AUTO.POWER.OFF

Function

Control whether or not eV+ disables high power when certain motion errors occur.

Usage Considerations

This switch has effect during automatic mode but not duringmanual mode. It is especially
useful in reducing operator intervention during common nulling-timeout and envelope
errors.

Details

Because the HIGH POWERON/OFF high power on/off button cannot be used by itself to
enable high power as in earlier versions of eV+, Omron Adept has sought to reduce the
number of instances that high power is disabled during normal program execution. Making
this improvement allows programs to continue to recover automatically from errors without
manual intervention, that is, without requiring you to press the HIGH POWERON/OFF
button. This system switch cancels the effect of this change. By default this switch is
disabled. Enabling it restores functionality as it was in eV+ version 11.x and earlier.

Omron Adept reviewed all automatic-mode errors that disabled high power in eV+ version
12.0 and determinedwhich can be changed simply to decelerate the robot and generate an
error without compromising the safe operation of the system. Examples of particular
importance are errors such as nulling-timeout and envelope errors that often occur during
the normal operation of the system. In some cases, Omron Adept has modified internal
software to ensure the continued safe operation of your system.

The setting of this switch has no effect duringmanual mode.

If this switch is enabled, eV+ disables high power for all motion related errors including
nulling-timeout and soft envelope errors.

Example

The following program segment instructs eV+ to disable high power when any motion error
occurs:

ENABLE AUTO.POWER.OFF ;Disable high power when any
;motion error occurs

Related Keywords

DISABLE monitor command

AUTO.POWER.OFF system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 76

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

AUTO.POWER.OFF system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 77

BAND operator

Syntax

...value BAND value...

Function

Perform the binary AND operation on two values.

Usage Considerations

The BAND operation is meaningful only when performed on integer values. Only the integer
parts of real values are used. Any fractional parts are ignored.

Details

The BAND operator can be used to perform a binary AND operation on two values on a bit-by-
bit basis, resulting in a real value.

Specifically, the BAND operation consists of the following steps:

1. Convert the operands to sign-extended 32-bit integers, truncating any fractional part.

2. Perform a binary AND operation (see below).

3. Convert the result back to a real value.

During the binary AND operation,

c = a BAND b

the bits in the resultant C are determined by comparing the corresponding bits in the
operands A and B as indicated in the following table.

For each bit in:

a b c

0 0 -> 0

0 1 -> 0

1 0 -> 0

1 1 -> 1

That is, a bit in the result will be 1 if the corresponding bit in both of the operands is 1.

BAND operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 78

To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Examples

Consider the following (binary values are shown tomake the operation more evident):

^B101000 BAND^B100001 yields ^B100000 (32)

Note that a very different result is obtainedwith the logical AND operation:

^B101000 AND^B100001 yields -1 (TRUE)

In this case, ^B101000 and^B100001 are each interpreted as logically TRUE since they are
nonzero.

Related Keywords

AND operator

BOR operator

BXOR operator

BAND operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 79

BASE program instruction

Syntax

BASE X_shift, Y_shift, Z_shift, Z_rotation

Function

Translate and rotate the World reference frame relative to the robot.

Usage Considerations

The BASE program instruction causes a BREAK in continuous-path motion.

The BASE monitor command applies to the robot selected by the eV+ monitor (with the
SELECT command). The command can be usedwhile programs are executing. However, an
error will result if the robot is attached by any executing program.

The BASE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, use of the BASE command or
instruction will cause an error.

Parameters

X_shift Optional real-valued expression describing the X component (in the
normal World coordinate system) of the origin point for the new
coordinate system. (Zero is assumed if no value is provided.)

Y_shift Similar to X_shift, but for the Y direction.

Z_shift Similar to X_shift, but for the Z direction.

Z_rotation Similar to X_shift, but for a rotation about the Z axis.

Details

When the eV+ system is initialized, the origin of the reference frame of the robot is assumed
to be fixed in space such that the X-Y plane is at the robot mounting surface, the X axis is in
the direction defined by joint 1 equal to zero, and the Z axis coincides with the joint-1 axis.

The BASE instruction offsets and rotates the reference frame as specified above. This is
useful if the robot is moved after locations have been defined for an application.

BASE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 80

If, after robot locations have been defined by transformations relative to the robot reference
frame, the robot is moved relative to those locations-to a point translated by dX, dY, dZ and
rotated by Z rotation degrees about the Z axis—a BASE command or instruction can be used
to compensate so that motions to the previously defined locations will still be as desired.

Another convenient use for the BASE command or instruction is to realign the X and Y
coordinate axes so that SHIFT functions cause displacements in desired, nonstandard
directions.

NOTE: The BASE instruction has no effect on locations defined as precision points. The
arguments for the BASE instruction describe the displacement of the robot relative to its
normal location.

The BASE function can be usedwith the LISTL command to display the current BASE
setting.

Examples

BASE xbase,, -50.5, 30

Redefines the World reference frame because the robot has been shifted xbase millimeters in
the positive X direction and 50.5 millimeters in the negative Z direction, and has been rotated
30 degrees about the Z axis.

BASE 100,, -50

Redefines the World reference frame to effectively shift all locations 100 millimeters in the
negative X direction and 50 millimeters in the positive Z direction from their nominal location.
Note that the arguments for this instruction describe movement of the robot reference
frame relative to the robot, and thus have an opposite effect on locations relative to the
robot.

Related Keywords

BASE transformation function

SELECTmonitor command

SELECT program instruction

SELECT real-valued function

BASE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 81

BASE transformation function

Syntax

BASE

Function

Return the transformation value that represents the translation and rotation set by the last
BASE command or instruction.

Usage Considerations

The BASE function returns information for the robot selected by the task executing the
function.

The command LISTL BASE can be used to display the current base setting.

If the eV+ system is not configured to control a robot, use of the BASE function will not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

Related Keywords

BASE monitor command

BASE program instruction

SELECT program instruction

SELECT real-valued function

BASE transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 82

BCD real-valued function

Syntax

BCD (value)

Function

Convert a real value to Binary Coded Decimal (BCD) format.

Usage Considerations

The BCD function is most useful when used in conjunction with the BITS command,
instruction, and function (see below).

Parameter

value Real-valued expression defining the value to be converted.

Details

The BCD function converts an integer value in the range 0 to 9999 into its BCD
representation. This can be used to set a BCD value on a set of external output signals.

Example

If you want to use digital signals 4 to 8 to output a BCD digit: The instruction

BITS 4,4 = BCD(digit)

converts the value of the real variable digit to BCD and impresses it on external output
signals 4-8.

Related Keyword

DCB real-valued function

BCD real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 83

BELOW program instruction

Syntax

BELOW

Function

Request a change in the robot configuration during the next motion so that the elbow is
below the line from the shoulder to the wrist.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a below configuration, this instruction is ignored by the
robot. (SCARA robots, for example, cannot be in an ABOVE/BELOW configuration.)

The BELOW instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the BELOW instruction will
cause an error.

The following figure shows the ABOVE and BELOW configurations.

ABOVE/BELOW

Related Keywords

ABOVE program instruction

CONFIG real-valued function

SELECT program instruction

SELECT real-valued function

BELOW program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 84

BELT real-valued function

Syntax

BELT (%belt_var,mode)

Function

Return information about a conveyor belt being trackedwith the conveyor tracking feature.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The BELT system switch must be enabled before this function can be used.

The SETBELT instruction is generally used in conjunction with the BELT real-valued function
to set the effective belt position to zero. This must be done each time the robot will perform a
sequence of motions relative to the belt, andmust be done shortly before the first motion of
such a sequence.

WARNING: It is important to execute SETBELT each time the robot is
going to track the belt, to make sure the difference between the current
belt position (as returned by the BELT function) and the belt position of
the specified belt variable does not exceed 8,388,607 (^H7FFFFF)
during active belt tracking. Unpredictable robot motion may result if the
difference does exceed this value while tracking the belt.

Parameters

%belt_var The name of the belt variable used to reference the conveyor belt.
As with all belt variables, the namemust begin with a percent
symbol (%).

mode Control value that determines the information that will be
returned.

If the mode is omitted or its value is equal to zero, the BELT
function returns the encoder reading in encoder counts of the belt
specified by the belt variable. The value returned by this function is
limited to an absolute value of 8,388,607 andwill roll over to -
8,388,608 after.

If the value is equal to -1, the BELT function returns the last
latched encoder position in encoder counts of the belt specified by
the belt variable. This value equivalent to the value returned by
DEVICE(0, enc, stt, 4) except it is not bounded to 8,388,607.

BELT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 85

If the value of the expression is greater than zero, the encoder
velocity is returned in units of encoder counts per eV+ cycle (16
ms).

Examples

Set the point of interest on the referenced conveyor to be that corresponding to the current
reading of the belt encoder:

SETBELT %main.belt = BELT(%main.belt)

Save the current speed of the belt associated with the belt variable %b:

belt.speed = BELT(%b, 1)

Related Keywords

BELT system switch

SETBELT program instruction

BELT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 86

BELT system switch

Syntax

...BELT

Function

Control the function of the conveyor tracking features of the eV+ system.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

If the eV+ system is not configured to control a robot, an attempt to enable the BELT system
switch will cause an error. (The DEVICE real-valued function and the SETDEVICE program
instruction must be used to access external encoders from a nonrobot system. For more
information, see the section External Encoder Device in the eV+ Language User's Guide.)

Details

This switch must be enabled before any of the special conveyor tracking instructions can be
executed. When BELT is disabled, the conveyor tracking software has a minimal impact on
the overall performance of the system.

When the BELT switch is enabled, error checking is initiated for the encoders associated with
any belt variables that are defined. The switch is disabledwhen the eV+ system is initialized.

Related Keywords

BELT real-valued function

BELT.MODE system parameter

BSTATUS real-valued function

DEFBELT program instruction

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SETBELT program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

BELT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 87

WINDOW program instruction

WINDOW real-valued function

BELT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 88

BELT.MODE system parameter

Syntax

...BELT.MODE

Function

Set characteristics of the conveyor tracking feature of the eV+ system.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The current value of the BELT.MODE parameter can be determinedwith the PARAMETER
monitor command or real-valued function.

The value of the BELT.MODE parameter can be modified only with the PARAMETERmonitor
command or program instruction.

Details

This parameter is interpreted as a bit-flag word. The initial setting of this parameter is 0. That
is, all the bits are zero. Bits can be set by assigning the value resulting from adding together
the desired bit mask values (see the example below).

The bit flags have the following interpretations:

Bit 1 (LSB) Upstream/downstream definition (mask value = 1)

When this bit is set to one, the instantaneous direction of travel of
the belt is used to define upstream and downstream for the window
testing routines (both in the internal motion planner and the
WINDOW real-valued function).

When this bit is set to zero, going from upstream to downstream
always corresponds to traveling in the direction of the positive X axis
of the nominal transformation.

Bit 2 Stopped-belt processing (mask value = 2)

When this bit is set to one, a program error will be generated during
motion planning if the destination is outside of the belt window and
the belt is stopped.

When this bit is set to zero, if the belt is stopped duringmotion
planning, the direction of the positive X axis of the nominal
transformation is used to define the downstream direction. The
normal window-error criteria are then applied (see below).

BELT.MODE system parameter

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 89

Bit 3 Window error definition (mask value = 4)

When this bit is set to one, destination locations that are downstream
or upstream of the belt window cause motion instructions to fail
during planning.

When this bit is set to zero, upstream window violations cause
planning to wait until the location comes into the window.
Destination locations that are downstream of the belt window cause
window errors.

Bit 4 Effect of window errors (mask value = 8)

When this bit is set to one, motion instructions that fail during
planning due to a window error are ignored (skipped) and program
execution continues as usual. When this option is selected, each belt-
relative motion instruction should be followed by an explicit test for
planning errors using the BSTATUS function.

When this bit is zero, window errors duringmotion planning generate
a program step execution error, which either halts program execution
or triggers the REACTE routine.

Regardless of the setting of this bit, window errors that occur while
the robot is actually tracking the belt cause the program specified in
the latest WINDOW instruction to be executed. If no such program
has been specified, program execution is halted.

Example

Set the parameter to have bits 1 and 3 set to one (mask values 1 + 4):

PARAMETER BELT.MODE = 5

Related Keywords

BELT system switch

BELT real-valued function

BSTATUS real-valued function

PARAMETERmonitor command

PARAMETER program instruction

PARAMETER real-valued function

WINDOW program instruction

WINDOW real-valued function

BELT.MODE system parameter

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 90

BITS program instruction

Syntax

BITS first_sig, num_sigs= value

Function

Set or clear a group of digital signals based on a value.

Usage Considerations

Both external digital output signals and internal software signals can be referenced. Input
signals must not be referenced. (Input signals are displayed by the monitor command IO 1.)

Nomore than 32 signals can be set at one time.

Any group of up to 32 signals can be set, provided that all the signals in the group are
configured for use by the system.

Parameters

first_sig Real-valued expression defining the lowest-numbered signal to be
affected.

num_sigs Optional real-valued expression specifying the number of signals to
be affected. A value of 1 is assumed if none is specified. The
maximum valid value is 32 .

value Real-valued expression defining the value to be set on the specified
signals. If the binary representation of the value has more bits than
num_sigs, only the lowest num_sigs signals will be affected.

Details

Sets or clears one or more external output signals or internal software signals based on the
value to the right of the equal sign. The effect of this instruction is to round value to an
integer, and then set or clear a number of signals based on the individual bits of the binary
representation of the integer.

All eV+ digital output instructions do not wait for a eV+ cycle, they turned on outputs
immediately. However, digital inputs are checked every 2 milliseconds by the eV+ operating
system.

BITS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 91

Examples

Set external output signals 1-8 (8 bits) to the binary representation of the current monitor
speed setting:

BITS 1,8 = SPEED(1)

If the monitor speedwere currently set to 50% (0011 0010 binary), then signals 1-8 are set
as follows after this instruction:

signal 1 -> 0 (off) signal 5 -> 1 (on)

signal 2 -> 1 (on) signal 6 -> 1 (on)

signal 3 -> 0 (off) signal 7 -> 0 (off)

signal 4 -> 0 (off) signal 8 -> 0 (off)

Set external output signals 5-9 (4 bits) to the binary representation of the BCD digit 7:

BITS 5,4 = BCD(7)

Set external output signals 1-8 (8 bits) to the binary representation of the constant 255,
which is 11111111 (binary). Thus, signals 1-8 will all be turned on:

BITS 1,8 = 255

Related Keywords

BITS real-valued function

IOmonitor command

RESETmonitor command

SIG real-valued function

SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

BITS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 92

BITS real-valued function

Syntax

BITS (first_sig, num_sigs)

Function

Readmultiple digital signals and return the value corresponding to the binary bit pattern
present on the signals.

Usage Considerations

External digital input or output signals, or internal software signals can be referenced.

A maximum of 32 signals can be read at one time.

Any group of up to 32 signals can be read, provided that all the signals in the group are
configured for use by the system.

Parameters

first_sig Real-valued expression defining the lowest-numbered signal to be
read.

num_sigs Optional real-valued expression specifying the number of signals to
be affected. A value of 1 is assumed if none is specified. The
maximum valid value is 32 .

Details

This function returns a value that corresponds to the binary bit pattern present on 1 to 32
digital signals.

The binary representation of the value returned by the function has its least-significant bit
determined by signal numbered first_sig, and its higher-order bits determined by the next
num_sigs -1 signals.

Example

Assume that the following input signal states are present:

Signal: 1008 1007 1006 1005 1004 1003 1002 1001
State: 1 1 0 1 0 1 1 0

The program step:

x = BITS(1003, 4)

BITS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 93

will yield a value of 5 for x since the four signals starting at 1003 (that is, signals 1003
through 1006) can be interpreted as a binary representation of that value.

Related Keywords

BITSmonitor command

BITS program instruction

IOmonitor command

RESETmonitor command

SIG real-valued function

SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

BITS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 94

BMASK real-valued function

Syntax

BMASK (bit, bit, ..., bit)

Function

Create a bit mask by setting individual bits.

Parameter

bit Integer value from 1 to 32 specifying a bit to turn on. The least-
significant bit is number 1.

Details
This instruction creates a bit mask by turning on (bit = 1) the specified bits and leaving all
other bits off (bit = 0).

Bit 32 is the sign bit and yields a negative number when set.

Examples

Create the bit mask ^B10001:

bm = BMASK(1, 5)

Attach to a disk LUN with mode bit 2 turned on:

mode = BMASK(2)
ATTACH (lun, mode) "DISK"

BMASK real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 95

BOR operator

Syntax

... value BOR value ...

Function

Perform the binary OR operation on two values.

Usage Considerations
The BOR operation is meaningful only when performed on integer values. Only the integer
parts of real values are used. Any fractional parts are ignored.

Details

The BOR operator can be used to perform a binary OR operation on two values on a bit-by-bit
basis, resulting in a real value.

Specifically, the BOR operation consists of the following steps:

1. Convert the operands to sign-extended 32-bit integers, truncating any fractional part.

2. Perform a binary OR operation (see below).

3. Convert the result back to a real value.

During the binary OR operation,

c = a BOR b

the bits in the resultant C statement are determined by comparing the corresponding bits in
the operands A and B, as indicated in the following table.

For each bit in:

a b c

0 0 -> 0

0 1 -> 1

1 0 -> 1

1 1 -> 1

That is, a bit in the result will be 1 if the corresponding bit in either of the operands is 1.

BOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 96

To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Examples

Consider the following (binary values are shown only to make the operation more evident):

^B101000 BOR^B100001 yields ^B101001 (41)

Note that a very different result is obtainedwith the logical OR operation:

^B101000 OR^B100001 yields -1 (TRUE)

In this case, ^B101000 and^B100001 are each interpreted as logically TRUE since they are
nonzero.

Related Keywords

BAND operator

BXOR operator

OR operator

BOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 97

BRAKE program instruction

Syntax

BRAKE

Function

Abort the current robot motion.

Usage Considerations

The BRAKE instruction can be executed by any program task, including a task that is not
actively controlling the robot.

This instruction does not cause a BREAK to occur (see Details below).

If more than one robot is connected to the controller, this instruction applies to the robot
currently selected (see the SELECT instruction).

If the eV+ system is not configured to control a robot, the BRAKE instruction will not
generate an error due to the absence of a robot.

Details

BRAKE causes the current robot motion to be aborted immediately. In response to this
instruction, the robot will decelerate to a stop and then (without waiting for position errors to
null) begin the next motion.

NOTE: Program execution is not suspended until the robot motion stops.

Example

The following program segment initiates a robot motion and simultaneously tests for a
condition to be met. If the condition is met, the motion is stoppedwith a BRAKE instruction.
Otherwise, the motion is completed normally.

MOVES step[1] ;Initiate motion to next location
DO ;Loop continuously...

IF SIG(1023) THEN ;If input signal 1023 becomes set,
BRAKE ;stop the motion immediately
EXIT ;and continue elsewhere

END
UNTIL STATE(2) == 2 ;...until location reached
MOVES step[2] ;Move to next location

Related Keyword

BREAK program instruction

BRAKE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 98

BREAK program instruction

Syntax

BREAK

Function

Suspend program execution until the current motion completes.

Usage Considerations

The BREAK instruction is only used to wait for motion by the robot attached to the current
task.

If the eV+ system is not configured to control a robot, executing the BREAK instruction will
cause an error.

Details

This instruction has two effects:

1. Program execution is suspended until the robot reaches its current destination.

NOTE: BREAK cannot be used to have one task wait until a motion is completed by
another task.

2. The continuous-path transition between the current motion and that commanded by
the next motion instruction is broken. That is, the twomotions are prevented from
beingmerged into a single continuous path.

The BREAK instruction causes continuous-path processing to terminate by blocking eV+
program execution until the motion ends. CPOFF causes the trajectory generator to
terminate continuous path without affecting the forward processing of the eV+ program.

Related Keywords

BRAKE program instruction

CP system switch

SELECT program instruction

SELECT real-valued function

BREAK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 99

BSTATUS real-valued function

Syntax

BSTATUS

Function

Return information about the status of the conveyor tracking system.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The BSTATUS function returns information for the robot selected by the task executing the
function.

The word "bstatus" cannot be used as a program name or variable name.

Details

This function is normally usedwhen BELT.MODE bit 4 is set.

This function returns a value that is equivalent to the binary value represented by a set of bit
flags, which indicate the following conditions of the conveyor tracking software:

Bit 1 (LSB) Tracking belt (mask value = 1)
When this bit is set, the robot is currently tracking a belt.

Bit 2 Destination upstream (mask value = 2)
When this bit is set, the destination location was found to be
upstream of the belt window during the planning of the last motion.

Bit 3 Destination downstream (mask value = 4)
When this bit is set, the destination location was found to be
downstream of the belt window during the planning of the last
motion.

Bit 4 Window violation (mask value = 8)
When this bit is set, a window violation occurred while the robot was
tracking a belt during the last belt-relative motion. (This flag is
cleared at the start of each belt-relative motion.)

Related Keywords

BELT real-valued function

BELT system switch

BSTATUS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 100

BELT.MODE system parameter

DEFBELT program instruction

SELECT program instruction

SELECT real-valued function

WINDOW program instruction

WINDOW real-valued function

BSTATUS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 101

BXOR operator

Syntax

... value BXOR value ...

Function

Perform the binary exclusive-OR operation on two values.

Usage Considerations

The BXOR operation is meaningful only when performed on integer values. Only the integer
parts of real values are used. Any fractional parts are ignored.

Details

The BXOR operator can be used to perform a binary exclusive-OR operation on two values on
a bit-by-bit basis, resulting in a real value.

NOTE: This operation is meaningful only when performed on integer values.

Specifically, the BXOR operation consists of the following steps:

1. Convert the operands to sign-extended 32-bit integers, truncating any fractional part.

2. Perform a binary exclusive-OR operation (see below).

3. Convert the result back to a real value.

During the binary exclusive-OR operation,

c = a BXOR b

the bits in the resultant C are determined by comparing the corresponding bits in the
operands A and B, as indicated in the following table.

For each bit in:

a b c

0 0 -> 0

0 1 -> 1

1 0 -> 1

BXOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 102

For each bit in:

a b c

1 1 -> 0

That is, a bit in the result is 1 if the corresponding bit in one (and only one) of the operands is
1. To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Examples

Consider the following (binary values are shown only to make the operation more evident):

^B101000 BXOR^B100001 yields ^B001001 (9)

Note that a very different result is obtainedwith the logical XOR operation:

^B101000 XOR^B100001 yields 0 (FALSE)

In this case, ^B101000 and^B100001 are each interpreted as logically TRUE since they are
nonzero.

Related Keywords

BAND operator

BOR operator

XOR operator

BXOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 103

BY keyword

Syntax

SCALE(transformation BY value)

SHIFT(transformation BY value, value, value)

Function

Complete the syntax of the SCALE and SHIFT functions.

Examples

SET new.trans = SCALE(old.trans BY scale.factor)
SET new.trans = SHIFT(old.trans BY x,y,z)

Related Keywords

SCALE transformation function

SHIFT transformation function

BY keyword

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 104

CALIBRATE program instruction

Syntax

CALIBRATEmode, status

Function

Initialize the robot positioning system with the robot's current position.

Usage Considerations

Normally, the instruction is issuedwith mode equal to zero.

The instruction has no effect if the DRY.RUN system switch is enabled.

If the robot is to be moved under program control, the CALIBRATE instruction (or command)
must be processed every time system power is turned on and the eV+ system is booted.

The robot cannot be moved under program control or with the pendant until a CALIBRATE
instruction (or CALIBRATE monitor command) has been processed.

NOTE: Some robots can be moved in joint mode with the control pendant even when
they have not been calibrated.

If multiple robots are connected to the system controller, this instruction attempts to
calibrate all robots unless they are disabled with the ROBOT switch. All of the enabled robots
must be calibrated before any of them can be moved under program control.

The CALIBRATE instruction may operate differently for each type of robot. For robots with
non-absolute (e.g., incremental) encoders, this instruction causes the robot to move. In this
case, the robot must be far enough from the limits of the working range that it will not move
out of range during the calibration process. (See the description of the CALIBRATE monitor
command for details of the robot motion.)

If the eV+ system is not configured to control a robot, executing the CALIBRATE instruction
causes an error.

CALIBRATE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 105

Parameters

mode A real expression that indicates what part of calibration is to be
performed:

Value of
mode Interpretation

0
(or omitted)

Perform a normal calibration of all the robots
controlled by the system.

In detail, the following operations are performed:

(a) Load the main calibration program if it is not
already in memory.

(b) Execute the main calibration program with the
load, execute, and delete flags set. That causes the
robot-specific calibration routines to be loaded, the
robots to be calibrated, and the robot routines to be
deleted. (Note that the main calibration program is
left in memory.)

1 Load the main calibration program if it is not already
in memory, and execute the main calibration
program with the load flag set. That causes the
calibration program to load the applicable robot-
specific calibration routines. Note, however, that the
calibration process is not performed.

2 Execute the main calibration program (which must
already be in memory) with the execute flag set. That
causes the system robot(s) to be calibrated, and all
the calibration programs to be left in memory.

3 Execute the main calibration program (which must
already be in memory) with the delete flag set. That
causes the calibration program to delete the robot-
specific calibration routines from memory. Note,
however, that the actual calibration process is not
performed, and the main calibration program is left in
memory.

status Real-valued variable that receives the exit status returned by the
calibration program, or (in mode -1) from eV+ when trying to enter into

CALIBRATE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 106

the special "calibrate" mode.

Details

When started, eV+ assumes that the robot is not calibrated and restricts your ability to move
the robot with the pendant or an application program.

NOTE: The COMPmode light on the pendant does not come on when the robot is not
calibrated.

Robots with incremental encoders lose start-up calibration whenever system power is
switched off. As a safety measure, these robots also lose start-up calibration whenever an
Encoder quadrature error occurs for one of the robot joints. Other servo errors that can
cause the robot to lose calibration are *Unexpected zero index*, *No zero index*, and *RSC
Communications Failure*.

l For the Cobra 600 and 800 robots, this instruction causes a small motion of joint 4
(theta).

If this program instruction attempts to load the main calibration program, the same
program,module, and file name, and search algorithm, are employed as for the CALIBRATE
monitor command.

If you wish to carry out a CALIBRATE instruction in task 0, one way to do so is from a
program run using the /C qualifier on the EXECUTE instruction. With that qualifier specified,
a program to calibrate the robot can run in task 0 even when DRY.RUN is disabled. A program
running in any task other than 0 can execute the CALIBRATE instruction without special
conditions.

The CALIBRATE instruction shall only be executed from one task at a time. If it might be
called from multiple tasks (from a REACTE program for example) the call needs to be
protected by amutex using the TAS fonction (see example below).

Example

The following instruction sequence can be used by any program task to perform start-up
calibration on the robot (if task #0 is used, the DRY.RUN switch must be enabled before the
program is executed):

DETACH() ;Detach the robot
DISABLE DRY.RUN ;Ensure DRY.RUN is disabled
ENABLE POWER ;Ensure High Ppower is enabled
CALIBRATE ;Calibrate the robot
ATTACH() ;Reattach the robot

The following instruction sequence must be used if CALIBRATE is called from more than one
task:

CALIBRATE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 107

GLOBAL en_po_lock ;Needs to be initialized to FALSE in another
routine

WHILE TAS(en_po_lock,TRUE) DO ;Get Lock
WAIT

END

ENABLE POWER ;Ensure High Power is enabled
CALIBRATE ;Calibrate the robot
ATTACH() ;Reattach the robot

en_po_lock = FALSE ;Release lock

Related Keywords

CALIBRATE monitor command

NOT.CALIBRATED system parameter

SELECT program instruction

SELECT real-valued function

CALIBRATE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 108

CALL program instruction

Syntax

CALL program(arg_list)

Function

Suspend execution of the current program and continue execution with a new program
(that is, a subroutine).

Parameters

program Name of the new program to be executed.

arg_list Optional list of subroutine arguments (separated by commas) to be
passed between the current program and the new program. (If no
argument list is specified, the parentheses after the program
parameter can be omitted.)

Arguments can be used to pass data to the called program, to receive
results back, or a combination of both. (How arguments are passed is
described below.)

Each argument can be any one of the data types supported by eV+
(that is, belt, precision point, real-value, string, and transformation),
and can be specified as a constant, a variable, or an expression.1 The
type of each argument must match the type of its counterpart in the
argument list of the called program. An argument specified as a variable
can be a simple variable, an array element, or an array with one or
more of its indexes left blank. (See below for more information.)

NOTE: If a value is being passed back to the calling program, the
parameter must be specified as a variable.

Any argument can be omitted, with the result that the corresponding
argument in the called program will be undefined. If an argument is
omitted within the argument list, the separating commamust still be
included. If an argument is omitted at the end of the list, the comma
preceding the argument can also be omitted. (See the description of
.PROGRAM for more information on the effect of omitting an
argument.)

CALL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 109

Details

The CALL instruction causes execution of the current program to be suspended temporarily.
Execution continues at the first step of the indicated new program, which is then considered
a subroutine.

Execution automatically returns to the current program when a RETURN instruction is
executed in the subroutine. Execution continues with the instruction immediately following
the CALL instruction.

Subroutine arguments can be passed by value or by reference. When an argument is passed
by value, a copy of the argument value is passed to the subroutine. Any changes to the
corresponding subroutine argument in the subroutine will not be passed back to the calling
routine. Any argument that is specified as an expression (or compound transformation) will
be passed by value.

When an argument is a (scalar or array) variable, it is passed by reference. That means a
pointer to the variable is passed to the subroutine, which then works with exactly the same
variable as the calling routine. If the called routine changes the value of the variable, the
value is also changed for the calling routine. This can be especially significant, for example, if
the same variable is passed as two arguments of a subroutine call. Then, any change to either
of the corresponding subroutine arguments in the subroutine automatically changes the
other corresponding subroutine argument.

Note that an argument that is passed by reference (because it is a variable) can generally be
forced to passage by value. The way that is done depends on the type of the variable, as
follows:

l For a real variable, passage by value can be forced by enclosing the variable in
parentheses:

CALL prog_a((count))

l For a string variable, an empty string ("") can be added to the variable:

CALL prog_b($str.var+"")

l For a transformation variable (for example, start), an equivalent transformation value
can be specified by a compound transformation consisting of the variable and the NULL
transformation:

CALL prog_c(start:NULL)

As stated above, the items in the arg_list must match their corresponding items in the called
program. In addition to straightforwardmatches of scalar to scalar, and arrays of equal
numbers of dimensions, there are several situations in which higher dimension arrays can be
passed in place of lower dimension arrays. For example, all the following cases are valid:

l Array element passed to a scalar:

CALL example(a[1]) ---> .PROGRAM example(b)

CALL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 110

CALL example(a[1,2]) ---> .PROGRAM example(b)
CALL example(a[1,2,3]) ---> .PROGRAM example(b)

l One dimension of an array passed to a one-dimensional array:

CALL example(a[]) ---> .PROGRAM example(b[])
CALL example(a[1,]) ---> .PROGRAM example(b[])
CALL example(a[1,2,]) ---> .PROGRAM example(b[])

l Two dimensions of an array passed to a two-dimensional array:

CALL example(a[,]) ---> .PROGRAM example(b[,])
CALL example(a[1,,]) ---> .PROGRAM example(b[,])

l Three dimensions of an array passed to a three-dimensional array:

CALL example(a[,,]) ---> .PROGRAM example(b[,,])

Examples
CALL pallet(count)

Branches to the program named pallet, passing to it a pointer to the variable count. When a
RETURN instruction is executed, control returns to the program containing the CALL
instruction and count will contain the current value of the corresponding subroutine
argument.

CALL cycle(1, , n+3)

Branches to the program named cycle. The value 1 is passed to the first parameter of cycle,
its second parameter is undefined, and its third parameter receives the value of the
expression n+3. (If cycle has more than three parameters, the remaining parameters are all
undefined.)

Because none of the arguments in the CALL are variables, no data will be returned by the
program cycle.

Related Keywords

CALLP program instruction

CALLS program instruction

.PROGRAM program instruction

RETURN program instruction

CALL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 111

CALLP program instruction

Syntax

CALLP var (arg_list)

Function

Call a program given a pointer to the program in memory.

Usage Considerations

Using SYMBOL.PTR and CALLP is an alternative to using CALLS to invoke a eV+ subroutine
given its name as string data. For some applications, the SYMBOL.PTR-CALLP combination is
much faster than CALLS.

Parameters

var A real variable (not an expression) that contains a pointer to a program
symbol.

arg_list A list of arguments to be passed between the current program and the
new program.

Details

In situations where the same program is calledmultiple times, the CALLP instruction can be
significantly more efficient than the CALLS instruction. This is especially true in systems that
have many programs loaded. (In situations where a program is called only once, the CALLS
instruction is faster.)

When a CALLS instruction is used, the following steps are performed each time the CALLS
instruction is encountered:

1. The user string is evaluated.

2. The eV+ program symbol with that name is found in the eV+ symbol table.

3. The proper eV+ program is called.

As an alternative, the SYMBOL.PTR function can be used to perform the first two steps.
Typically, that is done one time, during the initialization portion of the application software.
Then, in place of the CALLS instruction, a CALLP instruction can be used to perform the third
step above. (The CALLP instruction is just slightly slower than a CALL instruction.)

In situations where the same program is calledmultiple times, avoiding the first two steps of
CALLS can be significant, especially in systems that have many programs loaded.

CALLP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 112

The CALLP instruction calls the program pointed to by the real variable var. This variable
should have been obtained by using the SYMBOL.PTR function. If the value of var is zero, no
program is called, and no error is reported. If var does not contain a valid pointer, program
execution stops with error -406 (*Undefined program or variable name*).

Example

Instructions such as the following are executed in the initialization section of the application
program:

my.pgm.ptr[1] = SYMBOL.PTR("my.program.1")
my.pgm.ptr[2] = SYMBOL.PTR("my.program.2")

Then, in the repetitive section of the application program, the following is executed:

CALLP my.pgm.ptr[index](parm1, parm2)

Related Keywords

CALL program instruction

CALLS program instruction

$SYMBOL string function

SYMBOL.PTR real-valued function

CALLP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 113

CALLS program instruction

Syntax

CALLS string(arg_list)

Function

Suspend execution of the current program and continue execution with a new program
(that is, a subroutine) specified with a string value.

Usage Considerations

CALLS takes much longer to execute than the normal CALL instruction. Thus, CALLS should
be used only when necessary.

Parameters

string String value, variable, or expression defining the (1- to 15-character)
name of the new program to be executed. (The letters in the name can
be lowercase or uppercase.)

arg_list Optional list of arguments to be passed between the current program
and the new program. The parentheses can be omitted if no argument
list is specified. (See the CALL instruction for further information on
subroutine arguments.)

NOTE: Since the argument list is not specified as part of the string parameter, all the
subroutines called by a specific CALLS instruction must have equivalent argument lists.

Details

The CALLS instruction behaves exactly as the CALL instruction does. The only difference
between the two instructions is the way the subroutine name is specified. CALL requires that
the name be explicitly entered in the instruction step. CALLS permits the name to be
specified by a string variable or expression, which can have its value definedwhen the
program is executed. That allows the program to call different subroutines depending on the
circumstances.

As with the CALL instruction, execution automatically returns to the current program when
a RETURN instruction is executed in the subroutine. Execution continues with the
instruction immediately following the CALLS instruction.

For some applications, the CALLP instruction is much more efficient than CALLS. See the
CALLP instruction for details.

CALLS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 114

Examples

The program segment below demonstrates how the CALLS instruction can be used to branch
to a subroutine whose name is determinedwhen the program is executed.

First the program reads a set of four digital input lines (1001 to 1004) to determine which of
sixteen different part types it is dealing with. The part type is considered to be a hexadecimal
number, which is converted to the corresponding ASCII character. Once the character is
defined, the appropriate subroutine (that is, part.0, part.1, ..., part.f) is called to process the
part. (The part-type value is also used to select the portion of the two-dimensional array
argument that is passed to the subroutine.)

type = BITS(1001,4) ;Get part type from digital input
$type = $ENCODE(/H0, type) ;Convert to ASCII
character
CALLS "part."+$type(arguments[type,], status)

This example can be mademore robust by using the STATUS real-valued function to make
sure the proposed subroutine exists before it is called. Using this function avoids possible
errors from undefined program names.

Related Keywords

CALL program instruction

CALLP program instruction

.PROGRAM program instruction

RETURN program instruction

CALLS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 115

CAS real-valued function

Syntax

CAS (variable, test_value, new_value)

Function

This function compares a real variable to a test value, and conditionally sets a new value as
one indivisible operation.

Usage Considerations

The eV+ system does not enforce any protection scheme for global variables that are shared
by multiple program tasks. It is the programmer's responsibility to keep track of the usage of
such global variables. The CAS real-valued function (or the similar TAS function) can be used
to implement logical interlocks on access to shared variables.

This function can also be used to work around a restriction on the simultaneous access of
global arrays by multiple program tasks— program execution can fail if two or more tasks
attempt to increase the size of an array at the same time. For a detailed description of this,
see the "Global Array Access Restriction" section of the information about Arrays in the eV+
Language User's Guide.

Parameters

variable Name of the real-valued variable to be tested and assigned the new
value given.

test_value Real value, variable, or expression that defines the comparison
value.

new_value Real value, variable, or expression that defines the new value to be
assigned to the specified variable.

Details

If the variable is equal to the test value, the new value is stored in the variable. Otherwise
the variable is not modified. The original value of the variable is returned as the function
value.

The compare and set-new-value operations occur with interrupts locked so that the
operation is indivisible. This function provides a way for setting semaphores between tasks,
similar to the TAS real-valued function. See the description of that function for more
information — use of the CAS function is similar.

CAS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 116

If the variable is undefinedwhen the function is executed, it is treated as having the value
zero.

Related Keywords

TAS real-valued function

CAS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 117

CASE program instruction

Syntax

CASE value OF

Function

Initiate processing of a CASE structure by defining the value of interest.

Usage Considerations

This instruction must be part of a complete CASE structure.

Parameter

value Real value, variable, or expression that defines the value to be matched
in the CASE structure to determine which instructions are executed.

Details

This is perhaps the most powerful structure available with eV+. It provides a means for
executing one group of instructions from among any number of groups. The complete
syntax is as follows (the blank lines are not required):

CASE value OF
VALUE value_1,...:

group_of_steps
VALUE value_2,...:

group_of_steps
.
.
.

ANY
group_of_steps

END

The three vertical dots indicate that any number of VALUE steps can be used to set off
additional groups of instructions.

The ANY step and the group of steps following it are optional. There can be only one ANY step
in a CASE structure, and it must mark the last group in the structure (as shown above).

Note that the ANY and END steps must be on lines by themselves as shown. (However, as
with all instructions, those lines can have comments.)

The CASE structure is processed as follows:

The expression following the CASE keyword is evaluated.

CASE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 118

All the VALUE steps are scanned until the first one is found that has the same
value.

The group of instructions following that VALUE step is executed.

Execution continues at the first instruction after the END step.

If no VALUE step is found that contains the same value as that in the CASE instruction, and
there is an ANY step in the structure, then the group of instructions following the ANY step
will be executed.

If no VALUE match is found in the structure, and there is no ANY step, none of the
instructions in the entire CASE structure are executed.

Examples

The following example shows the basic function of a CASE statement:

CASE number OF
VALUE 1:

TYPE "one"
VALUE 2:

TYPE "two"
ANY

TYPE "Not one or two"
END

The following sample program asks you to enter a test value. If the value is negative, the
program exits after displaying amessage. Otherwise, a CASE structure is used to classify the
input value as a member of one of three groups. The groups are (1) even integers from zero
to ten, (2) odd integers from one to nine, and (3) all other positive numbers.

PROMPT "Enter a value from 1 to 10: ", x
CASE x OF

VALUE 0, 2, 4, 6, 8, 10:
TYPE "The number", x, " is EVEN"

VALUE 1, 3, 5, 7, 9:
TYPE "The number", x, " is ODD"

ANY
TYPE x, " is not an integer from 0 to 10"

END

The following example shows a special use of the CASE structure to test Boolean conditions:

PROMPT "Enter a number", x
CASE TRUE OF

VALUE (x > 0):
TYPE "The number was greater than 0."

VALUE (x == 0):
TYPE "The number was equal to 0."

VALUE (x < 0):
TYPE "The number was less than 0."

CASE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 119

END

Related Keywords

ANY program instruction

END program instruction

VALUE program instruction

CASE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 120

$CHR string function

Syntax

$CHR (value)

Function

Return a one-character string corresponding to a given ASCII value.

Parameter

value Real-valued expression defining the value to be translated into a
character. The value must be in the range of 0 to 255 (decimal).

If the value is in the range 0 to 127 (decimal), the corresponding ASCII
character will be returned.

Example

$CHR(65) ;Returns the character A, since its ASCII value is
65.

Related Keywords

ASC real-valued function

$DBLB string function

$FLTB string function

$INTB string function

$LNGB string function

$CHR string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 121

CLEAR.EVENT program instruction

Syntax

CLEAR.EVENT task, flag

Function

Clear an event associated with the specified task.

Parameters

task Optional real value, variable, or expression (interpreted as an integer)
that specifies the task for which the event is to be cleared. The valid
range is 0 to 6 or 0 to 27, inclusive. If this parameter is omitted, the
number of the current task is used.

NOTE: The basic system allows 7 tasks (0 - 6). The eV+ Extensions
option allows 28 tasks (0 - 27).

flag Not used, defaults to 1.

Details

This instruction clears the event associated with the specified task.

The default event cleared is the input/output completion event for which the instruction
WAIT.EVENT 1 waits. This event is also cleared by the execution (not the completion) of an
input/output instruction.

Related Keywords

GET.EVENT real-valued function

SET.EVENT program instruction

WAIT.EVENT program instruction

CLEAR.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 122

CLEAR.LATCHES program instruction

Syntax

CLEAR.LATCHES (select)

Function

Empties the latch buffer for the selected device.

Parameter

select Integer, expression, or real variable that determines whether any
latches have occurred since the last time the function was executed:

0 Clears latch buffer for currently selected robot

-n (< 0) Clears latch buffer for belt n

+n (> 0) Clears latch buffer for robot n

Details

This instruction clears the event and all information associated with the specified latch
buffer.

As opposed to the LATCHED real-valued function, no latch event data will be made available
for retrieval.

Related Keywords

DEVICE real-valued function

LATCHED real-valued function

LATCH transformation function

#PLATCH precision-point function

CLEAR.LATCHES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 123

CLOSE and CLOSEI program instruction

Syntax

CLOSE

CLOSEI

Function

Close the robot gripper.

Usage Considerations

CLOSE causes the hand to close during the next robot motion.

CLOSEI causes a BREAK in the current continuous-path motion and causes the hand to close
immediately after the current motion completes.

The CLOSE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

The CLOSEI instruction can be executed by any program task as long as the task has
attached a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Details

These instructions send a signal to the control valves for the pneumatic hand to close. If the
CLOSE instruction is used, the signal is not sent until the next robot motion begins.

The CLOSEI instruction differs from CLOSE in the followingways:

l A BREAK occurs if a continuous-path robot motion is in progress.

l The signal is sent to the control valves at the conclusion of the current motion, or
immediately if nomotion is in progress.

l Robot motions are delayed for a brief time to allow the hand actuation to complete.
The length of the delay (in seconds) is the current setting of the HAND.TIME system
parameter.

Examples

During the next robot motion, cause the pneumatic control valves to assume the closed
state:

CLOSE and CLOSEI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 125

CLOSE

Cause the pneumatic control valves to assume the closed state as soon as the current motion
stops:

CLOSEI

Related Keywords

HAND.TIME system parameter

OPEN program instruction

OPENI program instruction

RELAX program instruction

RELAXI program instruction

SELECT program instruction

SELECT real-valued function

CLOSE and CLOSEI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 126

COARSE program instruction

Syntax

COARSE tolerance ALWAYS

Function

Enable a low-precision feature of the robot hardware servo.

Usage Considerations

Only the next robot motion will be affected unless the ALWAYS parameter is specified.

If the tolerance parameter is specified, its value becomes the default for any subsequent
COARSE instruction executed during the current execution cycle (regardless of whether
ALWAYS is specified).

FINE 100 ALWAYS is assumedwhenever program execution is initiated andwhen a new
execution cycle begins.

The COARSE instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the COARSE instruction
causes an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the percentage
of the standard coarse tolerances that are to be used for each joint of
the robot attached by the current execution task. See the Details
section for default values.

ALWAYS Optional qualifier that establishes COARSE as the default condition.
That is, COARSE will remain in effect until disabled by a FINE
instruction. If ALWAYS is not specified, the COARSE instruction will
apply only to the next robot motion.

Details

This instruction enables a low-precision feature in the robot motion servo so that larger
errors in the final positions of the robot joints are permitted at the ends of motions. This
allows faster motion execution when high accuracy is not required.

Lower precision is sometimes required in belt tracking applications when the constant
motion of the robot prevents the servos from settling to high precision.

COARSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 127

If the tolerance parameter is specified, the new setting takes effect at the start of the next
motion. Also, the value becomes the default for any subsequent COARSE instruction
executed during the current execution cycle (regardless of whether ALWAYS is specified).
Changing the COARSE tolerance does not affect the FINE tolerance.

If the tolerance parameter is omitted, the most recent setting (for the attached robot) is
used. The default setting is restored to 100 percent when program execution begins, or a
new execution cycle starts (assuming that the robot is attached to the program).

Examples

Enable the low-precision feature only for the next motion:

COARSE

Enable the low-precision feature for the next motion, with the tolerance settings changed to
150% of the standard tolerance for each joint (that is, a looser tolerance):

COARSE 150

Enable the low-precision feature until it is explicitly disabled:

COARSE ALWAYS

Related Keywords

CONFIG real-valued function

DELAY.IN.TOL program instruction

FINE program instruction

NONULL program instruction

NULL program instruction

SELECT program instruction

SELECT real-valued function

COARSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 128

COM operator

Syntax

... COM value ...

Function

Perform the binary complement operation on a value.

Usage Considerations

The word "com" cannot be used as a program name or variable name.

The COM operation is meaningful only when performed on an integer value. Only the integer
parts of real values are used. Any fractional parts are ignored.

Parameter

value Real-valued expression defining the value to be complemented.

Details

The COM operator performs the binary complement operation on a bit-by-bit basis, resulting
in a real value.

Specifically, the COM operation consists of the following steps:

1. Convert the operand to a sign-extended 32-bit integer, truncating any fractional part.

2. Perform a binary complement operation.

3. Convert the result back to a real value.

To review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Examples

For example:

COM 40 yields -41

Note that a very different result is obtainedwith the logical complement operation (NOT):

NOT 40 yields 0.0 (FALSE)

In this case, 40 is interpreted as logically TRUE since it is nonzero.

COM operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 129

CONFIG real-valued function

Syntax

CONFIG (select)

Function

Return a value that provides information about the robot's geometric configuration, or the
status of the motion servo-control features.

Usage Considerations

The CONFIG function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the CONFIG function causes an
error.

Parameter

select Optional real value, variable, or expression (interpreted as an integer)
that has a value from 0 to 13 and selects the category of the
configuration information to be returned. (See below for details.)

Details

This function returns a value that is interpreted as a series of bit flags. The interpretation of
the value returned by this function depends on the select parameter.

When the select parameter is omitted, or has the value 0, 1, or 2, the CONFIG function
returns a value that can be interpreted as bit flags indicating a geometric configuration of the
robot. That is, each bit in the value represents one characteristic of a robot configuration.

The parameter values in this group determine which robot configuration is returned by the
function:

Select Configuration information returned

0 The robot's current (instantaneous) configuration. (The default value is
0.)

1 The configuration the robot will achieve at the completion of the current
motion, or the current configuration if nomotion is in progress (and the
robot is attached).

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 130

Select Configuration information returned

NOTE: The result returned is not meaningful if the robot is not
attached.

2 The configuration the robot achieves at the completion of the next
motion (assuming that it is a joint-interpolated [not straight-line]
motion).

The interpretations of the bit flags returned by these selections are as follows:

Bit # Bit
Mask Indication if bit SET

1 1 Robot has righty
configuration

2 2 Robot has below
configuration

3 4 Robot has flipped
configuration

When the select parameter is 3, 4, or 5, the CONFIG function returns a value that can be
interpreted as bit flags indicating the settings of several robot motion servo-control features.
That is, each bit in the value represents the state of one motion servo-control feature.

The different parameter values in this group select which motion(s) will be affected by the
features settings reported by the function, as follows:

Select Configuration information returned

3 The permanent settings of the robot motion servo-control features. That
is, the settings defined by instructions that specify the ALWAYS qualifier.

4 The temporary settings for the motion currently executing, or the last
motion completed if nomotion is in progress.

5 The temporary settings that will apply to the next motion performed.

The interpretations of the bit flags returned by selections 3, 4, and 5 are as follows:

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 131

Bi-
t#

Bit
Mas-
k

Indicatio-
n if bit
CLEAR

Bit SET

1 1 (None) (None)

2 2 FINE
asserted

COARSE
asserted

3 4 NULL
asserted

NONULL
asserted

4 8 MULTIPLE
asserted

SINGLE
asserted

5 ^H1-
0

CPON
asserted

CPOFF
asserted

6 ^H2-
0

OVERLAP
asserted

NOOVERLA-
P asserted

When the select parameter is 6, 7, or 8, the CONFIG function returns a value that
represents the setting of the FINE tolerance.

Select FINE tolerance returned

6 The permanent setting, as a
percentage of the standard
tolerance.

7 The setting used for the
previous or current motion,
as a percentage of the
standard tolerance.

8 The setting to be used for the
next motion, as a percentage
of the standard tolerance.

When the select parameter is 9, 10, or 11, the CONFIG function returns a value that
represents the setting of the COARSE tolerance.

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 132

Select COARSE tolerance
returned

9 The permanent setting, as a
percentage of the standard
tolerance.

10 The setting used for the
previous or current motion, as
a percentage of the standard
tolerance.

11 The setting to be used for the
next motion, as a percentage
of the standard tolerance.

When the select parameter is 12, the available joint configuration options for the selected
robot are returned as shown below.

Bit # Bit Mask Indication if
bit set

1 1 Robot can have
lefty or righty
configuration.

2 2 Robot can have
above or below
configuration.

3 4 Robot can have
flipped or noflip
configuration.

18 ^H20000 Robot supports
the OVERLAP
and
NOOVERLAP
instructions.

22 ^H200000 Robot's last
rotary joint can
be limited to
±180 degrees

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 133

Bit # Bit Mask Indication if
bit set

(SINGLE or
MULTIPLE).

When the select parameter is 13, the type of robot motion is returned. The bit values
returned are shown below.

Bit # Bit Mask Description

1 1 This bit is set if
the motion is
joint
interpolated; it is
cleared for
straight-line
motion.

2 2 This bit is set if
the robot is
performing a
SPIN motion.

Related Keywords

ABOVE program instruction

BELOW program instruction

COARSE program instruction

CPOFF program instruction

CPON program instruction

FINE program instruction

FLIP program instruction

LEFTY program instruction

MULTIPLE program instruction

NOFLIP program instruction

NONULL program instruction

NOOVERLAP program instruction

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 134

NULL program instruction

OVERLAP program instruction

RIGHTY program instruction

SELECT program instruction

SELECT real-valued function

SINGLE program instruction

STATE real-valued function

CONFIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 135

COS real-valued function

Syntax

COS (angle)

Function

Return the trigonometric cosine of a given angle.

Usage Considerations

The angle parameter must be measured in degrees.

The parameter is interpreted as modulo 360 degrees, but excessively large values may cause
a loss of accuracy in the returned value.

Parameter

angle Real-valued expression that defines the angular value (in degrees) to be
considered.

Details

Returns the trigonometric cosine of the argument, which is assumed to be in degrees. The
resulting value is always in the range of -1.0 to +1.0, inclusive.

Examples

COS(0.5) ;Returns 0.999962
COS(-5.462) ;Returns 0.9954596
COS(60) ;Returns 0.4999999
COS(1.3125E+2) ;Returns -0.6593457

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LISTRmonitor commandwill display real values to full precision.

COS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 136

CP system switch

Syntax

... CP

Function

Control the continuous-path feature.

Details

The CP switch can be used to turn off continuous-path motion processing. For more
information on continuous path motion, see the section Continuous Path Trajectories in the
eV+ Language User's Guide.

This switch is enabledwhen the eV+ system is initialized.

Example

DISABLE CP ;Turn off continuous-path motion processing.

Related Keywords

BREAK program instruction

CPOFF program instruction

CPON program instruction

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

CP system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 137

CPOFF program instruction

Syntax

CPOFF ALWAYS

Function

Instruct the eV+ system to stop the robot at the completion of the next motion instruction
(or all subsequent motion instructions) and null position errors.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not specified.

CPON ALWAYS is assumedwhenever program execution is initiated andwhen a new
execution cycle begins.

The CPOFF instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies only to the robot selected
by the task.

If the eV+ system is not configured to control a robot, executing the CPOFF instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPOFF as the default condition. That
is, when ALWAYS is included in a CPOFF instruction, CPOFF will remain
in effect continuously until disabled by a CPON instruction. If ALWAYS is
not specified, the CPOFF instruction applies only to the next robot
motion.

Details

When CPOFF is in effect, the robot will be brought to a stop at the completion of the next
robot motion, and any final position errors will be nulled (if required).

Unlike the BREAK instruction, which is executed after amotion to cause continuous-path
processing to terminate, CPON and CPOFF are executed before amotion instruction to affect
the continuous-path processing of the next motion instruction. Also, while BREAK applies to
only one motion instruction, CPOFF can apply to all the motion instructions that follow.

NOTE: The BREAK instruction causes continuous-path processing to terminate by
blocking eV+ program execution until the motion ends. CPOFF causes the trajectory
generator to terminate continuous path without affecting the forward processing of the
eV+ program.

CPOFF program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 138

If the CP system switch is disabled, continuous-path processing never occurs regardless of
any CPON or CPOFF instructions.

Related Keywords

BREAK program instruction

CP system switch

CPON program instruction

SELECT program instruction

SELECT real-valued function

CPOFF program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 139

CPON program instruction

Syntax

CPON ALWAYS

Function

Instruct the eV+ system to execute the next motion instruction (or all subsequent motion
instructions) as part of a continuous path.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not specified.

This is the default state of the eV+ system. CPON ALWAYS is assumedwhenever program
execution is initiated andwhen a new execution cycle begins.

The CPON instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies only to the robot selected
by the task.

If the eV+ system is not configured to control a robot, executing the CPON instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes CPON as the default condition. That
is, if ALWAYS is specified, CPON will remain in effect continuously until
disabled by a CPOFF instruction. If ALWAYS is not specified, the CPON
instruction applies only to the next robot motion.

Details

When CPON is in effect, it is possible to execute a series of motion instructions that are
blended into a single continuous path. That is, each motion will be performed in succession
without stopping the robot at specified locations.

Unlike the BREAK instruction, which is executed after amotion to cause continuous-path
processing to terminate, CPON and CPOFF are executed before amotion instruction to affect
the continuous-path processing of the next motion instruction.

NOTE: The BREAK instruction causes continuous-path processing to terminate by
blocking eV+ program execution until the motion ends. CPOFF causes the trajectory
generator to terminate continuous path without affecting the forward processing of the
eV+ program.

CPON program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 140

While asserting CPON permits continuous-path processing to occur, any of the following
conditions will break a continuous path and override CPON:

l No subsequent motion instruction is executed before completion of the next motion
instruction.

l CP system switch is disabled.

(If the CP system switch is disabled, continuous-path processing never occurs,
regardless of any CPON or CPOFF instructions.)

l The next motion instruction is followed by an instruction that explicitly or implicitly
causes motion termination (for example, BREAK, OPENI).

Related Keywords

BREAK program instruction

CP system switch

CPOFF program instruction

SELECT program instruction

SELECT real-valued function

CPON program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 141

CYCLE.END program instruction

Syntax

CYCLE.END task_num, stop_flag

Function

Terminate the executing program in the specified task the next time it executes a STOP
program instruction (or its equivalent).

Suspend processing of an executable program until a program running in the specified task
completes execution.

Usage Considerations

The CYCLE.END instruction has no effect if the specified program task is not active.

The CYCLE.END instruction suspends execution of the program containing the instruction
until the specified program task completes execution. If a program is aborted while its
execution is suspended by a CYCLE.END instruction, the program task specified by the
CYCLE.END instruction will still be terminated (if the stop_flag is TRUE).

Parameters

task_num Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be monitored or
terminated.

If the task number is not specified, the CYCLE.END instruction
always accesses task #0.

stop_flag Optional real value, variable, or expression interpreted as a logical
(TRUE or FALSE) value. If the parameter is omitted or has the value
0, the specified task is not stopped-but the CYCLE.END has all its
other effects (see below). If the parameter has a nonzero value, the
selected task stops at the end of its current cycle.

Details

If the stop_flag parameter has a TRUE value, the specified program task will terminate the
next time it executes a STOP program instruction (or its equivalent), regardless of how many
program cycles are left to be executed.

NOTE: CYCLE.END will not terminate a program with continuous internal loops. Such a
program must be terminated with the ABORT command or instruction.

CYCLE.END program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 142

Regardless of the stop_flag parameter, this instruction will wait until the program actually is
terminated. If the program being terminated loops internally so that the current execution
cycle never ends, the CYCLE.END instruction will wait forever.

To proceed from a CYCLE.END that is waiting for a program to terminate, abort the program
that is waiting for a CYCLE.END by typing an ABORT command for the program task that
executed the CYCLE.END instruction.

Example

The following program segment shows how a program task can be initiated from another
program task (the ABORT and CYCLE.END program instructions are used tomake sure the
specified program task is not already active):

ABORT 3 ;Abort any program already active
CYCLE.END 3 ;Wait for execution to abort
EXECUTE 3 new.program ;Start up the new program

Related Keywords

ABORTmonitor command

ABORT program instruction

CYCLE.ENDmonitor command

EXECUTE monitor command

EXECUTE program instruction

KILL monitor command

KILL program instruction

STATUSmonitor command

STATUS real-valued function

STOP program instruction

CYCLE.END program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 143

DBLB real-valued function

Syntax

DBLB ($string, first_char)

Function

Return the value of eight bytes of a string interpreted as an IEEE double-precision floating-
point number.

Parameters

$string String expression that contains the eight bytes to be converted.

first_char Optional real-valued expression that specifies the position of the first
of the eight bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first eight bytes of
the string are extracted.

If first_char is greater than 1, it is interpreted as the character
position for the first byte. For example, a value of 2 means that the
second through ninth bytes are extracted.

If first_char specifies eight bytes that are beyond the end of the input
string, an error is generated .

Details

Eight sequential bytes of the given string are interpreted as being a double-precision (64-bit)
floating-point number in the IEEE standard format. This 64-bit field is interpreted as follows:

where

s is the sign bit, s = 0 for positive, s = 1 for negative.

exp is the binary exponent, biased by -1023.

fraction is a binary fraction with an implied 1 to the left of the binary point.

DBLB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 144

For 0 < exp< 2047, the value of a floating point number is:

-1s * (1.fraction) * 2exp -1023

Double-precision real values have the following special values:

exp fraction Description

0 Zero Zero value

0 Nonzero Denormalized
number

2047 Zero Signed infinity

2047 Nonzero Not-a-number

The range for normalized numbers is approximately 2.2 x 10-308 to 1.8 x 10307

The main use of this function is to convert a binary floating-point number from an input data
record to a value that can be used internally by eV+.

Example

DBLB($CHR(^H3F)+$CHR(^HF0)+$CHR(0)+$CHR(0)
+$CHR(0)+$CHR(0)+$CHR(0)+$CHR(0)) ;Returns 1.0

Related Keywords

ASC real-valued function

$DBLB string function

DOUBLE (type keyword for AUTO, GLOBAL, and LOCAL)

FLTB real-valued function

$FLTB string function

INTB real-valued function

TRANSB transformation function

VAL real-valued function

DBLB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 145

$DBLB string function

Syntax

$DBLB (value)

Function

Return an 8-byte string containing the binary representation of a real value in double-
precision IEEE floating-point format.

Parameter

value Real-valued expression, the value of which is converted to its IEEE
floating-point binary representation.

Details

A real value is converted to its binary representation using the IEEE double-precision
standard floating-point format. This 64-bit value is packed as eight successive 8-bit
characters in a string. See the DBLB real-valued function for a more detailed description of
IEEE floating-point format.

The main use of this function is to convert a double-precision real value to its binary
representation in an output record of a data file.

Example
$DBLB(1.215)

Returns a character string equivalent to:

$CHR(^H3F)+$CHR(^H3F)+$CHR(^H70)+
$CHR(^HA3)+$CHR(^HD7)+$CHR(^H0A)+$CHR(^H3D)+$CHR(^H71)

Related Keywords

$CHR string function

DOUBLE (type keyword for AUTO, GLOBAL, and LOCAL)

$FLTB string function

FLTB real-valued function

$INTB string function

$TRANSB string function

$DBLB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 146

DCB real-valued function

Syntax

DCB (value)

Function

Convert BCD digits into an equivalent integer value.

Usage Considerations

Nomore than four BCD digits can be converted.

The DCB function is most often usedwith the BITS real-valued function to decode input from
the digital input signal lines.

Parameter

value Real value interpreted as a binary bit pattern representing up to four
BCD digits.

NOTE: An error is reported if any digit is not a valid BCD digit. That is, if a digit is greater
than 9.

Example

If external input signals 1001-1008 (8 bits of input) receive two BCD digits from an external
device, then the instruction

input = DCB(BITS(1001, 8))

sets the real variable input equal to the integer equivalent of the BCD input on the specified
signals.

Related Keyword

BCD real-valued function

DCB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 147

DECEL.100 system switch

Syntax

... DECEL.100[robot_num]

Function

Enable or disable the use of 100 percent as the maximum deceleration for the ACCEL
program instruction.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an integer)
that indicates the number of the robot affected. If the index is
omitted or zero in an ENABLE or DISABLE command or instruction,
the settings for all robots are altered. Otherwise, only the setting for
the specified robot is affected.

Details

When DECEL.100 is enabled for the selected robot, the maximum deceleration percentage
defined by the SPEC utility program is ignored, and amaximum deceleration of 100% is used
instead. This maximum is used to limit the value specified by the ACCEL program instruction.
By default, DECEL.100 is disabled for all robots.

Example

DECEL.100[2] ;Cause ACCEL to use 100% for maximum
;deceleration for robot #2

Related Keywords

ACCEL program instruction

ACCEL real-valued function

SPEEDmonitor command

SPEED program instruction

DECEL.100 system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 148

$DECODE string function

Syntax

$DECODE ($string_var, string_exp,mode)

Function

Extract part of a string as delimited by given break characters.

Usage Considerations

$DECODE modifies the input $string_var variable as well as returning a string value.

The test for break characters is always performedwithout regard for the case of the
characters in the input string.

The break characters are treated as individual characters, independent of the other
characters in the string that defines them.

Parameters

$string_
var

String variable that contains the string to be scanned. After the
function is processed, this variable will contain the portion of the
original string that was not returned as the function value.

NOTE: This parameter is modified by the function and cannot be specified as a string
constant or expression.

If the program causes the same variable to receive the function value, the variable
will end up containing the value returned by the function.

string_exp String constant, variable, or expression that defines the individual
break characters, which are to be considered as separating the
substrings of interest in the input string value. (The order of the
characters in this string has no effect on the function operation.)

mode Optional real value, variable, or expression that controls the
operation performed by the function. Mode values are -3, -2, 0, and
1.

If the mode is negative or zero, or is omitted, characters up to the
first break character are removed from the input string and returned
as the output of the function.

If the mode is greater than zero, characters up to the first nonbreak
character are removed from the input string and returned as the

$DECODE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 149

output of the function. That is, this case returns all the leading break
characters in the input string.

Details

This function is used to scan an input string and return the initial substring, as delimited by
any of a group of break characters. After the substring is returned by the function, it is
deleted from the input string.

The string returned (and deleted) can either contain no break characters (mode 0), or
nothing but break characters (mode 1). That is, $DECODE can return (and delete) all the
characters up to the first break character-usually some desired substring; or the function can
return (and delete) all the leading break characters-which are usually discarded.

By alternating the modes, groups of desired characters can be picked from the input string
(see the first example below).

The modes -2 and -3 copy all nonbreak characters up to the first break characters plus the
first break character. Mode -2 is equivalent to the following instructions:

$s = $DECODE($i,$break,0) ;Extract up to 1st break character
$s = $s+$MID($i,1,1) ;Add on 1st break character
$i = $MID($i,2,127) ;Remove the break character

The following instruction can perform these operations:

$s = $DECODE($i,$break,-2) ;Extract through 1st break character

Mode -3 is equivalent to mode -2 if a break character is present. However, if no break
character is contained in the input string, mode -3 returns an empty string and leaves the
input string unchanged.

Examples

The instructions below pick off consecutive numbers from the string $input, assuming that
the numbers are separated by some combination of spaces and commas.

The first instruction within the DO structure sets the variable $temp to the substring from
$input that contains the first number (and removes that substring from $input). The VAL
function is used to convert the numeric string into its corresponding real value, which is
assigned to the next element of the real array value. The $DECODE function is used a second
time to extract the characters that separate the numbers (the characters found are ignored).

i = 0 ;Set array index
DO

$temp = $DECODE($string_var," ,",0) ;Pick off a number
string

value[i] = VAL($temp) ;Convert to real value
$temp = $DECODE($string_var," ,",1) ;Discard spaces and

$DECODE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 150

commas
i = i+1 ;Advance the array

index
UNTIL $string_var == "" ;Stop when input is
empty

In a case where $string_var contains a sequence of numeric values (as strings) separated by
spaces, commas, or any combination of spaces and commas, such as

$string_var = "1234. 93465.2, .4358,3458103"

executing the above instructions results in the first four elements of the value array having
the following values:

value[0] = 1234.0
value[1] = 93465.2
value[2] = 0.4358
value[3] = 3458103.0

The string variable input ($string_var) also contains an empty string ("").

As shown above, use of the $DECODE function normally involves two string variables: the
input variable and the output variable. If you are interested only in the characters up to the
first break character, andwant to discard all the characters that follow, the same variable
can be used for both input and output. In the following instruction, for example, the same
variable is used on both sides of the equal sign because the programmer wants to discard all
the white space (that is, space and tab) characters at the end of the input string.

NOTE: The break characters are specified by a string expression consisting of a space
character and a tab character.

$line = $DECODE($line," "+$CHR(9),0) ;Discard trailing blanks

Related Keywords

$TRUNCATE string function

$MID string function

$DECODE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 151

DECOMPOSE program instruction

Syntax

DECOMPOSE array_name[index] = location

Function

Extract the (real) values of individual components of a location value.

Parameters

array_name Name of the real-valued array that has its elements defined.

index Optional integer value(s) that identifies the first array element to
be defined. Zero will be assumed for any omitted index. If a
multiple-dimension array is specified, only the right-most index is
incremented as the values are assigned.

location Location value that is decomposed into its component values.
This can be a transformation value or a precision-point value, and
can be defined by a variable or a location-valued function.

Details

This instruction assigns values to consecutive elements of the named array, corresponding
to the components of the specified location.

If the location is represented as a transformation value, six elements are defined,
corresponding to X, Y, Z, yaw, pitch, and roll.

If the location is represented as a precision-point value, then from one to twelve elements
are defined (depending on the number of robot joints), that correspond to the individual joint
positions.

Examples

The following code assigns the components of transformation part to elements 0 to 5 of
array x:

DECOMPOSE x[] = part

The following code assigns the components of precision point #pick to array element angles
[4] and those that follow it:

DECOMPOSE angles[4] = #pick

DECOMPOSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 152

Related Keywords

#PPOINT precision-point function

TRANS transformation function

DECOMPOSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 153

$DEFAULT string function

Syntax

$DEFAULT (mode)

Function

Return a string containing the current or initial system default device, unit, and directory
path for disk file access.

Usage Considerations

Parentheses must be included even when mode is omitted.

Parameter

mode Optional real value, variable, or expression (interpreted as an integer)
that specifies the default path to be returned, as follows:

l If the parameter is omitted, or has the value zero, the current
system default path is returned.

l If the parameter has the value one, the default path returned is
the one that was in effect immediately after the eV+ system was
booted from disk.

Details

The system default device, unit, and directory path can be set by the CD or DEFAULTmonitor
command. The $DEFAULT function returns the current or initial default values as a string.
The string contains the portions of the following information that have been set:

device>disk_unit:directory_path

where

device is one of the following:

DISK a local disk

SYSTEM a disk device, drive, and subdirectory path
currently set with the DEFAULT command

For more details on valid devices, see the ATTACH program
instruction on page 67.

$DEFAULT string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 154

disk_unit is the disk unit specified to the DEFAULTmonitor command. The
colon (:) is omitted if no unit was specified.

directory_path is any input to the DEFAULT command that followed the device
and unit. The directory path is omitted if no additional input was
specified.

Example

The following commands set the default drive specification to DISK>D:\TEST\, and then
display it on the terminal for confirmation:

DEFAULT = DISK>D:\TEST\ LISTS $DEFAULT()

Related Keywords

CDmonitor command

DEFAULTmonitor command

$DEFAULT string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 155

DEFBELT program instruction

Syntax

DEFBELT %belt_var = nom_trans, belt_num, vel_avg, scale_fact

Function

Define a belt variable for use with a conveyor tracking robot.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The DEFBELT program instruction supports up to six belt encoders, depending on the
hardware configuration.

The BELT switch must be enabled for this instruction to be executed.

The DEFBELT program instruction cannot be executed while the robot is moving relative to
the specified belt variable.

When a belt variable is initialized using this instruction, its window parameters are set to
allow any location in the working volume of the robot. That is, no belt window is set. (See the
WINDOW program instruction.)

When a belt variable is initialized with the DEFBELT program instruction, error checking is
initiated for the associated belt encoder. This error checking can be turned off by disabling
the BELT system switch or by using the ZERO command to reinitialize the eV+ system.

Parameters

%belt_var Name of the belt variable to be defined. (All appearances of belt
variables must be prefixed with the percent character [%].)

nom_trans Transformation value that defines the position and orientation of
the conveyor belt. This can be provided by a transformation
variable, a transformation-valued function, or a compound
transformation.

The X axis of the nominal transformation defines the direction of
travel of the belt. Normally, the belt moves along the direction of
+X. The X-Y plane defined by this transformation is parallel to the
surface of the belt. The (X, Y, Z) position defined by the nominal
transformation defines the approximate center of the belt with
respect to the robot.

belt_num The number of the encoder used for reading the instantaneous

DEFBELT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 156

location of the belt. Belts numbered from 1 to 6 can be specified.
This can be specified with a constant, a variable, or an expression.

vel_avg (This parameter is currently ignored, but some value must be
provided.)

scale_fact The calibration constant that relates motion of the conveyor belt
with counts of the encoder mounted on the conveyor. This value
(which can be supplied as a constant, a real variable, or an
expression) is interpreted as having the units in millimeters of belt
travel per encoder count.

Details

A conveyor belt is modeled by a belt variable. In addition to the parameters for the DEFBELT
program instruction, a belt variable contains the following information:

l Window parameters, which define the working range of the robot along the belt. (Set
with the WINDOW instruction.)

l An encoder offset, which is used to adjust the origin of the belt frame of reference. (Set
with the SETBELT instruction.)

Belt variables have the following characteristics:

l Belt variable namesmust always be preceded by the percent character (%), for
example,%main.belt. Otherwise, the normal rules for variable names apply.

l Belt variable arrays are allowed, for example,%b[x].

l Belt variables can be passed as subroutine parameters just like other variables.

l Belt variables can be defined only with the DEFBELT instruction-there is no
assignment instruction for them. Thus, the following are not valid instructions:

%new_belt = %old_belt
SET %new_belt = %old_belt

l Belt variables cannot be stored on amass-storage device. (Variables used to define the
parameters in a DEFBELT instruction can be stored, however.)

Example

The following instruction defines the belt variable %belt.var. The value of b.num must be the
number of the encoder to be associated with this belt variable. The variable b.num is also
used as an index for arrays of data describing the position and orientation of the belt, its
velocity smoothing, and the encoder scale factor.

DEFBELT %belt.var = belt.nom[b.num], b.num, v.avg[b.num], belt.sf

DEFBELT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 157

[b.num]

Related Keywords

BELT system switch

BELT system switch

BELT.MODE system parameter

BSTATUS real-valued function

SETBELT program instruction

WINDOW program instruction

WINDOW real-valued function

DEFBELT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 158

DEFINED real-valued function

Syntax

DEFINED (var_name)

Function

Determine whether a variable has been defined.

Parameter

var_name The name of a location, string, or real variable. Both scalar
variables and array variables are permitted. A location variable can
be a transformation, a precision point, or a belt variable.

Details

The value of the specified variable is tested. If the value is defined, the function returns the
value TRUE. Otherwise, the value FALSE is returned.

For array variables, if a specific array element is specified, the single array element is tested.
If no array element is specified, this function returns a TRUE value if any element of the
array is defined.

NOTE: For nonreal arguments (i.e., strings, locations, transformations) that are passed
in the argument list of a CALL statement, you can test to see if the variable is defined or
not. However, you cannot assign a value to undefined nonreal arguments within the
CALLed program. If you attempt to assign a value to an undefined nonreal argument, you
receive an undefined value error message.

Therefore, when using DEFINED to test for user input, be sure to assign a default value to
the variable before testing it. See the example below.

Examples

.PROGRAM test($s)
AUTO $tmp
$tmp = "default"
IF DEFINED($s) THEN

$tmp = $s
END
TYPE /C3 "The string is: ", $tmp

When the example above is executed with a value:

ex test("ABCD")

DEFINED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 159

the routine returns:

The string is: ABCD

When the example above is executed without a value:

ex test()

the routine returns:

The string is: default

The instruction:

DEFINED(base_part)

returns a value of TRUE if the variable base_part is defined.

The instruction:

DEFINED(corner[])

returns a value of TRUE if any element of the array corner has been defined.

Related Keywords

STATUS real-valued function

TESTPmonitor command

DEFINED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 160

DELAY program instruction

Syntax

DELAY time

Function

Cause robot motion to stop for the specified time.

Usage Considerations

The robot stops during the delay, but the wait and nulling normally associated with a motion
BREAK do not occur.

Program execution continues during the delay, up to the next motion instruction in the
program. (eV+ system timers can be used to control the timing of program execution. The
DELAY instruction should not be used for that purpose.)

The DELAY instruction is interpreted as a straight-line move-to-here motion instruction.
(See below for the consequences of that interpretation.)

The DELAY instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the DELAY instruction
causes an error.

If the AMOVE instruction has been executed to prepare for motion of an extra axis, execution
of the DELAY instruction cancels the effect of the AMOVE instruction.

Parameter

time Real value, variable, or expression that specifies the length of time, in
seconds, that the robot is to pause.

A time value less than 0.016 (16 milliseconds) results in a 16-
millisecond delay.

Details

The DELAY instruction is processed as a robot motion. As a result, the following
consequences occur when a DELAY is executed:

1. Any pending hand actuation takes place during the execution of the DELAY
instruction.

2. Any temporary trajectory switches that have been specified are cleared after the

DELAY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 161

conclusion of the delay.

3. Any pending configuration change is canceled.

NOTE:When DRY.RUN mode is in effect, DELAY instructions do not cause any delay.

Examples

DELAY 2.5

Causes all robot motion to stop for 2.5 seconds and any pending hand operation to occur.
Clears any temporary trajectory switches that may be set, and cancels any pending requests
for configuration change.

DELAY pause.1

Stops all robot motion for pause.1 seconds.

Related Keywords

DURATION program instruction

SELECT program instruction

SELECT real-valued function

DELAY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 162

DELAY.IN.TOL system switch

Syntax

... DELAY.IN.TOL [robot_num]

Function

Controls the timing of COARSE or FINE nulling after eV+ completes a motion segment.

Parameter

robot_
num

Optional real value, variable, or expression (interpreted as an integer)
that indicates the number of the robot affected. If the index is omitted
or zero in an ENABLE or DISABLE command or instruction, the settings
for all robots are altered. Otherwise, only the setting for the specified
robot is affected.

Details

The DELAY.IN.TOL system switch is disabled by default for all robot device modules, except
the Delta robot device module.

If the switch is disabled, COARSE or FINE nulling completes whenever eV+ has completed a
motion segment and the robot is tracking the trajectory to within the coarse or fine
tolerance. The actual robot location might not be within the tolerance of the endpoint.

If the switch is enabled, COARSE or FINE nulling completes whenever eV+ has completed a
motion segment and the actual robot location is within the specified coarse or fine tolerance
of the endpointof that motion segment.

Usage Considerations

For many applications, enabling this switch produces the best nulling behavior. However, the
switch should be disabled for backward compatibility with previous eV+ systems.

Related Keywords

COARSE program instruction

FINE program instruction

NULL program instruction

NONULL program instruction

DELAY.IN.TOL system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 163

DELAY.POWER.OFF system switch

Syntax

... DELAY.POWER.OFF

Function

Enable/disable the ESTOP timer delay feature for servo errors.

Usage Considerations

This switch is only operational for systems equippedwith an AWC-II board as the main CPU.
For program compatibility, the DELAY.POWER.OFF system switch is recognized by eV+
systems for both AWC-II-based controllers and SmartController systems, but the switch has
no effect on the latter.

Details

When DELAY.POWER.OFF is disabled (default), servo errors will cause the robot power to be
disabled immediately, without an ESTOP timer delay.

When DELAY.POWER.OFF is enabled, servo errors will use the ESTOP timer delay function
just as if the ESTOP button had been pressed.

DELAY.POWER.OFF system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 164

DEPART and DEPARTS program instruction

Syntax

DEPART distance

DEPARTS distance

Function

Start a robot motion away from the current location.

Usage Considerations

DEPART causes a joint-interpolatedmotion.

DEPARTS causes a straight-line motion, during which no changes in configuration are
permitted.

These instructions can be executed by any program task as long as the task has attached a
robot. The instructions apply to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Parameter

distance Real-valued expression that specifies the distance (in millimeters) along
the robot tool Z axis between the current robot location and the desired
destination.

A positive distance moves the tool back (toward negative tool Z) from
the current location; a negative distance moves the tool forward
(toward positive tool Z).

Details

These instructions initiate a robot motion to a new location, which is offset from the current
location by the distance given, measured along the current tool Z axis.

Examples

DEPART 80

Moves the robot tool 80 millimeters back from its current location using a joint-interpolated
motion.

DEPARTS 2*offset

DEPART and DEPARTS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 165

Withdraws the robot tool (2 * offset)millimeters along a straight-line path from its current
location.

Related Keywords

APPRO program instruction

APPROS program instruction

MOVE program instruction

MOVES program instruction

MOVEF program instruction

MOVESF program instruction

SELECT program instruction

SELECT real-valued function

DEPART and DEPARTS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 166

DEST transformation function

Syntax

DEST

Function

Return a transformation value representing the planned destination location for the current
robot motion.

Usage Considerations

The DEST function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the DEST function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

The word "dest" cannot be used as a program name or variable name.

Details

DEST returns the location to which a robot wasmoving when its motion was interrupted.
This applies for all motion instructions, including:

1. Motions to named locations, such as

MOVE start
MOVES #part[10]

Note that even though the second instruction references a precision-point location
variable, the DEST function returns a transformation value during that motion.

2. Motions to locations defined relative to named locations or defined relative to the
current robot location

APPROS drop, 50.00
DEPART 30.00
MOVE SHIFT(HERE BY 50,0,10)

3. Motions to special locations such as

READY

The location value returned by the DEST function may not be the same as the location at
which the robot stops if the motion of the robot is interrupted for some reason. For example,
if the RUN/HOLD button on the pendant is pressed, the robot stops immediately, but DEST
still returns the location to which the robot wasmoving.

DEST transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 167

If a motion is not begun because eV+ realizes the destination location cannot be reached (for
example, it is too far from the robot), then DEST is not set to the goal location.

Example

The DEST function is useful, for example, for continuing amotion that has been interrupted
by a reaction initiated by a REACTI instruction. The subroutine automatically invoked can
contain steps such as the following to process the interruption and resume the original
motion.

SET save = HERE ;Record where the robot is
SET old.dest = DEST ;Record where the robot was going
old.speed = SPEED(3) ;Record the current motion speed
DEPART 50.0 ;Back away a safe distance

.

.

.
APPRO save, 50.0 ;Return to the original motion path
MOVES save ;...back to where we left
SPEED old.speed ;Restore the original motion speed
MOVES old.dest ;Continue toward original destination

Related Keywords

HERE transformation function

#PDEST precision-point function

SELECT program instruction

SELECT real-valued function

DEST transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 168

DETACH program instruction

Syntax

DETACH (logical_unit)

Function

Release a specified device from the control of the application program.

Usage Considerations

Detaching the robot causes a BREAK in continuous-path motion.

DETACH automatically forces an FCLOSE if a disk file or graphics window is open on the
specified device.

The robot is automatically attached to task 0 when the EXECUTE monitor command or
program instruction is processed to initiate that task and the DRY.RUN system switch is
disabled. All the other logical units are automatically detachedwhen program execution
begins. (Other events that cause automatic detachment are listed below.)

Parameter

logical_unit Optional real value, variable, or expression (interpreted as an
integer) that identifies the device to be detached. (See the ATTACH
instruction for a description of logical unit numbers.)

The parentheses can be omitted if the logical unit number is
omitted (causing the robot to be detached).

Details

This instruction releases the specified device from control by the application program. (No
error is generated if the device was not attached.)

Control of the specified device can be returned to the program with the ATTACH instruction.

When logical_unit is 0 (or is omitted), the program releases control of the robot. While the
robot is detached, robot power can be turned off and on, the pendant can be used tomove
the robot, and a different robot can be selected (if more than one robot is connected to the
system controller). A delay of one system cycle (16 ms) occurs when a robot is detached.

This is useful for applications that require you to define where the robot should be located for
certain operations. For such tasks a teaching program can DETACH the robot and then
output directions to you on the system terminal or the pendant. You can then use the
pendant to move the robot to the desired locations. The system terminal or the pendant can
be used for accepting input from you (the latter can be read by using the PENDANT function).

DETACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 169

When a disk logical unit is detached, any device that was specified by the corresponding
ATTACH instruction is forgotten. Thus, a subsequent ATTACH instruction must specify the
device again if the default device is not desired.

The following events automatically DETACH all the logical units (except the robot) from the
affected program task:

l Processing of the EXECUTE command and instruction

l Processing of the KILL command and instruction

l Processing of the ZERO command

l Normal completion of program execution

Note, however, that if a program terminates execution "abnormally", all of its devices remain
attached, except that the terminal and the manual control pendant are detached. (Abnormal
termination of program execution refers to any cause other than HALT or STOP instructions.)
If the task is subsequently resumed, the program automatically reattaches the terminal and
pendant if they were attached before the termination.

NOTE: It is possible that another program task attached the terminal or pendant in the
meantime. This results in an error message when the stopped task is restarted.

DETACH ;Release program control of the robot.
DETACH (1) ;Discontinue program control of the

;manual control pendant.

Related Keyword

ATTACH program instruction

DETACH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 170

DEVICE program instruction

Syntax

DEVICE (type, unit, error, p1, p2, ...) out[i], in[j], out_trans, in_trans

Function

Send a command or data to an external device and, optionally, return data back to the
program. (The actual operation performed depends on the device referenced.)

Usage Considerations

The syntax contains optional parameters that apply only to specific device types and
commands.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder
1 = (Not used)
2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision
5 = 1394 bus (for Omron Adept use only)

unit Real value, variable, or expression (interpreted as an integer) that
indicates the device unit number. The value must be in the range 0 to
(max -1), where max is the maximum number of devices of the
specified type. The value should be 0 if there is only one device of the
given type.

error Optional real variable that receives a standard system error number if
this instruction failed. If this parameter is omitted, any device error
stops program execution. If the error parameter is specified, the
program must explicitly check it to detect errors.

p1, p2,
...

Optional real values, variables, or expressions, the values of which are
sent to the device as part of the command. The number of parameters
specified, and their meanings, depend upon the particular device type
being accessed.

DEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 171

out[] Optional real array that contains data values that are sent to the device
as part of a command. The actual data sent depends upon the device
type and command being sent to the device.

i Optional real value, variable, or expression (interpreted as an integer)
that indicates the first array element to be considered in the array out
[]. Element 0 is accessed first if no index is specified.

in[] Optional real array that receives any data values returned from the
device as the result of the command. The actual data returned depends
upon the device type and the command.

j Optional real value, variable, or expression (interpreted as an integer)
that indicates the first array element to be filled in the array in[].
Element 0 is accessed first if no index is specified.

out_
trans

Optional transformation variable, function, or compound
transformation that defines a transformation value to be sent to the
device as part of the command. The actual data sent depends on the
device type and the command.

in_trans Optional transformation variable that receives a data value returned
from the device as the result of a command. The actual data returned
depends upon the device type and the command.

Details

DEVICE is a general-purpose instruction for accessing external devices. For more information
and examples, see the section External Encoder Device in the eV+ Language User's Guide.)

Related Keywords

DEVICE real-valued function

DEVICES program instruction

SETDEVICE program instruction

DEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 172

DEVICE real-valued function

Syntax

DEVICE (type, unit,error, p1, p2,...)

Function

Return a real value from a specified device. The value may be data or status information,
depending upon the device and the parameters.

Usage Considerations

The syntax contains optional parameters that may be useful only for specific device types
and information requests.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder
1 = (Not used)
2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision
5 = 1394 bus (for Omron Adept use only)

unit Real value that indicates the device unit number. The value must be in
the range 0 to (max -1), where max is the maximum number of devices
of the specified type. The value should be 0 if there is only one device of
the given type.

error Optional real variable that receives a standard system error number,
which indicates if this function succeeded or failed. If this parameter is
omitted, any device error stops program execution. If error is specified,
the program must check it to detect errors.

p1, p2,
...

Optional real values that are sent to the device as part of the request.
The number of values specified and the meanings of the values depend
upon the particular device type.

DEVICE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 173

Details

DEVICE is a general-purpose function for returning data and status information from external
devices. For details and examples see the supplementary documentation for specific devices.

For information on use of the DEVICE function to access external encoders, see the section
External Encoder Device in the eV+ Language User's Guide.

For systems equippedwith ACE Sight, the DEVICE instruction is used to configure vision
system memory allocation and frame buffer configuration.

Related Keywords

DEVICE program instruction

DEVICES program instruction

SETDEVICE program instruction

DEVICE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 174

DEVICES program instruction

Syntax

DEVICES (type, unit, error, p1, p2, ...) $out, $in

Function

Send a command or data to an external device and optionally return data. The actual
operation performed depends on the device referenced.

Usage Considerations

The syntax contains optional parameters that may be useful only for specific device types
and commands.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder
1 = (Not used)
2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision
5 = 1394 bus (for Omron Adept use only)

unit Real value that indicates the device unit number. The value must be in
the range 0 to (max -1), where max is the maximum number of devices
of the specified type. The value should be 0 if there is only one device of
the given type.

error Optional real variable that receives a standard system error number if
this instruction failed. If this parameter is omitted, any device error
stops program execution. If the error parameter is specified, the
program must check it to detect errors. The value is negative if there
was an error. Otherwise, the positive value indicates the number of
data bytes that were returned in the $in parameter.

p1, p2,
...

Optional real values that are sent to the device as part of a command.
The number of values specified and the meanings of the values depend
upon the particular device type.

DEVICES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 175

$out Optional string expression, variable, or array that defines a string value
to be sent to the device as part of the command. The actual data that
should be sent depends upon the device type and the command.

When the $out parameter is specified as an array, the total length of
the string value must be less than or equal to 520 bytes.

If an array is specified, and no index is specified, element 0 is accessed
first.

$in Optional string variable or array that receives any data values returned
from a device as the result of the command. The actual data returned
depends upon the device type and the command.

The error variable receives the number of input bytes returned.When
the $in parameter is specified as an array, up to 512 bytes may be
returned, packed in up to four successive string array elements.

If an array is specified, and no index is specified, element 0 is accessed
first.

Details

DEVICES is a general-purpose instruction for accessing external devices. It is similar to the
DEVICE program instruction except that data items are sent and received as strings rather
than real values.

NOTE: Similar to the CALL and CALLS instruction pair, this instruction is a string-based
version of the DEVICE instruction. Thus, the name DEVICES can be thought of as "device
s", rather than the plural of "device".

For details and examples see the supplementary documentation for specific devices.

Related Keywords

DEVICE program instruction

DEVICE real-valued function

SETDEVICE program instruction

DEVICES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 176

DISABLE program instruction

Syntax

DISABLE switch, ... , switch

Function

Turn off one or more system control switches.

Usage Considerations

If a specified switch accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned off.

The name can be abbreviated to the minimum length that uniquely
identifies the switch. That is, for example, the MESSAGES switch can be
referred to with ME since there is no other switch with a name
beginning with the letters ME.

Details

System switches control various aspects of the operation of the eV+ system, including some
optional subsystems such as vision. The Switch entry in the index for this document directs
you to the detailed descriptions of these switches.

Other system switches are available when options are installed. Refer to the option
documentation for details.

When a switch is disabled, or turned off, the feature it controls is no longer functional or
available for use. Turning a switch on with the ENABLE monitor command or program
instruction makes the associated feature functional or available for use.

NOTE: The system switches are shared by all the program tasks. Thus, care should be
exercised when multiple tasks are disabling and enabling switches-otherwise, the
switches may not be set correctly for one or more of the tasks. Disabling the DRY.RUN
switch does not have an effect until the next EXECUTE command or instruction is
processed for task #0, an ATTACH instruction is executed for the robot, or a CALIBRATE
command or instruction is processed.

DISABLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 177

The SWITCHmonitor command or the SWITCH real-valued function can be used to
determine the status of a switch at any time. The SWITCH program instruction can be used,
like the DISABLE instruction, to disable a switch.

Example

DISABLE MESSAGES ;Turns off the MESSAGES switch.

Related Keywords

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

DISABLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 178

DISTANCE real-valued function

Syntax

DISTANCE (location_1, location_2)

Function

Determine the distance between the points defined by two location values.

Parameter

location_1 Transformation value that defines the first point of interest. This
can be a function, a variable, or a compound transformation.

location_2 Transformation value that defines the second point of interest. This
can be a function, a variable, or a compound transformation.

Details

Returns the distance in millimeters between the points defined by the two specified
locations. The order in which the locations are specified does not matter. Also, the
orientations defined by the locations have no effect on the value returned.

Example

The statement

x = DISTANCE(HERE, part)

sets the value of the real variable x to be the distance between where the robot tool point is
currently located and the point defined by the transformation part.

Related Keyword

IDENTICAL real-valued function

DISTANCE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 179

DN.RESTART program instruction

Syntax

DN.RESTART

Function

Restarts DeviceNet communication if the CanBus goes offline.

Details

The eV+ DeviceNet interface goes offline if you disconnect it from the actual network or if too
many errors occur during operation. DN.RESTART forces eV+ to reinitialize the DeviceNet
interface as if you rebooted your system.

Related Keywords

DEVICENETmonitor command

DN.RESTARTmonitor command

DN.RESTART program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 180

DO program instruction

Syntax

DO

Function

Introduce a DO program structure.

Usage Considerations

The DO program structure must be concludedwith an UNTIL instruction.

Details

The DO structure provides a way to control the execution of a group of instructions based on
a control expression. The syntax for the DO structure is as follows:

DO
group_of_steps

UNTIL logical_expression

Processing of the DO structure can be described as follows:

1. The group of instruction steps is executed.

2. The logical expression is evaluated. If the result is FALSE, return to item 1. Otherwise,
proceed to item 3.

3. Program execution continues at the first instruction after the UNTIL step.

When this structure is used, it is assumed that some action occurs within the group of
enclosed instructions that changes the result of the logical expression from TRUE to FALSE
when the structure should be exited. Alternately, logical_expression can be replacedwith an
expression that evaluates the state of a digital I/O signal (see example).

Note that the group of instructions within the DO structure is always executed at least one
time. (The WHILE structure differs in that respect.)

There do not need to be any instructions between the DO and UNTIL instructions. When
there are no such instructions, the UNTIL criterion is continuously evaluated until it is
satisfied, at which time program execution continues with the instructions following the
UNTIL instruction.

Example

The following example uses a DO structure to control a task that involves moving parts from
one place to another. The sequence assumes that the digital signal line buffer.full changes to

DO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 181

the on state when the parts buffer becomes full. (The robot should then perform a different
sequence of motions.)

.

.
DO

CALL get.part()
CALL put.part()

UNTIL SIG(buffer.full)
.
.

Related Keywords

DOmonitor command

EXIT program instruction

NEXT program instruction

UNTIL program instruction

WHILE program instruction

DO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 182

DOS program instruction

Syntax

DOS string, error

Function

Execute a program instruction defined by a string expression.

Usage Considerations

Before the instruction is executed, the stringmust be translated from ASCII into the internal
representation used by eV+. Thus, the instruction executes much more slowly than a
normal program instruction.

The string cannot define a declaration statement or most of the control structure
statements.

The DOS instruction is ignored if the string defines a comment line or a blank line.

Parameters

string String constant, variable, or expression that defines the program
instruction to be executed. The instruction may contain a label field
(which is ignored) andmay be followed by a standard comment field.
Leading and trailing spaces and tabs are ignored.

error Optional real variable that receives any parsing or execution error
generated by the instruction. The value is set to 1 if the instruction
succeeds. If the instruction fails, a standard eV+ error number is
returned.

If this parameter is omitted and an error occurs, execution of the
program stops and the appropriate error message is displayed.

Details

The DOS (DO String) instruction provides a means for modifying a program on the fly. That
is, the embedded program instruction, which is defined by a string expression, is executed as
though it had been entered in the program as a normal instruction.

The instruction executes in the context of the current program. Thus, any subroutine
argument, automatic variable, or local variable can be accessed.

If a variable referenced in the instruction is not found in the current program context, the
variable is assumed to be global. Any new variables that are created by the instruction (for

DOS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 183

example, in an assignment statement) are created as globals. Normal variable type checking
is performed, and errors are generated if there are type conflicts.

The single-line control statements GOTO, IF ... GOTO, CALL, and CALLS are allowed and
execute normally. The multiline control structures (for example, CASE ... END, IF ... ELSE ...
END) cannot be executed by the DOS instruction.

Examples

DOS "var = 123"

Causes the variable var to be assigned the value 123. If var is undefined, a new global
variable named var is created. Any errors cause the program to stop executing.

DOS $ins, status

Causes the instruction contained in the string variable $ins to be executed. If an error occurs,
an eV+ error code is placed in the real variable status and execution continues.

Related Keywords

DOmonitor command

MCS program instruction

DOS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 184

DRIVE program instruction

Syntax

DRIVE joint, change, speed

Function

Move an individual joint of the robot.

Usage Considerations

The DRIVE instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the DRIVE instruction
causes an error.

If the AMOVE instruction has been executed to prepare for motion of an extra axis, execution
of the DRIVE instruction cancels the effect of the AMOVE instruction.

Parameters

joint Number of the robot joint to be moved. This can be specified by a
constant, a variable, or an expression.

change The change desired in the joint position. This can be specified by a
constant, a variable, or an expression. The value can be positive or
negative.

The value is interpreted in the units used tomeasure the joint position.
That is, a change for a rotary joint must be the number of degrees the
joint is to move; a change for a linear joint must specify the number of
millimeters to move.

speed The temporary program speed to be used for the motion, considered as
a percentage of the current monitor speed setting. Again, this can be
specified by a constant, a variable, or an expression.

Details

Operates the single specified robot joint, changing its position by change amount (in
degrees or millimeters). The joint number, joint, can be 1, 2, ..., n, where n is the number of
joints the robot has.

The speed of the motion is governed by a combination of the speed given in this instruction
and the monitor SPEED setting. That is, the regular program speed setting is not used. (See

DRIVE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 185

the SPEEDmonitor command and the SPEED program instruction for explanations of motion
speeds.)

The duration setting established by the DURATION instruction also affects the execution time
of the motion.

Example

Change the angle of joint 2 by driving the joint 62.4 degrees in the negative direction at a
speed of 75% of the monitor speed:

DRIVE 2,-62.4,75

Related Keywords

SELECT program instruction

SELECT real-valued function

DRIVE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 186

DRY.RUN system switch

Syntax

... DRY.RUN

Function

Control whether or not eV+ communicates with the robot.

Usage Considerations

The DRY.RUN switch can be enabled or disabled by an application program, but the new
setting of the switch does not take effect until the next time any of the following events
occur:

1. An EXECUTE command or instruction is processed for task #0

2. The robot is attachedwith an ATTACH instruction

3. A CALIBRATE command or instruction is processed

Before an application program changes the setting of the DRY.RUN switch, the program
must have the robot detached. Otherwise, an error results when the attempt is made to
change the switch setting.

Details

This system switch can be used to stop eV+ from sendingmotion commands to the robot
and expecting position information back from the robot. Thus, when the system is in
DRY.RUN mode, application programs can be executed to test for such things as proper
logical flow and correct external communication without having to worry about the robot
running into something. (Also see the TRACE system switch.)

The pendant can still be used to control the robot while the system is in DRY.RUN mode.

The DRY.RUN switch is sampled whenever a robot is attached. (Note that task #0 attempts
to attach the robot when program execution begins or is resumed.) The DRY.RUN setting for
a task can be changed during execution by DETACHing the robot, changing DRY.RUN, and
then ATTACHing the robot.

NOTE: Do not allow multiple tasks to change DRY.RUN simultaneously, since the
DRY.RUN state can then be different from that expected. Your programs should use a
software interlock in this case.

The DRY.RUN switch is initially disabled.

DRY.RUN system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 187

WARNING: Digital and analog I/O is not affected by DRY.RUN, so
external devices driven by analog or digital output instructions still
operate.

Related Keywords

DISABLE monitor command

ENABLE monitor command

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

DRY.RUN system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 188

DURATION program instruction

Syntax

DURATION time ALWAYS

Function

Set the minimum execution time for subsequent robot motions.

Usage Considerations

Unless the ALWAYS parameter is specified, only the next robot motion is affected.

DURATION 0 ALWAYS is assumedwhenever program execution is initiated andwhen a new
execution cycle begins.

The DURATION instruction affects the DRIVE instruction but not the DELAY instruction.

The setting of the monitor SPEED command affects the results of the DURATION setting.

The DURATION instruction can be executed by any program task as long as the robot
selected by the task is not attached by any other task. The instruction applies to the robot
selected by the task.

If the eV+ system is not configured to control a robot, executing the DURATION instruction
causes an error.

Parameters

time Real-valued expression that specifies the minimum length of time (in
seconds) that subsequent robot motions take to perform (see below).

If the value is zero, robot motions are performedwithout consideration
of their time duration and use only the applicable values for SPEED and
ACCEL.

ALWAYS Optional keyword that determines how long the new duration will have
an effect.

If ALWAYS is included, the specified duration time applies to all
subsequent robot motions (until the duration setting is changed by
another DURATION instruction). The specified duration applies only to
the next robot motion if ALWAYS is not included.

DURATION program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 189

Details

This instruction sets the minimum execution time for subsequent robot motions. For any
motion, the time specified by the DURATION instruction has no effect if the duration setting is
less than the time computed by the eV+ robot-motion trajectory generator (considering the
current motion speed and acceleration settings). However, if the duration is longer than the
time computed by the trajectory generator, the motion is slowed so that its elapsed time
corresponds approximately to the specified duration.

NOTE: Actual motion timesmay differ slightly from the duration setting due to
quantization effects and due to acceleration and deceleration profiling.

The duration instruction does not specify the duration of an entire motion but instead
specifies the minimum time of the constant-velocity segment plus one-half the acceleration
and deceleration segments. In this way, continuous-path motions (in which individual
motions are blended together) get the correct duration, but a single motion takes longer than
the specified duration. In other words, the time of motion is primarily defined either by the
value of DURATION or SPEED, using whichever value gives the longer time.

This instruction is very useful. Consider, for example, a situation where the value of a
periodic, external signal is employed to continuously correct the path of the robot while the
robot is moving. The DURATION instruction can be used tomatch the motion execution time
to the sensor sampling rate and processing time. This ensures that the robot is kept in motion
while new information is being processed. A sample program of this type is shown later.

Example

The following example reads an external sensor andmoves to the computed robot location.
This sequence is repeated 20 times at intervals of 96 milliseconds (6/TPS seconds). This
assumes the default period (tick) of 16 milliseconds for the eV+ trajectory generator. Note
that the motion speed is set to a very large value to make sure the motion is paced by the
duration setting.

DURATION 6/TPS ALWAYS ;Each motion to be 6 ticks long
SPEED 200 ALWAYS ;Motion time determined primarily

;by DURATION, not SPEED
FOR i = 1 TO 20 ;Repeat 20 times...

CALL read.signal(loc) ;Get new step from sensor
MOVE loc ;Move to the location

END

Related Keywords

ACCEL program instruction

DELAY program instruction

DURATION real-valued function

DURATION program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 190

SELECT program instruction

SELECT real-valued function

SPEEDmonitor command

SPEED program instruction

DURATION program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 191

DURATION real-valued function

Syntax

DURATION (select)

Function

Return the current setting of one of the motion DURATION specifications.

Usage Considerations

The DURATION function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, the DURATION function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

Parameter

select Real-valued expression whose value determines which duration value
should be returned (see below).

Details

This function returns the user-specifiedminimum robot motion duration (in seconds)
corresponding to the select parameter value. (See the description of the DURATION
program instruction for an explanation of the specification of motion duration times.)

Different select values determine when the duration time returned applies, as listed below.
(All other values for the select parameter are considered invalid.)

Select DURATION value returned

2 Permanent minimum robot
motion duration (set by a
DURATION ... ALWAYS program
instruction)

3 Temporary motion duration for
the current or last motion

4 Temporary motion duration to
be used for the next motion

DURATION real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 192

Related Keywords

CONFIG real-valued function

DURATION program instruction

SELECT program instruction

SELECT real-valued function

DURATION real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 193

DX, DY, DZ real-valued function

Syntax

DX (location)

DY (location)

DZ (location)

Function

Return a displacement component of a given transformation value.

Parameter

location Transformation value from which a component is desired. This can be a
function, a variable, or a compound transformation.

Details

These three functions return the respective displacement components of the specified
transformation value.

NOTE: The DECOMPOSE instruction can also be used to obtain the displacement
components of a transformation value. If the rotation components are desired, that
instruction must be used. DECOMPOSE is more efficient if more than one element is
needed and the location is a compound transformation.

Example

Consider a transformation start with the following components:

125, 250, -50, 135, 50, 75

The following function references will then yield the indicated values:

DX(start) ;Returns 125.00
DY(start) ;Returns 250.00
DZ(start) ;Returns -50.00

Related Keywords

DECOMPOSE program instruction

RX transformation function

RY transformation function

DX, DY, DZ real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 194

RZ transformation function

DX, DY, DZ real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 195

ELSE program instruction

Syntax

ELSE

Function

Separate the alternate group of statements in an IF ... THEN control structure.

Usage Considerations

ELSE can be used only within an IF ... THEN ... ELSE ... END control structure.

Details

Marks the end of a group of statements to be executed if the value of the logical expression in
an IF logical_expr THEN control structure is nonzero, and the start of the group of
statements to be executed if the value is zero.

Related Keyword

IF ... THEN program instruction

ELSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 196

ENABLE program instruction

Syntax

ENABLE switch, ..., switch

Function

Turn on one or more system control switches.

Usage Considerations

The ENABLE monitor command can be usedwhen a program is executing.

If a specified switch accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the switch array are enabled.

Parameter

switch Name of a system switch to be turned on.

The name can be abbreviated to the minimum length that uniquely
identifies the switch. That is, for example, the MESSAGES switch can be
referred to with ME, since there is no other switch with a name
beginning with the letters ME.

Details

System switches control various aspects of the operation of the eV+ system, including some
optional subsystems such as vision. The Switch entry in the index for this document directs
you to the detailed descriptions of these switches.

Other system switches are available when options are installed. Refer to the option
documentation for details. For example, the switches associated with the ACE Sight options
are described in the ACE Sight User's Guide.

When a switch is enabled, or turned on, the feature it controls is functional and available for
use. Turning a switch off with the DISABLE monitor command or program instruction makes
the associated feature not functional or available for use.

NOTE: The system switches are shared by all the program tasks. Thus, care should be
exercised when multiple tasks are disabling and enabling switches. Otherwise, the
switches may not be set correctly for one or more of the tasks.

Disabling the DRY.RUN switch does not have an effect until the next EXECUTE command
or instruction is processed for task #0, an ATTACH instruction is executed for the robot, or
a CALIBRATE command or instruction is processed.

ENABLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 197

The SWITCHmonitor command or the SWITCH real-valued function can be used to
determine the status of a switch at any time. The SWITCH program instruction can be used,
like the ENABLE instruction, to set a switch.

Example

ENABLE MESSAGES ;Turns on the MESSAGES switch.

Related Keywords

DISABLE monitor command

DISABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

ENABLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 198

$ENCODE string function

Syntax

$ENCODE (output_specification, output_specification, ...)

Function

Return a string created from output specifications. The string produced is similar to the
output of a TYPE instruction.

Parameter

An output specification can consist of any of the following components (in any order)
separated by commas:

1. A string expression.

2. A real-valued expression, which is evaluated to determine a value to be displayed.

3. Format-control information, which determines the format of the output message.

Details

This function makes strings normally produced by the TYPE instruction available within a
program. That is, $ENCODE does not generate any output but, rather, creates a string value.

The following format specifiers can be used to control the display of numeric values. These
settings remain in effect for the remainder of the function parameter list unless another
specifier is used.

For all these specifiers, if a value is too large to be displayed in the given field width, the field
is filled with asterisk characters (*).

/D Use the default format, which is equivalent to /G15.8 (see
below), except trailing zeros and all but one leading space are
omitted.

The following format specifications accept a zero as the width field. This causes the
actual field size to vary to fit the value and all leading spaces to be suppressed. This is
useful when a value is displayedwithin a line of text or at the end of a line.

/En.m Format values in scientific notation (for example, -1.234E+02) in
fields n spaces wide with m digits in the fractional parts. If n is not
zero, it must be large enough to include space for a minus sign (if
the displayed value is negative), one digit to the left of the
decimal point, a decimal point (if m is not zero), m digits, and four

$ENCODE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 199

or five characters for the exponent.

/Fn.m Format values in fixed-point notation (for example, -123.4) in
fields n spaces wide, with m digits in the fractional parts.

/Gn.m Format values in F format with m digits in the fractional parts if
that can be done in fields n spaces wide. Otherwise /En.m format
is used.

/Hn Format values as hexadecimal integers in fields n spaces wide.

/In Format values as decimal integers in fields n spaces wide.

/On Format values as octal integers in fields n spaces wide.

The following specifiers can be used to insert special characters in the string:

/Cn Include the characters carriage return (CR) and line feed (LF) n
times.

If the string resulting from the $ENCODE function is output to the terminal, this
results in n blank lines if the control specifier is at the beginning or end of the
function parameter list; otherwise, n -1 blank lines result.

/Un Include the characters necessary to move the cursor up n lines if
the resulting string is output to the terminal. (This works
correctly only if the TERMINAL parameter is correctly set for the
terminal being used.)

/Xn Include n spaces.

/B Include a character that beeps the terminal if the resulting string
is output to the terminal.

Example

The program statement:

$output = $output+$ENCODE(/F6.2, count)

adds a formatted representation of the value of count to the string contained in $output.

$ENCODE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 200

The $ENCODE function provides a way of adding format control to the output from PROMPT
instructions. This is shown by the following example, in which the value of motor is displayed
as part of the prompt message to you.

PROMPT $ENCODE(/B,"Start motor #",/I0,motor," (Y/N)? "), $answer

This PROMPT instruction beeps the terminal (/B), and displays the following user prompt
when the value of motor is 3:

Start motor #3 (Y/N)?

Related Keyword

TYPE program instruction

$ENCODE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 201

END program instruction

Syntax

END

Function

Mark the end of a control structure.

Usage Considerations

Every END instruction must be part of a CASE, FOR, IF, or WHILE control structure.

Details

Every CASE, FOR, IF, andWHILE control structure must have its endmarked by an END
instruction. The eV+ editor displays an error message when program editing is exited if the
correct number of END instructions do not exist in a program (that is, if there are too few or
toomany).

Related Keywords

CASE program instruction

FOR program instruction

IF ... THEN program instruction

WHILE program instruction

END program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 202

.END keyword

Syntax

.END

Function

Mark the end of the eV+ program.

Usage Considerations

The eV+ editors automatically add this line to the end of every program.

Details

Normally, you will not need to concern yourself with the .END step of programs-it is created
automatically by the eV+ editors. The only time you will see this step while working with the
eV+ system is when you issue a LISTPmonitor command. Then you will see an .END step as
the last step of each program.

The .END is important, however, when a program is created on another computer for
transfer to the eV+ system. In that case, the programmer must be sure to include a line
starting with .END at the end of each program (the remainder of the line is ignored by eV+).
Programsmissing the .END instruction do not load correctly into the eV+ system.

Related Keyword

.PROGRAM program instruction

.END keyword

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 203

ERROR real-valued function

Syntax

ERROR (source, select)

Function

Return the error number of a recent error that caused program execution to stop or caused a
REACTE reaction.

Usage Considerations

Executing a REACTE statement clears any errors for the current task and prevents the
ERROR function from returning errors as expected.

A FIFO buffer is available that receives all asynchronous errors that occur from the time an
enable power request is issued (using ENABLE POWER or the MCP) until power is disabled for
any reason. The FIFO is accessed using the ERROR() real-valued function.

The asynchronous FIFO is not valid while the robot is in the power-down initialization state.
User programs should wait until STATE(1) <> 0 before calling ERROR() with a source
parameter > 1000.

ERROR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 204

Parameters

source Real value, variable, or expression (interpreted as an integer) whose value
selects the source of the error code as follows:

-2 Return additional error code for current robot.

ERROR(-2, 0) returns the standard eV+ error number.
ERROR(-2, 1) returns the motor mask for the current

robot. This bit mask indicates the motor(s)
referenced for the error number returned
by the instruction ERROR(-2,0). The LSB
indicates motor 1, etc. If the ERROR(-2, 1)
=0, the error is not associated with a
specific motor.

-1 Return the number of the most recent error from the
program in which the ERROR function is executed.

0 Return the number of the most recent error from the
program executing as task #0.

0 < source ≤ 27

Return the number of the most recent error from the
program executing as the corresponding task number.

1001 < source < 1021

Asynchronous FIFO element n-1000, where n equals

1 Most recent item

2 Next older item, etc.

Returns 0 if nomore FIFO elements exist. Valid select
parameter values for the FIFO are 0, 1, and 3.

The asynchronous FIFO is not valid while the robot is in
power-down initialization state. User programs should wait
until STATE(1) returns a nonzero value before using ERROR()
with source > 1000.

select Optional real value, variable, or expression (interpreted as an integer)
that selects the error information to be returned. (The value 0 is assumed
if this parameter is omitted.)

0 Return the error number of the most recent program

ERROR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 205

execution error (excluding I/O errors-see IOSTAT) for the
specified program task.

1 If the most recent error (for the specified program task) had
an error code in the range -1100 to -1199, return the
variable part of the corresponding error message as a
numeric value. If the most recent error had an error code in
the range -1000 to -1099, return the variable portion of the
corresponding error message as a bit mask indicating the
joints or motors to which the error applies. Zero is returned if
the error did not have a variable portion in its message. (Also
see select = 3 below.)

2 Return the error number of the most recent error from an
MCS instruction executed by the specified program task.

3 Return the number of the robot associated with the most
recent error for the specified program task. Zero is returned if
the error was not associated with a specific robot. (Also see
select = 1.)

Details

An eV+ task can access any errors that result in robot power being disabled. These errors
include the asynchronousmessages that previously were output only to the monitor
window.

This function is especially useful in a REACTE subroutine program to determine why the
REACTE was triggered.

NOTE: The ERROR function does not report errors reported by the IOSTAT function.

See System Messagesfor a list of all the eV+ error messages and their error numbers.

As noted above, when the select parameter is 1, the value returned by this function should
be interpreted as a 6-bit numeric value. The following program illustrates how the value
should be interpreted.

Example Program: Return error message corresponding to an error code
.PROGRAM error.string(code, vcode, robot, $msg)
; ABSTRACT: Return error message corresponding to error code(s).
;
; INPUTS: code Basic error code e.g., from
; [e.g., from ERROR(n) or IOSTAT(lun)]
; vcode Variable part of the error code
; [e.g., from ERROR(n,1)].

ERROR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 206

; robot Number of the robot associated with the error
; [i.e., from ERROR(n,3)].
;
; OUTPUTS: $msg Corresponding error message may be null
;

AUTO i, n
$msg = "" ;Assume no error
IF code < 0 THEN ;If there was an error...

$msg = $ERROR(code) ;Get base message string
; Add bit numbers if applicable.

IF (-1100 < code) AND (code <= -1000) THEN
n = 1 ;Initialize bit mask
FOR i = 1 TO 7 ;For each of 7 bits

IF vcode BAND n THEN ;If this bit is set,
$msg = $msg+$ENCODE(i) ;add it to message

END
n = 2*n ;Shift the mask 1 bit

END
END

; Add numeric variable if applicable.
IF (-1200 < code) AND (code <= -1100) THEN

$msg = $msg+$ENCODE(vcode) ;Add number
END

; Add robot number if applicable.
IF robot AND (SELECT(ROBOT,-1) > 1) THEN

$msg = $msg+" (Robot"+$ENCODE(robot)+")"
END

END

RETURN
.END

Related Keywords

$ERROR string function

IOSTAT real-valued function

REACTE program instruction

ERROR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 207

$ERROR string function

Syntax

$ERROR (error_code)

Function

Return the error message associated with the given error code.

Parameter

error_code Real-valued expression, with a negative value, that identifies an
error condition.

Details

All the error codes returned by the IOSTAT function and by the ERROR real-valued function
can be converted into their corresponding eV+ error message strings with this function. (The
ERROR real-valued function must be used to determine the variable portion of the error
message for an error code less than or equal to -1000.)

See System Messages on page 584 for a list of all the eV+ error messages and their error
codes.

Example

The following program segment displays an error message if an I/O error occurs:

READ (5) $input
IF IOSTAT(5) < 0 THEN

TYPE "I/O error during read: ", $ERROR(IOSTAT(5))
HALT

END

Related Keywords

ERROR real-valued function

IOSTAT real-valued function

REACTE program instruction

$ERROR string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 208

ESTOP program instruction

Syntax

ESTOP

Function

Assert the emergency-stop signal to stop the robot.

Details

This instruction immediately asserts the controller emergency-stop signal and then proceeds
with a normal power-down sequence. It is functionally identical to pressing the E-STOP
button on the pendant or Front Panel .

Related Keywords

BRAKE program instruction

ESTOPmonitor command

PANICmonitor command

PANIC program instruction

STATE real-valued function

ESTOP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 209

EXECUTE program instruction

Syntax

EXECUTE /C task_num program(param_list), cycles, step

Function

Begin execution of a control program.

Usage Considerations

A program cannot already be active as the specified program task.

Parameters

/C Optional qualifier that conditionally attaches the selected robot.
The qualifier has an effect only when starting the execution of task
0.

task_num Real value or expression specifying which program task is to be
activated. (For more information on program tasks, see the section
Executing Programs in the eV+ Language User's Guide.)

program Name of the program to be executed.

param_list Optional list of constants, variables, or expressions separated by
commas, that must correspond in type and number to the
arguments in the .PROGRAM statement for the program specified.
If no arguments are required by the program, the list is blank, but
the parentheses must be entered.

Program parameters may be omitted as desired, using commas to
skip omitted parameters. No commas are required if parameters
are omitted at the end of the list. Omitted parameters are passed
to the called program as undefined and can be detected with the
DEFINED real-valued function.

Automatic variables (and subroutine arguments) cannot be passed
by reference in an EXECUTE instruction. They must be passed by
value (see the description of CALL).

The parameters are evaluated in the context of the new task that
is started (see below).

cycles Optional real value, variable, or expression (interpreted as an

EXECUTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 210

integer) that specifies the number of program execution cycles to
be performed. If omitted, the cycle count is assumed to be 1. For
unlimited cycles, specify any negative value. The maximum loop
count value allowed is 32,767.

step Optional real value, variable, or expression (interpreted as an
integer) that specifies the step at which program execution is to
begin. If omitted, program execution begins at the first executable
statement in the program (that is, after the initial blank and
comment lines and all the AUTO and LOCAL instructions).

Details

This command initiates execution of the specified control program. The program is executed
cycles times, starting at the specified program step.

After a program initiates execution of another program, the initiating program can use the
STATUS and ERROR real-valued functions to monitor the status of the other program.

The optional /C qualifier has an effect only when starting execution of task 0. When /C is not
specified, an EXECUTE instruction for task 0 fails if the robot cannot be attached; attachment
requires that the robot be calibrated and that arm power be enabled (or that the DRY.RUN
switch is enabled). When /C is specified, an execute instruction for task 0 attempts to attach
the robot, but allows execution of task 0 to continue without any indication of error if the
robot cannot be attached.

Certain default conditions are assumedwhenever program execution is initiated. They are
equivalent to the following program instructions:

CPON ALWAYS
DURATION 0 ALWAYS
FINE 100 ALWAYS
LOCK 0
MULTIPLE ALWAYS
NULL ALWAYS
OVERLAP ALWAYS
SPEED 100,100 ALWAYS
SELECT ROBOT = 1

Also, the robot configuration is saved for subsequent motions.

An execution cycle is terminated when a STOP instruction is executed, a RETURN instruction
is executed in the top-level program, or the last defined step of the program is encountered.
The value of cycles can range from -32,768 to 32,767. The program is executed one time if
cycles is omitted or has the value 0 or 1. Any negative value for cycles causes the program to
be executed continuously until a HALT instruction is executed, an error occurs, or you (or
another program) aborts execution of the program.

EXECUTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 211

NOTE: Each time an execution cycle is initiated, the execution parameters are reset to
their default values. This includes motion speed, robot configuration, and servomodes.
However, the robot currently selected is not changed.

If step is specified, the program begins execution at that step for the first pass. Successive
cycles always begin at the first executable step of the program.

All the instruction parameters are evaluated in the context of the new task that is started.
This can lead to unexpected results when the EXECUTE program instruction is used, and an
attempt is made to pass a task-dependent value (for example, the TASK real-valued
function). In such a case, if you want the task-dependent value to reflect the invoking task,
you must assign the task-dependent value to a variable and pass that variable.

Examples

Initiate execution (as task #0) of the program named assembly, with execution to continue
indefinitely (that is, until execution is aborted, a HALT instruction is executed, or a run-time
error occurs):

EXECUTE 0 assembly, -1

Initiate execution, with program task #2, of the program named test. The parameter values
1 and 2 are passed to the program.

EXECUTE 2 test(1,2)

The following program segment shows how an application program can be initiated from
another application program (the ABORT and CYCLE.END program instructions are used to
make sure the specified program task is not already active):

ABORT 3 ;Abort any program already active
CYCLE.END 3 ;Wait for execution to abort
EXECUTE 3 new.program ;Start up the new program

Related Keywords

ABORTmonitor command

ABORT program instruction

CALL program instruction

CYCLE.ENDmonitor command

CYCLE.END program instruction

EXECUTE monitor command

KILL monitor command

KILL program instruction

EXECUTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 212

PRIME monitor command

PROCEEDmonitor command

RETRYmonitor command

SSTEPmonitor command

STATUSmonitor command

STATUS real-valued function

XSTEPmonitorcommand

EXECUTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 213

EXIT program instruction

Syntax

EXIT count

Function

Branch to the statement following the nth nested loop of a control structure.

Usage Considerations

This instruction works with the FOR,WHILE, and DO control structures.

Parameter

count Optional integer value (expressions and variables are not acceptable)
specifying how many nested structures to exit. The default value is 1.

Details

When an EXIT instruction is reached, the control structure is terminated and execution
continues at the first instruction following the outermost control structure exited.

Example

If input signal 1001 is set, exit one control structure; if 1002 is set, exit three control
structures:

27 FOR i = 1 TO 40
28 WHILE ctrl.var DO
29 DO
30 IF SIG(1002) THEN
31 EXIT 3 ; Jump to step 40
32 END
33 IF SIG(1001) THEN
34 EXIT ; Jump to step 37
35 END
36 UNTIL FALSE
37 count = count+1
38 END
39 END

Related Keywords

DO program instruction

FOR program instruction

NEXT program instruction

EXIT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 214

WHILE program instruction

EXIT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 215

FALSE real-valued function

Syntax

FALSE

Function

Return the value used by eV+ to represent a logical false result.

Usage Considerations

The word "false" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where true and false conditions need to be
specified. The value returned is zero.

Example

The following program loopwill execute continuously until the subroutine cycle returns a
FALSE value for the real variable continue:

DO
CALL cycle(continue)

UNTIL continue == FALSE

Related Keywords

OFF real-valued function

TRUE real-valued function

FALSE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 216

FCLOSE program instruction

Syntax

FCLOSE (logical_unit)

Function

Close the disk file, graphics window, or graphics icon currently open on the specified logical
unit.

Usage Considerations

No error is generated if a file or graphics window is not open on the logical unit, although the
IOSTAT real-valued function returns an error code.

When a graphics window is closed, the window is not deleted from graphics memory and its
stacking and display status are not changed.

Parameter

logical_unit Real value, variable, or expression (interpreted as an integer) that
identifies the device to be accessed. (See the ATTACH instruction
for a description of logical unit numbers.)

Details

After a program has finished accessing a file that has been opened via an FOPEN instruction,
the program must close the file by executing an FCLOSE instruction. FCLOSE frees the file
for access by the eV+ monitor and other programs. In addition, for files that have been
opened for writing, FCLOSE writes out any data still buffered by eV+ and updates the file
directory information. Thus, if this operation is not performed, the disk file may not actually
contain all of the information written to it.

If a program is finished accessing a graphics window, or needs to reuse its logical unit
number, the window can be closedwith this instruction. After a window is closed, it can be
deleted with an FDELETE instruction or it can be opened again later with an FOPEN
instruction.

NOTE: Reopening a window resets all its text and graphics attributes (for example, color,
font ID, character path and orientation, texture, logical operation, and enabled events),
which must be explicitly reset by the program before attempting output to the window.

An FCLOSE operation is automatically performed on a logical unit when the unit is detached,
when the program that issued the FOPEN completes execution, or when a KILL of the
program task is performed.

FCLOSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 217

The IOSTAT real-valued function should be used to check for successful completion of a close
operation. (The error code for File not openedwill be returned if there was no file or window
currently open on the specified logical unit.)

Related Keywords

ATTACH program instruction

DETACH program instruction

FOPEN program instruction

FOPENR program instruction

IOSTAT real-valued function

KILL monitor command

KILL program instruction

FCLOSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 218

FCMND program instruction

Syntax

FCMND (logical_unit, command_code) $out_string, $in_string

Function

Generate a device-specific command to the input/output device specified by the logical unit.

Usage Considerations

The logical unit referencedmust have been previously attached.

As appropriate, the current default device, unit, and directory path are considered for any
disk file specification (see the DEFAULT command).

Parameters

logical_unit Real-valued expression that identifies the device to be
accessed. (See the ATTACH instruction for a description of
logical unit numbers.)

command_code Real-valued expression that specifies the command to be
executed. (See the explanation of command codes below.)

$out_string String constant, variable, or expression that is transmitted
to the device alongwith the command code to specify the
operation to be performed.

$in_string Optional string variable. This variable receives any
information returned from the device as a result of the
command.

Details

This instruction allows a program to generate device-specific command sequences. For
example, this instruction can be used to send a command to the disk to delete a file or to
rename a file. Since these are maintenance operations, which are not generally performed
by eV+ programs, no special-purpose eV+ program instructions exist for performing these
operations.

Any error in the specification of this instruction (such as attempting to access an invalid unit)
will cause a program error andwill halt program execution. However, errors associated with
performing the actual operations (such as device not ready) do not halt program execution
since these errors can occur in the normal operation of a program. These normal errors can

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 219

be detected by using the IOSTAT function after performing the FCMND. In general, it is good
practice always to test whether each FCMND operation completed successfully using IOSTAT.

File Command Codes

With the exception of the CLOSE command, a file cannot be open on the logical unit when the
FCMND is executed.

6 Rename a file. The $out_string parameter must contain the new name
of the file (including any required disk unit and directory path
specification). The $in_string variable must contain the old file name.

7 Compress the disk. This command is invalid for local disks.

8 Format the disk. The $out_string parameter must contain the name of
the disk unit to format, followed by any required qualifiers. The data
contained in $out_stringmust be identical to that of the argument list of
a FORMATmonitor command. On completion, the $in_string variable
will contain text indicating how many bad blocks were located.

CAUTION: Formatting a disk erases all the information on the disk.

14 Create a subdirectory. The $out_string parameter must contain the
specification of the subdirectory, including an optional unit name if the
current default disk unit is not to be accessed. (Refer to the eV+
Operating System User's Guide for a description of subdirectory
specifications.)

NOTE: Only the final subdirectory in the specified directory path is
created by this operation. That is, all the intermediate subdirectories
must already exist, and they are not created.

15 Delete a subdirectory. The $out_string parameter must contain the
specification of the subdirectory, including an optional unit name if the
current default disk unit is not to be accessed. (Refer to the eV+
Operating System User's Guide for a description of subdirectory
specifications.)

NOTE: Only the final subdirectory in the specified directory path is
deleted by this operation. That is, all the intermediate subdirectories
must already exist, and they are not deleted.

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 220

19 Assert the creation date/time for the file currently open on the specified
logical unit. This command can be issued at any time a disk file is
opened. Once asserted, when the file is closed, the file's creation date
and time are set equal to the specified values rather than the current
date and time. Also, if this command is issuedwhen the file is closed,
eV+ does not automatically assert the not archived bit. The input string
must contain date and time, where:

date is a 16-bit integer word representing the date in the standard
compressed format used by the TIME and $TIME functions.

time is a 16-bit integer word representing the time in the standard
compressed format.

This command code applies only to local disk drives.

20 Return the number of unused and total number of KB on a local disk.
The returned string is in the form uuuuu/ttttt where uuuuu is the
number of unused KB and ttttt is the total number of KB. A file must be
open on the drive (with prereads disabled). The open file identifies the
disk unit.

21 Read the creation date/time for the file currently open on the specified
logical unit. This command can be issued any time after a file has been
opened. Normally, this command returns the values that are read from
the disk directory at the time the file was opened. However, if an
FCMND 19 instruction has been issued to assert file creation date and
time, FCMND 21 returns the value set by FCMND 19. The string
returned by this command contains date and time (use INTB to extract
the values), where

date is a 16-bit integer word representing the date in the standard
compressed format used by the TIME and $TIME functions.

time is a 16-bit integer word representing the time in the standard
compressed format.

This command code applies only to local disk drives.

Serial Line Command Codes

102 Clear the type-ahead buffer for a serial line, or clear the event queue for
a graphics window. This command, which is recognized only by the
serial communication lines and the graphics logical units, does not
process any arguments.

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 221

106 Readmodem control flags. Modem control flags are returned in the first
byte of a one-byte string. Bits within that byte show the current state of
the modem control lines for the serial port attached to the lun specified
in the FCMND instruction. The bits are interpreted as follows (LSB is 1):

Bit Mask State of:

1 ^H01 Request to Send (RTS)

2 ^H02 Data Terminal Ready
(DTR)

5 ^H10 Input Clear to Send (CTS)

6 ^H20 Input Data Carrier Detect
(DCD)

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 222

DDCMP Command Codes

500 Return information about DDCMP status. (This FCMND is present in all
eV+ systems that support DDCMP.) The FCMND reply stringmay be
parsed using INTB and LNGB functions to extract the binary data, as
described in the following code. When the instruction

FCMND (lun,500) "", $reply

is executed, the string variable $reply receives packed binary data
regarding the DDCMP line attached on the specified logical unit. Then
the functions shown in the following table can be used to extract the
data.

Function Notes

INTB($reply,1)
DDCMP network state
(0, 1, or 2)

0 = Line is closed

1 = Line is open but
waiting for remote

2 = Line is active

INTB($reply,3) Not used

LNGB($reply,5) Local media error count

LNGB($reply,9) Local timing error count

LNGB($reply,13) Local format error count

LNGB($reply,17) Remote media error
count

LNGB($reply,21) Remote timing error
count

LNGB($reply,25) Remote format error
count

LNGB($reply,29) Count of blocks sent

LNGB($reply,33) Count of blocks received

DDCMP Status Format

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 223

501 Set DDCMP communication parameters. This command is recognized
only by serial communication lines configured for use with the DDCMP
protocol. See the eV+ Language User's Guide for the details of this
command.

TCP Command Codes

600 Initiate a close connection from the TCP server side for the client
identified by the handle number handle in the instruction FCMND (lun,
600) $INTB(handle). Note, however, that close-connection requests are
more commonly initiated by the client side.

601 Initiate a PING command (see the eV+ Operating System Reference
Guide for details on the PINGmonitor command). The resulting IOSTAT
value is either 1, indicating the client was found on the network, or -
562, indicating a network timeout.

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 224

DeviceNet Command Codes

761 Used for reading CanBus status. The CanBus is the bus that DeviceNet
runs on.When the instruction

FCMND (lun,761) "", $input

is executed, the string variable $input returns the status shown in the
following table.

Function Notes

INTB($input, 1) CanBus status value (see
below)

INTB($input, 3) Number of bytes
transmitted

INTB($input, 5) Number of acknowledges
received

INTB($input, 7) Number of bytes received

INTB($input, 9) Number of errors

INTB($input, 11) Number of bytes lost

INTB($input, 13) Number of overruns

DeviceNet Status Format

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 225

CanBus status value is a bitmask containing the following bits:

Bit Meaning When Bit is Nonzero

1 Online

2 Bus warning

3 Bus off

4 Activity detected

5 (reserved)

6 Transmit timeout

7 Receive buffer overrun

8 (reserved)

9 (reserved)

10 (reserved)

11 (reserved)

12 (reserved)

13 Online at 125 KBaud

14 Online at 250 KBaud

15 Online at 500 KBaud

16 Scanner active

76-
2

Used for generic I/O to the DeviceNet scanner. This FCMND reads from the
scanner input area. When the instruction

FCMND(lun, 762) $INTB(macid)+$INTB(offset)+$INTB
(count), $input

is executed, macid> is the MAC ID to read from, offset is the read offset into

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 226

the input area (it is device-dependent), and count is the number of bytes to
read. The input is returned by the string variable $input. See the MV Controller
User's Guide for details on the MACID statement in DeviceNet configuration.

76-
3

Used for generic I/O to the DeviceNet scanner. This FCMNDwrites to the
scanner output area. When the instruction

FCMND(lun, 763) $INTB(macid)+$INTB(offset)+$INTB
(count)+$output

is executed, macid is the MAC ID to write to, offset is the write offset into the
output area (it is device-dependent), and count is the number of bytes to
write. The output bytes are contained in the string variable $output. See the
MV Controller User's Guide for details on the MACID statement in DeviceNet
configuration.

76-
4

This command code provides the same support as command 761 except that it
returns a 32-bit counter instead of a 16-bit counter. If FCMND 764 is used for
an AWC controller, a 32-bit counter is returned, but the counter still rolls over
at 16 bits. The syntax for this command is as follows:

FCMND(lun, 764) "", $input

This is used for reading the CanBus status. The CanBus is the bus upon which
DeviceNet runs. The status is returned in $input.

76-
8

Used for determining the DeviceNet status with the following eV+ code:

AUTO lun, macid, status, $error[25], $input

macid = 1 ;MacID for this
example

; Define the status messages.

$error[0] = "Device not in device list"
$error[1] = "Device idle (not being scanned)"
$error[2] = "Device being scanned"
$error[3] = "Device timed-out"
$error[4] = "UCMM connection error"
$error[5] = "Master/Slave connection set is busy"
$error[6] = "Error allocating Master/Slave connection

set"
$error[7] = "Invalid vendor id"
$error[8] = "Error reading vendor id"
$error[9] = "Invalid device type"

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 227

$error[10] = "Error reading device type"
$error[11] = "Invalid product code"
$error[12] = "Error reading product code"
$error[13] = "Invalid I/O input size for connection 1"
$error[14] = "Error reading I/O input size for connection

1"
$error[15] = "Invalid I/O output size for connection 1"
$error[16] = "Error reading I/O output size for

connection 1"
$error[17] = "Invalid I/O input size for connection 2"
$error[18] = "Error reading I/O input size for connection

2"
$error[19] = "Invalid I/O output size for connection 2"
$error[20] = "Error reading I/O output size for

connection 2"
$error[21] = "Error setting I/O packet rate for

connection 1"
$error[22] = "Error setting I/O packet rate for

connection 2"
$error[23] = "M/S connection set sync fault"

; Report the status of DeviceNet.

ATTACH (lun, 4) "DEVICENET" ;Attach the device

IF IOSTAT(lun) < 0 GOTO 100
FCMND (lun, 760) $INTB(macid), $input ;Get the status
IF IOSTAT(lun) < 0 THEN

TYPE "No node with MacId", macid
ELSE

status = ASC($input)
TYPE "MacID", macid, " status: ", $error[status]

END
DETACH (lun) ;Release the

device

Examples

Return modem control bit flags for the serial port attached to logical unit 10:

FCMND (10,106), $temp
flags = ASC($temp)

Format the disk loaded in drive A in double-sided, double-density format and return the string
containing the bad-block count in $bad:

FCMND (5, 8) "A:/Q", $bad

Specifya DDCMP time-out interval of 2 seconds, with maximums of 20 time-outs and 8 NAK
retries.

FCMND program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 228

FCMND (lun, 501) $CHR(2)+$CHR(20)+$CHR(8)

Check to see if a client is on the network.

FCMND (lun, 601) "node_address", $str

Related Keywords

ATTACH program instruction

DETACH program instruction

FDELETE monitor command

FDELETE program instruction

FDIRECTORYmonitor command

FOPEN program instruction

FRENAME monitor command

IOSTAT real-valued function

MCS program instruction

FCOPY program instruction

Syntax

FCOPY err, $new_file = $old_file

Function

Copy the information in an existing disk file to a new disk file.

Parameters

err Optional parameter, used to return an error.

$new_file String constant, variable, or expression that specifies the file for the
new disk file to be created. If the period (".") and filename extension
are omitted, the default is a blank extension. The current default
device, unit, and directory path are considered as appropriate (see
the DEFAULT command).

$old_file String constant, variable, or expression that specifies an existing
disk file. If the period (".") and filename extension are omitted, the
default is a blank extension. The current default device, unit, and
directory path are considered as appropriate.

FCOPY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 229

Details

If the new file already exists, or the old file does not exist, an error is reported and no copying
takes place. (You cannot overwrite an existing file-the existing file must first be deleted with
an FDELETE command.)

If the file to be copied has the special "read-only" attribute, the new file will also have that
attribute. Files with the "protected" attribute cannot be copied. (See FDIRECTORY for a
description of file protection attributes.)When a file is copied, the file creation date and time
are preserved alongwith the standard file attributes. The only attribute that is affected is the
"archived" bit, which is cleared to indicate that the file is not archived.

In general, a file specification consists of six elements:

1. An optional physical device (for example, DISK>)

2. An optional disk unit (for example, D:)

3. An optional directory path (for example, DEMO\)

4. A file name (for example, NEWFILE)

5. A period character (".")

6. A file extension (for example, V2)

FCOPY can also be used to write a file to a serial line:

FCOPY SERIAL:n>="myfile" ;Global serial line "n"

Example

Create a file named "newfile.v2" on disk device "D" that is an exact copy of the existing file
named "oldfile.v2" on disk device "D":

FCOPY "D:\newfile.v2" = "D:\oldfile.v2"

Related Keywords

FCOPYmonitor command

DEFAULTmonitor command

FRENAME monitor command

FCOPY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 230

FDELETE program instruction

Syntax

FDELETE (logical_unit) object

Function

Delete the specified disk file, the specified graphics window and all its child windows, or the
specified graphics icon.

Usage Considerations

The logical unit number must be attached, but no file or window can be currently open on
that logical unit.

The window cannot be deleted if it (or any of its child windows) is open as any other logical
unit or by any other program task.

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer) that
corresponds to a disk or window logical unit. (See the ATTACH
instruction for a description of logical unit numbers.)

object String constant, variable, or expression specifying the disk file,
graphics window, or graphics icon to delete. The error
Nonexistent file will be reported (via IOSTAT) if the specified
object does not exist.

For disk files, the stringmay contain an optional disk unit and an
optional directory path, andmust contain a file name, a period (.),
and a file extension. The current default disk unit and directory
path are considered as appropriate (see the DEFAULT command).

For graphics windows, the stringmust fully specify the position in
the window tree of the window to be deleted.

For graphics icons, the stringmust specify the name of the icon,
followed by /ICON.

Details

If a disk logical unit number is specified, the object parameter is interpreted as the
specification of a disk file to be deleted. If the deletion fails for any reason (for example, the
file does not exist or the disk is protected), an error will be returned via the IOSTAT real-
valued function.

FDELETE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 231

NOTE: In order to delete a file from a 3.5 inch diskette, the write-protect slider must be in
the position that covers the hole.

If the logical unit number specified is for a graphics window, the object parameter is
interpreted as the specification of a graphics window or icon to be deleted. When a window is
specified, that window and all of its child windows are deleted. If any of the window's children
cannot be deleted, the specified window is not affected and an error is returned (via the
IOSTAT real-valued function). When a window is deleted, it is erased from the display. (A
window must be FCLOSEd before it can be FDELETEd.)

When a graphics logical unit is accessed, a *Protection error* message is reported (via
IOSTAT) if a system window or icon is specified.

Examples

Delete the disk file defined by the file specification in the string variable $file:

FDELETE (5) $file

Delete the top-level window named TEST and all of its child windows. The logical unit defined
by main must be a graphics logical unit:

FDELETE (main) "TEST"

Delete the graphics window named ERROR, which is a child of the top-level window named
VISION:

FDELETE (21) "VISION\ERROR"

Delete the graphics icon named BUTTON:

FDELETE (20) "BUTTON/ICON"

Related Keywords

ATTACH program instruction

FCLOSE program instruction

FDELETE program instruction

FOPEN program instruction

IOSTAT real-valued function

FDELETE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 232

FEMPTY program instruction

Syntax

FEMPTY (logical_unit)

Function

Empty any internal buffers in use for a disk file or a graphics window by writing the buffers to
the file or window if necessary.

Usage Considerations

When accessing a file, the file must be open for random access on the specified logical unit
(see the FOPEN_ instructions).

When accessing a graphics window, this instruction is useful only for a window that is opened
in bufferedmode. (That is, the /BUFFERED attribute was specified in the FOPEN instruction
that opened the window.)

Parameter

logical_unit Real value, variable, or expression (interpreted as an integer) that
identifies the device to be accessed. (See the ATTACH instruction
for a description of logical unit numbers.)

Details

During random-access I/O of a disk file, eV+ writes data to the disk in blocks of 512 bytes
(characters). For efficiency, when a record with a length of less than 512 bytes is written
using aWRITE instruction, that data is stored in an internal buffer andmight not actually be
written to the disk until a later time.

When a disk logical unit is referenced, the FEMPTY instruction directs eV+ to write its internal
buffer contents immediately to the disk file. That is useful, for example, in applications where
data integrity is especially critical (see FOPEN for details on defeating buffering).

When a window logical unit is referenced, the FEMPTY instruction forces all buffered graphics
output to be immediately written to the window.

The IOSTAT real-valued function can be used to determine if any error results from an
FEMPTY operation.

Examples

Empty the internal output buffer for logical unit 5 andwrite it to the disk immediately:

FEMPTY (5)

FEMPTY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 233

Empty the internal buffer for graphics logical unit 20 by writing it to the window immediately:

FEMPTY (20)

Related Keywords

ATTACH program instruction

FOPEN program instruction

FOPEN_ program instruction

IOSTAT real-valued function

WRITE program instruction

FEMPTY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 234

FINE program instruction

Syntax

FINE tolerance ALWAYS

Function

Enable a high-precision feature of the robot hardware servo.

Usage Considerations

Only the next robot motion will be affected if the ALWAYS parameter is not specified.

If the tolerance parameter is specified, its value becomes the default for any subsequent
FINE instruction executed during the current execution cycle (regardless of whether
ALWAYS is specified).

This is the default state of the eV+ system. FINE 100 ALWAYS is assumedwhenever
program execution is initiated andwhen a new execution cycle begins.

The FINE instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the FINE instruction causes
an error.

Parameters

tolerance Optional real value, variable, or expression that specifies the percentage
of the standard fine tolerances that are used for each joint of the robot
attached by the current execution task.

ALWAYS Optional qualifier that establishes FINE as the default condition. That is,
FINE will remain in effect continuously until disabled by a COARSE
instruction. If ALWAYS is not specified, the FINE instruction will apply
only to the next robot motion.

Details

Enables the high-precision feature in the robot motion servo system so that only small errors
in the final positions of the robot joints are permitted at the ends of motions. This produces
high-accuracy motions but increases cycle times since the settling time at the end of each
motion is increased.

If the tolerance parameter is specified, the new setting takes effect at the start of the next
motion. Also, the value becomes the default for any subsequent FINE instruction executed

FINE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 235

during the current execution cycle (regardless of whether or not ALWAYS is specified).
Changing the FINE tolerance does not affect the COARSE tolerance.

If the tolerance parameter is omitted, the most recent setting (for the attached robot) is
used. The default setting is restored to 100 percent when program execution begins, or a
new execution cycle starts (assuming that the robot is attached to the program).

Examples

Enable the high-precision feature only for the next motion:

FINE

Enable the high-tolerance feature for the next motion, with the tolerance settings changed
to 50% of the standard tolerance for each joint (that is, a tighter tolerance):

FINE 50

Enable the high-tolerance feature until it is explicitly disabled:

FINE ALWAYS

Related Keywords

COARSE program instruction

CONFIG real-valued function

DELAY.IN.TOL program instruction

NONULL program instruction

NULL program instruction

SELECT program instruction

SELECT real-valued function

FINE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 236

FLIP program instruction

Syntax

FLIP

Function

Request a change in the robot configuration during the next motion so that the pitch angle
of the robot wrist has a negative value.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a flip configuration, this instruction is ignored by the
robot.

The FLIP instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the FLIP instruction causes
an error.

Details

Asserting a FLIP configuration forces the wrist joint to have a negative rotation (top robot in
FLIP/NOFLIP). Asserting a NOFLIP configuration forces a wrist joint to have a positive
rotation (bottom robot in FLIP/NOFLIP). Wrist joint angles are expressed as ±180°.

NOTE: Robots can change configuration only during joint-interpolatedmoves.

FLIP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 237

FLIP/NOFLIP

The following figures illustrate FLIP versus NOFLIP configurations of a Viper 650 robot.

FLIP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 238

FLIP / NOFLIP Example on Viper 650 Robot

Example

The following eV+ code snippet demonstrates the use of the FLIP and NOFLIP program
instructions:

FLIP ;Request change in robot configuration during next
motion
MOVE loc_a ;Move to loc_a transformation with FLIP
configuration

NOFLIP ;Request change in robot configuration during next
motion
MOVE loc_a ;Move to loc_a transformation with NOFLIP
configuration

Related Keywords

CONFIG real-valued function

FLIP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 239

NOFLIP program instruction

SELECT program instruction

SELECT real-valued function

FLIP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 240

FLTB real-valued function

Syntax

FLTB ($string, first_char)

Function

Return the value of four bytes of a string interpreted as an IEEE single-precision floating-
point number.

Parameters

$string String expression that contains the four bytes to be converted.

first_char Optional real-valued expression that specifies the position of the
first of the four bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first four
bytes of the string are extracted. If first_char is greater than 1,
it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second, third, fourth, and
fifth bytes are extracted. An error is generated if first_char
specifies four bytes that are beyond the end of the input string.

Details

Four sequential bytes of the given string are interpreted as being a single-precision (32-bit)
floating-point number in the IEEE standard format. This 32-bit field is interpreted as follows:

where

s is the sign bit, s = 0 for positive, s = 1 for negative.

exp is the binary exponent, biased by -127.

fraction is a binary fraction with an implied 1 to the left of the binary point.

 For 0 < exp< 255, the value of a floating-point number is:

-1s * (1.fraction) * 2exp -127

For exp= 0, the value is zero; for exp= 255, an overflow error exists.

FLTB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 241

The main use of this function is to convert a binary floating-point number from an input data
record to a value that can be used internally by eV+.

Examples

FLTB($CHR(^H3F)+$CHR(^H80)+$CHR(0)+$CHR(0)) ;Returns 1.0
FLTB($CHR(^HC0)+$CHR(^H40)+$CHR(0)+$CHR(0)) ;Returns -3.0

Related Keywords

ASC real-valued function

DBLB real-valued function

$DBLB string function

$FLTB string function

INTB real-valued function

LNGB real-valued function

$LNGB string function

TRANSB transformation function

VAL real-valued function

FLTB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 242

$FLTB string function

Syntax

$FLTB (value)

Function

Return a 4-byte string containing the binary representation of a real value in single-precision
IEEE floating-point format.

Parameter

value Real-valued expression, the value of which is converted to its IEEE
floating-point binary representation.

Details

A real value is converted to its binary representation using the IEEE single-precision
standard floating-point format. This 32-bit value is packed as four successive 8-bit characters
in a string. See the FLTB real-valued function for a more detailed description of IEEE floating-
point format.

The main use of this function is to convert a real value to its binary representation in an
output record of a data file.

Example

$FLTB(1.215)
;Returns a character string equivalent to:
$CHR(^H3F)+$CHR(^H9B)+$CHR(^H85)+$CHR(^H1F)

Related Keywords

$CHR string function

DBLB real-valued function

$DBLB string function

FLTB real-valued function

$INTB string function

LNGB real-valued function

$LNGB string function

$TRANSB string function

$FLTB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 243

FOPEN program instruction

Syntax

FOPEN (logical_unit,mode) attribute_list

Function

Create and open a new graphics window or TCP connection, or open an existing graphics
window for subsequent input or output.

Open a graphics icon for definition.

Usage Considerations

The logical unit must be attached before an open operation will succeed.

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer) that
defines the logical unit number assigned to the window or TCP
device. (See the ATTACH instruction for a description of unit
numbers.)

mode Optional expression that applies only to TCP logical units and
selects the type of TCP connection:
0 = Client mode, 16 = Server mode.

attribute_list List of string constants, variables, and expressions; real values,
variables, and expressions; and format specifiers used to assign a
name to the window and to define some of the characteristics of
the window.

When opening a TCP connection in server mode, this string
defines the characteristics of the server. When opening a
connection in client mode, the string defines the name of the
server in addition to characteristics of the connection.

The attribute list (which is processed like an output specification
for the TYPE instruction) is used to compose a single string that is
passed to the window manager or TCP driver. The stringmust
begin with the name of the window and can optionally contain
keyword attributes that define characteristics of the window. The
stringmust not exceed 512 characters.

NOTE: An eV+ string literal or string variable cannot exceed

FOPEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 244

128 characters. In order to create an attribute list longer than
128 characters you must concatenate multiple strings.

The attribute list can consist of one or more components
separated by commas. Each component can be expressed in any
of the followingways:

1. A string constant, variable, or expression.

2. A real-valued constant, variable, or expression, which is
evaluated to determine a value to be used in the control
string.

3. A format-control specifier, which determines the format of
information in the control string.

Details

Using FOPEN With TCP

A TCP/IP connection can be opened in either server mode or client mode. In server mode, one
or more clients (depending on the value assigned to /CLIENTS) are allowed to connect to the
server for subsequent communication.

To establish a client-server connection, the client must know the port number for the server.
For this reason, when using the FOPEN instruction for opening a server connection, the port
is explicitly defined using the /LOCAL_PORT attribute. Note that the server does not need to
know the port number used by the client.

Port numbers 0 through 255 are used by standard TCP application packages. For example,
FTP uses ports 20 and 21. By convention, if you are writing your own custom protocol, use a
port number greater than 255.

The following table shows valid TCP attributes for the FOPEN instruction.

Attribute: /CLIENTS

Explanation: Defines the number of client connections
allowable on a server. If omitted, a single client
connection is assumed. The maximum number
of client connections is 31.

Attribute: /LOCAL_PORT

Explanation: Defines the local port number for the connection.
If omitted, a local port number is automatically

FOPEN TCP Attributes

FOPEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 245

assigned.

Attribute: /REMOTE_PORT

Explanation: Defines the port number of a server to which a
client connection is to be made. Thismust be
providedwhen establishing a client connection.

Examples

Set up a TCP server with local port #260 to accept 5 client connections:

FOPEN (lun, 16) "/LOCAL_PORT 260 /CLIENTS 5"

Set up a TCP client connection that connects to port number 260 on the server called
server1:

FOPEN (lun, 0) "server1 /REMOTE_PORT 260"

Related Keywords

ATTACH program instruction

DETACH program instruction

FCLOSE program instruction

FDELETE program instruction

FEMPTY program instruction

FSET program instruction

IOSTAT real-valued function

FOPEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 246

FOPEN_ program instruction

Syntax

FOPEN_ (lun, record_len, mode) file_spec

Function

Open a disk file for read-only, read-write, read-write-append, or read-directory, as indicated
by the last letter of the instruction name.

The forms of FOPEN_ are:

l FOPENA

l FOPEND

l FOPENR

l FOPENW

See the Details section for descriptions of each instruction.

Usage Considerations

A logical unit must be attached before an open operation will succeed.

Nomore than 60 disk files and 160 network files can be open by the entire system at any
time. That includes files opened by all of the program tasks and by the system monitor (for
example, for an FCOPY command).

Parameters

lun Real-valued expression defining the logical unit number of the disk
device to be accessed. (See the ATTACH instruction for a description
of unit numbers.)

record_len Optional real-valued expression defining the length of records to be
read andwritten.

If the record length is omitted or is zero, variable-length records are
processed. In this case, random access of records cannot be done.

If the record length is nonzero, it specifies the length (in characters)
of fixed-length records to be processed. Random access is allowed
with fixed-length records.

mode Optional real-valued expression defining how read access is to be
done. The value specified is interpreted as a sequence of bit flags as

FOPEN_ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 247

detailed below. (All bits are assumed to be clear if nomode value is
specified.)

Bit 1 (LSB) Disable prereads (mask value = 1)

If this bit is clear, eV+ will read a record as soon as the file is opened
(a preread) and after each READ instruction in anticipation of
subsequent READ requests. If this bit is set, no such prereads are
performed.

Bit 2 Enable random access (mask value = 2)

If this bit is clear, the file will be accessed sequentially. That is, records
are read or written in the order they occur in the file.

If this bit is set, the file is accessed using random access (which is
allowed only for disk files with fixed-length records). In random-
access mode, the record-number parameter in the READ or WRITE
instruction specifies which record is accessed.

Bit 4 Force disk write (mask value = 8)

If set for a disk file being opened for write access, the physical disk is
written every time a record is written. In addition, the directory or file
allocation information is updatedwith each write. This mode is
equivalent to (but faster than) closing the file after every write. It is
much slower than normal bufferedmode, but it guarantees that
information that is written will not be lost due to a system crash or
power failure. This mode is intended primarily for use with log files
that are left opened over an extended period of time and
intermittently updated. For these types of files, the additional
(significant) overhead of this mode is not as important as the benefit.

file_spec String constant, variable, or expression specifying the file to be
opened. The stringmay contain an optional disk unit and an optional
directory path, andmust contain a file name, a period (.), and a file
extension. (For FOPEND, the file name and extension are optional,
and both can contain wildcard characters-see below.)

The current default disk unit and directory path are considered as
appropriate (see Using Directories for additional information on disk
units and directory paths.)

Details

This instruction opens a disk file so that input/output (I/O) operations can be performed.
When the I/O operations are complete, the file should be closed using an FCLOSE or DETACH
instruction.

FOPEN_ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 248

FOPENA Opens a file for read-write-append access. If the specified file does not
already exist, the file is created.

If the file already exists, no error occurs, and the file position is set to
the end of the file. Write operations then append to the existing file.

FOPEND Opens a disk directory for reading. The file name and extension in the
file_spec parameter are used to prepare a file name template for use
when read operations are later performed. Those read operations
return only records from the disk directory file that match the file
name template. Any attempt to write to the directory file causes an
error. (For information on the format of directory records, see the
section Accessing the Disk Directories in the eV+ Language User's
Guide.)

The file name and extension can include wildcard characters
(asterisks, *). A wildcard character within a file name or extension
indicates that any character should be accepted in that position. A
wildcard character at the end of a file name or extension indicates
that any trailing characters are acceptable. A wildcard character in
place of a file name (or extension) indicates that any name (or
extension) is acceptable. Omission of the file name, the period, and
the file extension is equivalent to specifying *.*. Omission of the
period and file extension is equivalent to specifying a wildcard
extension.

FOPENR Opens a file for read-only access. If the file does not already exist, an
error occurs. Any attempt to write to the file causes an error.

FOPENW Opens a file for read-write access. If the file already exists, an error
occurs.

Any error in the specification of this instruction (such as attempting
to access an invalid unit) will cause a program error andwill halt
program execution. However, errors associated with performing the
actual operations (such as device not ready) do not halt program
execution since these errors can occur in the normal operation of a
program. These normal errors can be detected by using the IOSTAT
function.

Example

FOPENR (5) "data.dat"

FOPEN_ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 249

Open the file named data.dat on the default device for read-only access with variable-length
records (record length omitted). Since the mode parameter is omitted, prereads will occur
and the records will be accessed sequentially (which is required for variable-length records).

FOPENW (5, 32, 3) "D:x.d"

Open the file named x.d on the device D for read-write access using fixed-length records of 32
characters each. The mode value 3 has both bits 1 and 2 set; thus, prereads are to be
disabled and random access is to be used.

FOPEND (5) "*.dat"

Open the current default directory to find all the files with the extension DAT.

Related Keywords

ATTACH program instruction

DETACH program instruction

FCLOSE program instruction

FOPEN_ program instruction

IOSTAT real-valued function

FOPEN_ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 250

FOR program instruction

Syntax

FOR loop_var = initial TO final STEP increment

Function

Execute a group of program instructions a certain number of times.

Usage Considerations

An END instruction must be included in a program tomatch every FOR.

Parameters

loop_var Real valued variable that is initialized when the FOR instruction is
executed and is incremented each time the loop is executed (cannot
be a specified value or expression).

initial Real value that determines the value of the loop variable the first time
the loop is executed.

final Real value that establishes the value to be compared to the loop
variable to determine when the loop should be terminated.

increment Optional real-value that establishes the value to be added to the loop
variable every time the loop is executed. If omitted, the increment
defaults to one, and the keyword STEPmay also be omitted.

Details

The instructions between the FOR statement and the matching END statement are
executed repeatedly, and loop_var is changed each time by the value of increment.

The processing of this structure is as follows:

1. When the FOR statement is first entered, set loop_var to the initial value.

2. Determine the values of the increment and final parameters.

3. Compare the value of final to the value of loop_var:

l If increment is positive and loop_var is greater than final, skip to item 7
below.

FOR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 251

l If increment is negative and loop_var is less than (that is, more negative
than) final, skip to item 7 below.

4. Execute the group of instructions following the FOR statement.

5. When the END step is reached, add the value of increment to the loop variable.

6. Go back to item 3 above.

7. Continue program execution at the first instruction after the END statement. loop_
var retains the value it had at the time of the test in item 3 above.

Note that the group of instructions in the FOR structure may not be executed at all if the test
in item 3 fails the first time.

The values of initial, increment, and finalwhen the FOR statement is first executed
determine how many times the group of instructions are executed. Any changes to the
values of these parameters within the FOR loop have no effect on the processing of the FOR
structure.

Changes to the loop variable within the loop affect the operation of the loop and should
normally not be done.

NOTE: If initial, final, or increment are not integer values, rounding in the floating point
computations may cause the loop to be executedmore or fewer timer than expected.

Example

The following example sets all elements of a 10x10 array to 0:

FOR i = 1 TO 10
FOR j = 1 TO 10

array[i,j] = 0
END

END

Related Keywords

DO program instruction

EXIT program instruction

NEXT program instruction

WHILE program instruction

FOR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 252

FORCE._ program instruction

Syntax

FORCE._

Function

Adept Intelligent Force Sensing option status and control instructions.

Stop on Digital Signal option control instruction.

Usage Considerations

The forms of FORCE._ areis:

FORCE.FRAME Set transformation for force reference frame

FORCE.MODE Set and control force operatingmodes

FORCE.OFFSET Set temporary or permanent force offset

FORCE.READ Return current force reading

Details

These instructions are part of the Omron Adept Intelligent Force Sensing System. See the
Adept Intelligent Force Sensing System User’s Guide for full syntax and details.

Stop on Digital Signal (eV+ 16.3 edit D and later)

A "stop-on-digital-signal" functionality is available. With this feature, any Omron Adept robot
system can be programmed to stop rapidly on a digital-input latch event. For example, this
feature could be used during high-speed assembly searches.

This feature, which operates like an AdeptForce (stop-on-force) guardedmove, is enabled
and disabled with the program instructions "FORCE.MODE (2)" and "FORCE.MODE (-2)",
respectively. For more details on the Adept Intelligent Force Sensing System (stop-on-force)
Guardedmove, see the Adept Intelligent Force Sensing System User's Guide.

To use this feature, do the following:

1. Using the ACE Controller Config Tools, change the TRAJ_RATE system parameter to
the value 250 Hz / 4 ms. This will increase the speed of response.

2. Using the ACE Controller Config Tools, add a poslatch clause to the robot statement.

FORCE._ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 253

For example, the clause "poslatch 1001" will cause a position latch to occur on the
leading edge of a change in input signal 1001. An example of this clause is shown in
the following code:

3. In your eV+ program, initiate stop-on-digital-signal using a FORCE.MODE (2) program
instruction. You can detect a stop by polling the LATCHED(1) function or the STATE(2)
function. You can disable stop-on-digital-signal with a FORCE.MODE(-2) program
instruction. An example of using the "stop-on-digital-signal" capability is shown below:

MOVE goal ;Start motion
FORCE.MODE (2) ;Enable "stop-on-digital-signal" mode
WAIT STATE(2) <> 1 ;Wait until the move terminates
FORCE.MODE (-2) ;Disable "stop-on-digital-signal"
mode
trigger = LATCHED(0) ;Determine if trigger occurred

After a "stop-on-digital-signal" occurs, the LATCHED() function returns the signal number
that triggered the latch (e.g. 1001) to indicate that the event had occurred, and the
transformation function LATCH() and the precision-point function #PLATCH() return the
position of the robot at the time of the event. The real-valued function STATE(2) can be used

FORCE._ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 254

to determine the state of the stoppedmotion. STATE(2) has the value 10 after a stop-on-
digital-signal event has occurred.

The stop-on-digital-signal feature must be re-enabled with another FORCE.MODE(2)
instruction before another trigger can occur.

NOTE: The "stop-on-digital-signal" functionality requires the Enhanced Trajectory
Generator license, which must be purchased from Omron Adept and installed on the
controller.

Related Keywords

LATCH transformation function

LATCHED real-valued function

#PLATCH precision-point function

SELECT real-valued function

STATE real-valued function

FORCE._ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 255

FRACT real-valued function

Syntax

FRACT (value)

Function
Return the fractional part of the argument.

Parameter

value Real-valued expression whose fractional part is returned by this function.

Details

The fractional part of a real value is the portion to the right of the decimal point (when the
value is written without the use of scientific notation).

The value returned has the same sign as the function argument.

Examples

FRACT(0.123) ;Returns 0.123
FRACT(-5.462) ;Returns -0.462
FRACT(1.3125E+2) ;Returns 0.25 (1.3125E+2 = 131.25)

Related Keyword
INT real-valued function

FRACT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 256

FRAME transformation function

Syntax

FRAME (location_1, location_2, location_3, location_4)

Function

Return a transformation value defined by four positions.

Parameters

location_1 Transformation, compound transformation, or a transformation-
valued function whose position is used to define the X axis of the
computed frame.

location_2 Transformation, compound transformation, or a transformation-
valued function whose position is used to define the X axis of the
computed frame.

location_3 Transformation, compound transformation, or a transformation-
valued function whose position is used to define the Y axis of the
computed frame.

location_4 Transformation, compound transformation, or a transformation-
valued function whose position is returned as the position of the
computed frame transformation.

Details

While the robot can be used to define an X, Y, Z position very accurately, it is often difficult to
define precisely an orientation. For applications such as palletizing, the FRAME function is
very useful for accurately defining a base transformation whose position and orientation are
determined by four positions. This function returns a transformation value that is computed
as follows:

1. Its origin is at the point defined by location_4.

2. Its positive X axis is parallel to the line passing through the points defined by
location_1 and location_2, in the direction from location_1to location_2.

3. Its X-Y plane is parallel to the plane that contains the points defined by location_1,
location_2, and location_3.

4. Its positive Y direction is from the computed X axes (as defined above), toward the
point defined by location_3.

FRAME transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 257

Example

The following instruction defines the transformation base.frame to have the same X, Y, Z
position as origin, its X axis parallel to the line from center to x, and its Y axis approximately in
the same direction as the line from center to y.

SET base.frame = FRAME(center, x, y, origin)

Related Keyword

TRANS transformation function

FRAME transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 258

FREE real-valued function

Syntax

FREE (memory, select)

Function

Return the amount of unused free memory storage space.

Parameters

memory Optional real value, variable, or expression (interpreted as an integer) that
specifies which portion of system memory is to be examined, as shown
below. The value zero is assumed if the parameter is omitted.

memory Memory examined

0 Program memory

1 Obsolete

2 Obsolete

select Optional real value, variable, or expression (interpreted as an integer) that
specifies what information about the memory is to be returned, as shown
below. The value zero is assumed if the parameter is omitted.

select Information returned

0 Percentage of memory available

1 Available memory, in KB (1024 bytes)

2 Obsolete

NOTE: If both parameters are omitted, the parentheses must still be included.

Details

This function returns the information displayed by the FREE command. Unlike the FREE
command, however, this function returns only one value, determined by the values specified
for thememory and select parameters.

FREE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 259

Related Keyword

FREE monitor command

FREE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 260

FSEEK program instruction

Syntax

FSEEK (logical_unit, record_number)

Function

Position a file open for random access and initiate a read operation on the specified record.

Usage Considerations

A file must be open for random access on the specified logical unit (see the FOPEN_
instruction).

For efficiency in most applications, the file should be opened in no prereadmode.

Parameters

logical_unit Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_number Optional real-valued expression that specifies the record to read
for file-oriented devices opened in random-access mode. If
omitted, the record following the one last read is assumed.

Details

When a file is open for random access, system performance can be improved by overlapping
the time required for disk file access with processing of the current data. By using the FSEEK
instruction, an application program can initiate a disk seek and possible read operation
immediately after a READ instruction is processed but before processing the data.

Any error in the specification of this instruction (such as referencing an invalid unit) causes a
program error and halts program execution. However, errors associated with performing the
actual seek operation (such as end of file or device not ready) do not halt program execution
since these errors may occur in the normal operation of a program. These normal errors can
be detected by using the IOSTAT function after performing the subsequent READ operation.
In general, it is good practice always to test whether each file operation completed
successfully by testing the value from IOSTAT.

Example

; Seek record number 130 in the file open on logical unit 5:
FSEEK (5, 130)

FSEEK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 261

Related Keywords

ATTACH program instruction

FOPEN program instruction

IOSTAT real-valued function

READ program instruction

FSEEK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 262

FSET program instruction

Syntax

FSET (logical_unit) attribute_list

Function

Set or modify attributes of a serial line or a network device.

Usage Considerations

If a window has been referenced, it must have been opened already with an FOPEN
instruction. If a serial line is referenced, it must have been attached already with an ATTACH
instruction.

The use of this instruction withnetwork devices applies only to systemswith the appropriate
license(s).

As with all eV+ I/O instructions, the IOSTAT real-valued function should be used after each
FSET instruction to determine the success of the FSET request.

Parameters

logical_unit Real value, variable, or expression (interpreted as an integer)
that defines the logical unit number of the window to be
accessed. (See the ATTACH instruction for a description of unit
numbers.)

attribute_list List of string constants, variables, and expressions; real values,
variables, and expressions; and format specifiers used to define
the characteristics of the window. See the description of the
FOPEN instruction for detailed information on this parameter.

Details

Using FSET With Serial Lines
The following specifications can be used as arguments to directly ATTACH a serial line:

SERIAL:n
Local serial line n on the local controller

The keywords listed in the following table may appear in the keyword list string.

FSET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 263

Attribute Argument Description

/PARITY NONE No parity generation

EVEN Use even parity

ODD Use odd parity

/STOP_BITS 1 or 2 Use 1 or 2 stop bits per byte

/BYTE_LENGTH 7 or 8 Use 7 or 8 bits per byte

/FLOW NONE No flow control

XON_XOFF Detect and generate XON/XOFF (turn off
modem)

MODEM Use modem control RTS/CTS (turn off
XON_XOFF).

/SPEED 110, 300, 600,
1200, 2400, 4800,
7200, 9600,
19200, 38400,
57600, 115200

Select the indicated baud rate.

FSET Serial-Line Attributes

Using FSET With TCP
The following network devices may be referencedwith the FSET> instruction:

TCP Transmission Control Protocol

You can use the attributes listed in the following table when accessing these devices with the
FSET instruction:

Attribute Description

/ADDRESS IP address. (Applies only to the TCP device.)

/NODE Node name.

FSET Attributes for Networks

You may define new nodes on the network using the FSET program instruction to access a
logical unit that has been attached to the TCP device. The string usedwith the FSET

FSET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 264

instruction has the same format as that usedwith the NODE statement in the eV+
configuration file (see the later example).

Examples

Serial

The following example attaches serial line 2 and sets the baud rate to 38400:

ATTACH (slun, 4) "SERIAL:2"
FSET (slun) "/SPEED 38400"

Network

Define a new node called SERVER2 with the IP address 172.16.200.102:

ATTACH (lun, 4) "TCP"
FSET (lun) "/NODE 'SERVER2' /ADDRESS '172.16.200.102'"

Related Keywords

FOPEN program instruction

IOSTAT real-valued function

FSET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 265

GETC real-valued function

Syntax

GETC (lun, mode)

Function

Return the next character (byte) from a device or input record on the specified logical unit.

Usage Considerations

The logical unit must be attached by the program for normal, variable-length record
input/output.

Parameters

lun Real value, variable, or expression (interpreted as an integer) that
identifies the device to be accessed. (See the ATTACH instruction for a
description of the unit numbers.)

mode Real value, variable, or expression (interpreted as an integer) that
specifies the mode of the read operation. Currently, the mode is used
only for the terminal and serial I/O logical units. The value is interpreted
as a sequence of bit flags as detailed below. (All bits are assumed to be
clear if nomode value is specified.)

Bit 1 (LSB) Disable waiting for input (mask value = 1)

If this bit is clear, program execution is suspended until the next byte is
received. If the bit is set and no bytes are available, the function
immediately returns the error code for *No data received* (-526).

NOTE: A -526 error may be returned by the first no-wait GETC even
if there are bytes queued.

Bit 2 Disable echo (mask value = 2)

If this bit is clear, input from the terminal is echoed back to the source.
If the bit is set, characters are not echoed back to the source. (This bit is
ignored for the serial lines.)

Details

The next byte from the device is returned.When reading from a record-oriented device such
as the system terminal or a disk file, the carriage-return and line-feed characters at the end

GETC real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 266

of records are also returned.When the end of a disk file is reached, a Ctrl+Z character (26
decimal) is returned.

When reading from the terminal, GETCwill return the next character entered at the
keyboard. All control characters will be read, except Ctrl+S, Ctrl+Q, Ctrl+O, and Ctrl+W,
which will have their normal terminal control functions.

When reading from the serial line, GETCwill return the next data byte immediately,
unmodified. (Note that if the serial line is configured to recognize Ctrl+S and Ctrl+Q
automatically as control characters, then those characters are not returned by the GETC
function.)

Normally, the byte value returned is in the range 0 to 255 (decimal). If an input error occurs,
a negative error code number is returned. The meanings of the error codes are listed in the
section System Messages.

Example

The following program segment reads characters from a disk file until a comma (,) character,
a control character, or an I/O error is encountered. The characters are appended to the string
variable $field. (The disk file must have already been opened for accessing variable-length
records.)

$field = ""
c = GETC(5)
WHILE (c > ^H1F) AND (c <> ',) DO

$field = $field+$CHR(c)
c = GETC(5)

END
IF c < 0 THEN

TYPE $ERROR(c)
HALT

END

Related Keywords

ATTACH program instruction

READ program instruction

GETC real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 267

GET.EVENT real-valued function

Syntax

GET.EVENT (task)

Function

Return events that are set for the specified task.

Usage Considerations

Do not confuse GET.EVENTwith the GETEVENT program instruction, which returns
information from a graphics window or the terminal.

Parameter

task Optional real value, variable, or expression (interpreted as an integer)
that specifies the task for which events are to be returned. The valid
range is -1 to 6, or -1 to 27, inclusive. If the parameter is omitted, or
has the value -1, the current task is referenced.

NOTE: The basic system allows 7 tasks (0–6). The eV+ Extensions
option allows 28 tasks (0–27).

Details

The events are returned in a value that should be interpreted as a sequence of bit flags, as
detailed below.

Bit 1 (LSB) I/O Completion (mask value = 1)

This bit being set indicates that a system input/output operation has completed.

See the descriptions of SET.EVENT andWAIT.EVENT for more details.

Related Keywords

CLEAR.EVENT program instruction

SET.EVENT program instruction

WAIT.EVENT program instruction

GET.EVENT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 268

GLOBAL program instruction

Syntax

GLOBAL type variable, ..., variable

Function

Declare a variable to be global and specify the type of the variable.

GLOBAL statements must appear before any executable statement in the program.

Parameters

type Optional parameter specifying the type of a variable. The acceptable
types are:

LOC Location variable (transformation, precision
point, belt)

REAL Single-precision real variable

DOUBLE Double-precision real variable

See the Details section for the default type.

variable Variable name (belt, precision point, real-value, string, and
transformation). Each variable can be a simple variable or an array. If
the type parameter is specified, all the variables must match the
specified type. Array variables must not have their indexes specified.

Details

Variables that are not declared to be AUTO or LOCAL are GLOBAL by default. Undeclared
scalar variables default to double precision.

Thus, double-precision and location global variables do not need to be declared.

Global variables can be seen by any program that does not declare a LOCAL or AUTO variable
of the same name. Thus, if program_a declares var1 to be a GLOBAL variable and
program_b declares var1 to be AUTO, program_b cannot use or alter GLOBAL var1. A new
copy of variable var1 that is specific to program_b is created each time program_b
executes.

GLOBAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 269

Examples

GLOBAL $str_1, $str_2, x ;create 2 string and 1 untyped
variable
GLOBAL LOC #ppoint_1 ;create 1 global precision point
variable
GLOBAL var_1, var_2 ;create 2 double prec. reals

Related Keywords

AUTO program instruction

LOCAL program instruction

GLOBAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 270

GOTO program instruction

Syntax

GOTO label

Function

Perform an unconditional branch to the program step identified by the given label.

Parameter

label Label of the program step to which execution is to branch. Step labels
are integer values that range in value from 0 to 65535.

Details

This instruction causes program execution to jump to the line that contains the specified
step label. Note that a step label is different from a line number. Line numbers are the
numbers automatically assigned by the eV+ program editors to assist the editing process.
Step labels must be explicitly entered on program lines where appropriate.

Modern, structured programming considers GOTO statements to be poor programming
practice. Omron Adept suggests you use one of the other control structures in place of GOTO
statements.

Example

The following program segment asks you to enter a number from 1 to 100. If the number
input is not in that range, the GOTO 10 instruction at line number 27 causes execution to
jump to step label 10 (at line number 23).

21 ; Get a number from the user
22
23 10 PROMPT "Enter a number from 1 to 100: ", number
24
25 IF (number < 1) OR (number > 100) THEN
26 TYPE /B, /C1, *Invalid response*, /C1
27 GOTO 10
28 END

Related Keywords

DO program instruction

EXIT program instruction

FOR program instruction

IF ... THEN program instruction

GOTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 271

NEXT program instruction

WHILE program instruction

GOTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 272

HALT program instruction

Syntax

HALT

Function

Stop program execution and do not allow the program to be resumed.

Usage Considerations

The PROCEED command cannot be used to resume program execution after a HALT
instruction causes the program to halt.

HALT forces an FCLOSE and/or DETACH on the disk and serial communication logical units as
required.

Details

Causes a BREAK and then terminates execution of the application program regardless of any
program loops remaining to be completed (see the EXECUTE command and instruction). The
message (HALTED) is displayed.

After termination by a HALT instruction, program execution cannot be resumedwith a
PROCEED or RETRY command.

Related Keywords

PAUSE program instruction

RETURN program instruction

STOP program instruction

HALT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 273

HAND real-valued function

Syntax

HAND

Function

Return the current hand opening.

Usage Considerations

The HAND function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the HAND function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

The word "hand" cannot be used as a program name or variable name.

Details

This function returns 0 if the hand is closed or 1 if the hand is opened or relaxed.

Related Keywords

CLOSE program instruction

CLOSEI program instruction

OPEN program instruction

OPENI program instruction

RELAX program instruction

RELAXI program instruction

SELECT program instruction

SELECT real-valued function

HAND real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 274

HAND.TIME system parameter

Syntax

... HAND.TIME

Function

Establish the duration of the motion delay that occurs during OPENI, CLOSEI, and RELAXI
instructions.

Usage Considerations

The current value of the HAND.TIME parameter can be determinedwith the PARAMETER
monitor command or real-valued function.

The value of the HAND.TIME parameter can be modified only with the PARAMETERmonitor
command or program instruction.

The parameter name can be abbreviated.

If the eV+ system is controllingmore than one robot, the HAND.TIME parameter controls
the hand operation times for all the robots.

Details

The OPENI, CLOSEI, and RELAXI instructions are used to operate the hand after the robot
has stoppedmoving. The HAND.TIME parameter determines the time allotted to the hand
actuation before the next robot motion can be initiated.

The value for this parameter is interpreted as the number of seconds to delay. It can range
from 0 to 1018. Because of the way eV+ generates time delays, the HAND.TIME parameter is
internally rounded to the nearest multiple of 0.016 seconds.

This parameter is set to 0.05 seconds when the eV+ system is initialized.

Example

Set the hand operation delay time to 0.5 seconds:

PARAMETER HAND.TIME = 0.5

Related Keywords

CLOSEI program instruction

OPENI program instruction

RELAXI program instruction

PARAMETERmonitor command

HAND.TIME system parameter

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 275

PARAMETER program instruction

PARAMETER real-valued function

HAND.TIME system parameter

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 276

HERE program instruction

Syntax

HERE location_var

Function

Set the value of a transformation or precision-point variable equal to the current robot
location.

Usage Considerations

The HERE instruction returns information for the robot selected by the task executing the
instruction.

If the eV+ system is not configured to control a robot, executing the HERE instruction does
not generate an error because of the absence of a robot. However, the location value
returnedmay not be meaningful.

The word "here" cannot be used as a program name or variable name.

Parameter

location_var Transformation, precision point, or compound transformation that
ends with a transformation variable.

Details

This instruction sets the value of a transformation or precision-point variable equal to the
current robot location.

Normally, the robot location is determined by reading the instantaneous values of the joint
encoders. However, if the robot has either backlash or linearity compensation enabled, the
commanded robot location is used.

If the location_var is a compound transformation, only the right-most transformation is
defined. Its value is set equal to the current robot location relative to the reference frame
determined by the other transformations. An error message results if any of the other
transformations are not already defined.

Examples

Set the transformation part equal to the current robot location:

HERE part

Assign the current location of the robot to the precision point #part:

HERE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 277

HERE #part

Related Keywords

HERE monitor command

HERE transformation function

SELECT program instruction

SELECT real-valued function

SET program instruction

HERE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 278

HERE transformation function

Syntax

HERE

Function

Return a transformation value that represents the current location of the robot tool point.

Usage Considerations

The current location is obtained by reading the instantaneous value of the joint encoders so
that it represents the actual location of the robot.

The HERE function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the HERE function does not
generate an error due to the absence of a robot. However, the information returned by the
function may not be meaningful.

The word "here" cannot be used as the name of a program or variable.

Example

Calculate the distance between the current robot location and the location the robot is
currently moving to:

dist = DISTANCE(HERE, DEST)

Related Keywords

DEST transformation function

HERE monitor command

HERE program instruction

SELECT program instruction

SELECT real-valued function

HERE transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 279

ID real-valued function

Syntax

ID (component, device, board)

Function

Return values that identify the configuration of the current system.

Parameters

component Real value, variable, or expression (interpreted as an integer) whose
value determines which component of identification information is
returned.

device Optional real value, variable, or expression (interpreted as an
integer) whose value selects the device to be identified. Device #1
(the basic system) is assumed if this parameter is omitted.

board Optional integer specifying the CPU of interest when the device
parameter value equals 4. Board #1 (the main CPU) is assumed if
this parameter is omitted.

Details

The ID function enables a program to access the information displayed by the IDmonitor
command. The values of the components are the same as the fields displayed by that
command.

The function returns the value 0 for devices that do not exist. Device numbers that do not
exist return the value 0. For valid devices, an *Invalid argument* error message is reported
if the requested component is not valid.

The following table describes the type of information returnedwhen the device parameter is
set at a specified value. To see the acceptable values for the component parameter and the
type of information returned for each device value, click on the device link in the table
below.

To obtain information on... Set the device parameter to...

The basic system device = 1 (This is the default value.)

The pendant device = 2 returns information about the manual
control pendant.

Robot device = 8 or device = 10+r returns information

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 280

To obtain information on... Set the device parameter to...

about the robot.

CPU and board info device = 4 returns information about the CPU
and processor board (if the board parameter is
specified).

Force Sensing Systems device = 50 returns information about force
sensing systems.

component Result of ID (component, 1)

1 Model designation of the system controller

2 Serial number of the system controller

3

Version number of the eV+ software in use. This is the internal
version that is incremented for each software release. It also
differentiates V+ from eV+ (V+ ends at version 17.x; eV+ begins at
version 2.x).

To get the external product version number, which is displayed by
the ID Monitor Command, use ID(14,1).

4 Revision number of the eV+ software in use

5 First option word for the eV+ system (*)

6 Second option word for the eV+ system (*)

7 Size of the system program memory (in kilobytes, K [1 K = 1024 8-
bit bytes])

8 Not used.

9 Controller product-type value

10 Returns the SmartController base board revision code.

11 Controller hardware configuration. This field should be interpreted as
a bit field. For details on the information returned, see the section
Controller Hardware Configuration returned by ID(11,1), below.

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 281

component Result of ID (component, 1)

12 Returns the first and second parts of the security ID (shown as
"aaaa-bbbb") below. (The value returned needs to be displayed in
hexadecimal format to look the same as "aaaa-bbbb".)

Security ID: aaaa-bbbb-cccc

13 Returns the third part of the security ID (shown as "cccc") below.
(The value returned needs to be displayed in hexadecimal format to
look the same as "cccc".)

Security ID: aaaa-bbbb-cccc

14 External version number of the eV+ software in use. Also, see ID
(3,1).

*The system option words are described in ID Option Words on page 1.

Controller Hardware Configuration returned by ID(11,1)

The value for the controller hardware configuration [returned by ID(11,1)] should be
interpreted as a bit field, as follows:

Bit 3 - Emulator (mask = 4)

This bit is set if the system is an emulator (e.g. it runs on PCwith virtual robot instead of
running on a SmartController-EX controlling real robots).

Pendant

Device number 2 refers to the pendant.

CPU and Board Configuration

Device number 4 refers to the system CPUs. (If the indicated board does not exist, all values
are returned as -1.)

component Result of ID (component, 4, board)

5 CPU type:

8 = SmartController EX

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 282

component Result of ID (component, 4, board)

6 Bit field indicating which software modules are active on the board.
Bit definitions are provided in the following table.

Bit #
Mask Value

Interpretation
When Bit Set

Decimal Hexadecimal

1 1 1 Processor is
running the eV+
Operating
System

2 2 2 Obsolete

3 4 4 Processor is
running the
Servo software

4-16 Reserved for
future use
(currently zero)

Robot and Encoder Configuration

Device number 8 returns information for the currently selected robot. The acceptable values
for the component parameter are the same as for a specified robot. (See the following
table.)

Device number 10 refers to the external encoders connected to the robot controller. The
acceptable values for the component parameter are the same as for a robot.

Device numbers 11, 12, ... refer to robot number 1, 2, ..., respectively, for each robot
connected to the controller. That is, a device number equal to 10+r refers to robot number r,
which can range from 1 to the value returned by the function SELECT(ROBOT, -1). The
number of the robot that is currently selected can be obtainedwith the function SELECT
(ROBOT).The acceptable values for the component parameter, and the corresponding
values returned, are listed in the following table.

component Result of ID (component, 10+r)

1 Model designation of the robot

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 283

component Result of ID (component, 10+r)

2 Serial number of the robot

3 Number of motors configured for the robot
This normally is equal to the number of configured joints (see
component 7).

4 Value interpreted as bit flags for the robot joints that are enabled: bit
1 for joint 1, and so on. (The value is zero if the robot does not have
joints that can be disabled selectively. For example, this value is
defined for the X/Y/Z/Theta robot but is zero for the 4/5-axis SCARA
module.)

5 Robot control-module identification number

6 Obsolete

7 Number of robot joints configured for use

8 Robot option word (*)

9 Robot product-type value

10 Obsolete

11 Second robot option word (*)

12 Information on the robot module
Currently, only bit 1 (mask 1) is defined. If set, this bit indicates that
the specified robot is an Omron Adept robot.

13 Returns the safety level for the robot. Possible values are:

0 = No special safety level
1 = Configured as Category 1 Robot System per ISO 10218 and
EN954
3 = Configured as Category 3 Robot System per ISO 10218 and
EN954

14 Editable axis mask (always 0).

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 284

component Result of ID (component, 10+r)

15 eSeries robot type. Possible values are:

0 = eSeries Lite/eVario
1 = eSeries Standard
2 = eSeries Pro
3 = sSeries

16 Returns the first and second parts of the robot security ID (shown as
"aaaa-bbbb") below. (The value returned needs to be displayed in
hexadecimal format to look the same as "aaaa-bbbb".)

Security ID: aaaa-bbbb-cccc

17 Returns the third part of the robot security ID (shown as "cccc")
below. (The value returned needs to be displayed in hexadecimal
format to look the same as "cccc".)

Security ID: aaaa-bbbb-cccc

18 Returns the number of the task currently attaching the robot.

*The robot option words are described in the Robot Option Words topic

Force Sensing Configuration

Device number 50 refers to the currently selected force sensor. Device numbers 51 through
66 refer to force sensors numbered 1 to 16, respectively.

See the documentation for the SELECT program instruction for an explanation of selecting
amongmultiple force sensors. The acceptable values for the component parameter, and the
corresponding values returned, are listed below.

component Result of ID (component, 50)

1 Model number of force sensor (0 if no force sensor is connected)

2 Serial number of force sensor (0 if no force sensor is connected)

3 Obsolete

4 Version number of force-sensing software

5 Option word for force system

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 285

component Result of ID (component, 50)

6 Size of the data collection buffer (in K)

Related Keywords

IDmonitor command

$ID string function

SELECTmonitor command

SELECT program instruction

SELECT real-valued function

ID real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 286

$ID string function

Syntax

$ID (select)

Function

Return the system ID string.

Parameter

select Integer specifying the ID information to return. It may be:

Integer Description

-1 Returns the system edit message.

-2 Returns the edit letter and issue number for the eV+
system.

-3 Returns the vision edit message string.

-4 Returns the servo edit message string.

Details

This function returns a string that identifies the release edition and date of the requested
system software component.

Related Keywords

IDmonitor command

ID real-valued function

$ID string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 287

IDENTICAL real-valued function

Syntax

IDENTICAL (location, location)

Function

Determine whether two location values are exactly the same.

Parameter

location Transformation value that defines one of the locations of interest. This
can be a function, a variable, or a compound transformation.

Details

This function returns the value TRUE if the positional and rotational components of the two
specified locations are exactly the same. Even a single-bit difference in any of the
components results in the value FALSE being returned.

Example

The statement

x = IDENTICAL(base.1:loc,part)

sets the value of the real variable x to TRUE if the value of loc relative to the base.1 frame is
exactly the same as the value stored in the variable part.

Related Keyword

DISTANCE real-valued function

IDENTICAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 288

IF logical_expr THEN program instruction

Syntax

IF logical_expr THEN

first steps

ELSE

second steps

END

Function

Conditionally execute a group of instructions (or one of two groups) depending on the result
of a logical expression.

Usage Considerations

There must be amatching END statement for every IF... THEN in a program.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE (nonzero)
or FALSE (zero).

first_steps Optional group of program instructions that are executed only if
the value of the logical expression is TRUE (nonzero).

second_steps Optional group of program instructions that are executed only if
the value of the logical expression is FALSE (zero).

The ELSE statement may be omitted if there are no steps in this
group.

Details

This control structure provides a means for conditionally executing one of two groups of
instructions. In detail, it is processed as follows:

1. logical_expr is evaluated. If the result is FALSE (zero), skip to item 4 below.

2. The first group of instruction steps is executed.

3. Skip to item 5 below.

IF logical_expr THEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 289

4. If there is an ELSE step, the second group of instruction steps is executed.

5. Program execution continues at the first step after the END step.

The ELSE and END steps must be on lines by themselves as shown.

There are no restrictions on the instructions that can be in either group in the structure.
Thus, nested IF structures can be used.

Examples

Consider the following segment of a eV+ program. If the value of row is greater than 5, the
expression row > 5 will be TRUE (-1.0), so step 22 is executed and 24 is not executed.
Otherwise, step 22 is not executed, but step 24 is executed:

21 IF row > 5 THEN
22 spacing = 10
23 ELSE
24 spacing = 20
25 END

The next program segment determines whether the variable input.signal has been defined. If
it has, the program checks the signal indicated by the value of input.signal and types different
messages depending on its setting. Note that the outer IF does not include an ELSE clause:

71 IF DEFINED(input.signal) THEN
72 IF SIG(input.signal) THEN
73 TYPE "The input signal is ON"
74 ELSE
75 TYPE "The input signal is OFF"
76 END
77 END

Refer to the DEFINED function for details on testing nonreal arguments.

Related Keywords

CASE program instruction

DEFINED real-valued function

ELSE program instruction

IF... GOTO program instruction

IF logical_expr THEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 290

IF logical_expr GOTO program instruction

Syntax

IF logical_expr GOTO label

Function

Branch to the specified step label if the value of the logical expression is TRUE (nonzero).

Usage Considerations

In general, it is a better programming practice to use the IF ... THEN control structure rather
than this instruction.

Parameters

logical_expr Real-valued expression whose value is tested for TRUE (nonzero) or
FALSE (zero).

label Program step label of a step in the current program.

Details

If the value of the expression is nonzero, program execution branches and begins executing
the statement with a label matching the one specified. If the value of the expression is zero,
the next instruction is executed as usual.

If the specified statement label is not defined, the program is not executable. Any attempt to
branch to an undefined label is identified when the program editor is exited andwhen the
program is loaded into memory from a disk file.

Example

The most common use for IF...GOTO is as an exit-on-error instruction. The following code
checks each I/O operation and branches to a label whenever an I/O error occurs:

ATTACH(dlun, 4) "DISK"
IF IOSTAT(dlun) < 0 GOTO 100
FOPENW(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100

...
FCLOSE(dlun) "my_file"
IF IOSTAT(dlun) < 0 GOTO 100
DETACH(dlun)

100 IF IOSTAT(dlun) < 0 THEN
TYPE $ERROR(IOSTAT(dlun))

END

IF logical_expr GOTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 291

Related Keywords

GOTO program instruction

IF ... THEN program instruction

IF logical_expr GOTO program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 292

IGNORE program instruction

Syntax

IGNORE signal

Function

Cancel the effect of a REACT or REACTI instruction.

Usage Considerations

Only digital I/O signals that are installed and configured as inputs are available for reaction
monitoring.

The IGNORE instruction must be executed by the same program task that initiated the
REACT or REACTI instruction.

Parameter

signal Digital input signal number in the range 1001 to 1012, an internal
signal in the range 2001 to 2008.

Details

Disables continuousmonitoring of the specified signal, canceling the effect of the last REACT
or REACTI for this signal.

Example

Stopmonitoring of the digital input or soft signal identified by the value of test.

IGNORE test

Related Keywords

LOCK program instruction

REACT program instruction

REACTI program instruction

IGNORE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 293

INRANGE real-valued function

Syntax

INRANGE (location)

Function

Return a value that indicates whether a location can be reached by the robot and, if not, why
not.

Usage Considerations

The INRANGE function returns information for the robot selected by the task executing the
function.

Parameter

location Optional transformation function, variable, or compound that specifies a
desired position and orientation for the robot tool tip.

If this parameter is omitted, INRANGE will indicate if the current
location of the selected robot can be reached.

Details

The function returns a value that indicates whether or not the given location can be reached
by the robot. The value zero indicates that the specified location can be reached.

If the location cannot be reached, the returned value is a coded binary number that identifies
the reason. A bit equal to 1 in the value indicates that the corresponding robot constraint
would be violated, as shown in the table below:

Mask Value

Bit # Hex Decimal Indication if bit set

1 1 1 Joint or motor 1 is limiting

2 2 2 Joint or motor 2 is limiting

3 4 4 Joint or motor 3 is limiting

4 8 8 Joint or motor 4 is limiting

INRANGE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 294

Mask Value

Bit # Hex Decimal Indication if bit set

5 10 16 Joint or motor 5 is limiting

6 20 32 Joint or motor 6 is limiting

7 40 64 Joint or motor 7 is limiting

8 80 128 Joint or motor 8 is limiting

9 100 256 Joint or motor 9 is limiting

10 200 512 Joint or motor 10 is limiting

11 400 1024 Joint or motor 11 is limiting

12 800 2048 Joint or motor 12 is limiting

13 1000 4096 Collision detected

14 2000 8192 Location is too close in

15 4000 16384 Location is too far out

16 8000 32768 Motor is limiting, rather
than joint (see below)

17 10000 65536 Orientation is out of range
for the Quattro platform

18 20000 131072 Kinematic solution not
found

If the motion system is configured to return motor-limit as well as joint-limit errors, bit 16
indicates whether a joint or motor would limit motion to location. If bit 16 is set, all the joints
passed their limit checks, and the indicatedmotor is limiting. Otherwise, the indicated joint is
limiting.

The mask values indicated above can be usedwith the BAND operator to determine if a
corresponding bit is set.

INRANGE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 295

Example

Returns the value zero if the robot can reach the location defined by the compound
transformation pallet:hole.

INRANGE(pallet:hole)

If both joints 2 and 3 would prevent the motion from beingmade, the value returnedwould
be 6.

Related Keyword

SELECT program instruction

SELECT real-valued function

INRANGE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 296

INSTALL program instruction

Syntax

INSTALL password, op

Function

Install or remove software options available to Omron Adept systems.

Usage Considerations

You must have received the authorization password from Omron Adept. INSTALL can be run
only on CPU #1 in multiple CPU systems.

Parameters

password String expression that contains a 15-character value assigned by
Omron Adept.

op Optional integer indicating the desired operation:

0 = install option (default)
1 = remove option

Details

When you purchase additional software options from Omron Adept, the software is delivered
with a software license and authorization password that enables the software for a particular
controller. If the option is not enabled, the software does not load correctly.

The password is keyed both to the software option and the serial number of your controller.
The password cannot be used on any controller other than the one for which you purchased
the software option.

Example

If you purchased the AIM MotionWare software from Omron Adept and the password
providedwith the option is 4EX5-23GH8-AY3F, the following instruction enables the
software option:

INSTALL "4EX5-23GH8-AY3F"

NOTE: Some options, such as AIM software, have additional software files that must be
copied to the hard drive. Other options, such as AdeptVision, are already resident and
need only to be enabled.

INSTALL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 297

INT real-valued function

Syntax

INT (value)

Function

Return the integer part of the value.

Parameter

value Real-valued expression whose integer part is returned by this function.

Details

Returns the portion of the value parameter to the left of the decimal point (when the value is
written without the use of scientific notation).

The value is not rounded before dropping the fraction.

The sign of the value parameter is preserved unless the result is zero.

Examples

INT(0.123) ;Returns 0.0

INT(10.8) ;Returns 10.0

INT(-5.462) ;Returns -5.0

INT(1.3125E+2) ;Returns 131.0

INT(cost) ;Returns the value of "cost",
;truncated to an integer.

INT(cost+0.5*SIGN(cost)) ;Returns the value of "cost",
rounded

;to the nearest integer. (The SIGN
;function needs to be included to
;correctly round negative values of
;"cost".)

Related Keyword

FRACT real-valued function

INT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 298

INTB real-valued function

Syntax

INTB ($string, first_char)

Function

Return the value of two bytes of a string interpreted as a signed 16-bit binary integer.

Parameters

$string String expression that contains the two bytes to be converted.

first_char Optional real-valued expression that specifies the position of the first
of the two bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first two bytes of
the string are extracted. If first_char is greater than 1, it is interpreted
as the character position for the first byte. For example, a value of 2
means that the second byte contains bits 9 to 16 and the third byte
contains bits 1 to 8. An error is generated if first_char specifies a byte
pair that is beyond the end of the input string.

Details

Two sequential bytes of a string are interpreted as being a 2's-complement 16-bit signed
binary integer. The first byte contains bits 9 to 16, and the second byte contains bits 1 to 8.

The main use of this function is to convert binary numbers from an input data record to
values that can be used internally by eV+.

The expression

value = INTB($string, first_char)

is equivalent to the following instruction sequence:

value = ASC($string,first_char)*256 + ASC($string,first_char+1)
IF value > 32767 THEN

value = value-65536
END

To compute an unsigned integer, use: INTB($string) BAND^HFFFF.

Examples

INTB($CHR(10)+$CHR(5)) ;Returns the value 2565

INTB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 299

INTB($CHR(255)+$CHR(255)) ;Returns the value -1

Related Keywords

ASC real-valued function

DBLB real-valued function

FLTB real-valued function

$INTB string function

LNGB real-valued function

VAL real-valued function

INTB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 300

$INTB string function

Syntax

$INTB (value)

Function

Return a 2-byte string containing the binary representation of a 16-bit integer.

Parameter

value Real-valued expression, the value of which is converted to its binary
representation.

Details

The integer part of a real value is converted into its binary representation and the low 16 bits
of that binary representation are packed into a string as two 8-bit characters. Bits 9-16 are
packed first, followed by bits 1-8.

This function is equivalent to:

$CHR(INT(value/256) BAND ^HFF) + $CHR(INT(value) BAND ^HFF)

The main use of this function is to convert integers to binary representation within an output
record of a data file.

Example

$INTB(65*256+67) ;Returns the character string "AC".

Related Keywords

$CHR string function

$DBLB string function

$FLTB string function

INTB real-valued function

$LNGB string function

$INTB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 301

INVERSE transformation function

Syntax

INVERSE (transformation)

Function

Return the transformation value that is the mathematical inverse of the given
transformation value.

Parameter

transformation Transformation-valued expression.

Details

Mathematically, the value from this function is a transformation such that the value of the
compound transformation shown below is the identity transformation (or NULL).

INVERSE(trans):trans

Stated another way, consider a transformation x that defines the location of object A relative
to object B. Then INVERSE(x) is the transformation that defines the location of object B
relative to A.

Example

Consider the case where the location part_1 is known in robot coordinates, and you want to
find the location hole_1 with respect to part_1. We can use the compound expression:

part_1:hole_1

to represent the position of hole_1 in robot coordinates.

Suppose wemove the robot to hole_1 and use the HERE command to define hole_pos as the
position of hole_1 in robot coordinates. In other words, we want to find hole_1, knowing the
values of part_1 and hole_pos, and knowing that:

part_1:hole_1 is equal to hole_pos

We can then use the INVERSE function to determine hole_1 with the instruction:

SET hole_1 = INVERSE(part_1):hole_pos

Note that the SET instruction can be usedwithout explicit use of INVERSE by using a
compound transformation on the left-hand side, with identical results. That is, the
instruction defines hole_1.

INVERSE transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 302

SET part_1:hole_1 = hole_pos

Related Keywords

HERE program instruction

SET program instruction

INVERSE transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 303

IOSTAT real-valued function

Syntax

IOSTAT (lun,mode)

Function

Return status information for the last input/output operation for a device associated with a
logical unit.

Usage Considerations

IOSTAT returns information only for the most recent operation. If more than one operation
is performed, the status should be checked after each one.

Parameters

lun Real-valued expression whose integer value is the logical unit number
for the I/O device of interest. (See the description of ATTACH for
information on the logical unit numbers recognized by the eV+ system
and how logical units are associated with I/O devices.)

mode Optional expression that selects the type of I/O status to be returned for
the specified logical unit. The following table shows the effects of the
various mode values. (If the mode value is omitted, the value zero is
assumed.)

Mode Value returned by IOSTAT

0 Status of the last complete I/O
operation

1 Status of a pending preread request

2 Size in bytes of the last file opened or
of the last record read1

3 Status of any outstanding write
request

1When sequential-access mode is being used, the byte count
returned by IOSTAT(...,2) includes the carriage-return and line-
feed characters at the end of each record.

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 304

Details

Unlike most eV+ instructions, I/O instructions do not force the program to stop when an
error is detected. Instead, the error status is stored internally for access with the IOSTAT
function. This feature allows the program to interpret and possibly recover from many I/O
errors.

When reading a file of unknown length, IOSTAT is the only method to determine when the
end of the file is reached.

The value returned for modes 0, 1, and 3 is one of the following:

IOSTAT Value
Returned on

EOF
Description

1 Normal success; for mode 3 this value indicates that no write
request is outstanding.

0 Operation not yet complete

< 0 Standard eV+ error number. See System Messages for a
description of standard eV+ error numbers.

Examples

Try to open a file for reading, andmake sure the file exists. If the file does exist, record its size
(in bytes).

ATTACH (dlun, 4) "DISK"
FOPENR (dlun) "RECORD.DAT"
IF IOSTAT(dlun) < 0 THEN

TYPE "Error opening file"
HALT

END
file.size = IOSTAT(dlun,2)

Read and display records until the end of the file is reached.

ieeof = -504 ;End-of-file error code
READ (dlun) $record
WHILE IOSTAT(dlun) > 0 DO

TYPE $record
READ (dlun) $record

END
IF IOSTAT(dlun) == ieeof THEN

TYPE "Normal end of file"
ELSE

TYPE /B, "I/O error ", $ERROR(IOSTAT(dlun))
END

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 305

FCLOSE (dlun)
DETACH (dlun)

In the following example a TCP server program segment performs a no-wait read and then
checks the status to determine whether a client connection or disconnection wasmade.

ATTACH (lun,4) "TCP"
IF IOSTAT (lun) < 0 THEN

TYPE "Attach error: ", $ERROR(IOSTAT(lun))
END
no_wait = 1
READ (lun, handle, no_wait) $in.str
status = IOSTAT(lun)
CASE status OF

VALUE 1: ;Data received
TYPE "Data received. Handle =", handle

VALUE 100: ;New connection opened
TYPE "New connection established. Handle =", handle

VALUE 101: ;Connection closed
TYPE "Connection closed. Handle =", handle

VALUE -526: ;No data received
WAIT

ANY ;Some other error
TYPE "Error during READ: ", $ERROR(status)
GOTO 100

END

Related Keywords

ATTACH program instruction

FCLOSE program instruction

FCMND program instruction

FEMPTY program instruction

FOPEN program instruction

FSEEK program instruction

READ program instruction

WRITE program instruction

IOSTAT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 306

IPS keyword

Syntax

SPEED value IPS ALWAYS

Function

Specify the units for a SPEED instruction as inches per second.

NOTE: To specify speed in millimeters per second, use the MMPS conversion factor.

Usage Considerations

IPS can be used only as a parameter for a SPEED program instruction.

The speed setting specified is scaled by the monitor speed in effect when the robot motion
occurs.

Speeds specified with the IPS parameter apply to straight-line motions. Joint-interpolated
motions do not maintain the specified tool speed.

Details

IPS is an optional parameter for the SPEED program instruction, which specifies the units to
be used for the speed value. That is, when IPS is specified in a SPEED instruction, the speed
value is interpreted as inches/second (for straight-line motions).

See the description of the SPEED program instruction for further details on settingmotion
speeds with the IPS conversion factor.

Example

Set the robot tool tip speed to 20 inches/second for the next straight-line robot motion
(assuming the monitor speed is set to 100):

SPEED 20 IPS

Related Keywords

MMPS keyword

SPEED program instruction

IPS keyword

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 307

JHERE program instruction

Syntax

JHERE variable1, ..., variablen

Function

Records the current robot joint positions in real or double-precision variables. This instruction
supports Micro eV+.

Parameters

variable1 A real or double-precision variable to receive the position of joint 1.

variablen A real or double-precision variable to receive the position of joint n.

Details

You can specify a maximum of 12 variables. The variables can be array elements with index
expressions.

You can omit variables from the list as desired. The following example records the joint-3 and
joint-5 positions respectively:

JHERE , , j3,,j5

If more variables are defined than there are joints for a robot, the extra variables are zero.

Related Keyword

JMOVE program instruction

JHERE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 308

JMOVE program instruction

Syntax

JMOVE expression1,...,expressionn

Function

Moves all robot joints to positions described by a list of joint values. The robot performs a
coordinatedmotion in joint-interpolatedmode. This instruction is supported by Micro eV+.

Parameters

expression1 An optional expression for the joint-1 value.

expressionn An optional expression for the nth joint value.

NOTE: You must specify at least one expression (joint), in order to move the robot.

Details

You can specify a maximum of 12 expressions.

If an expression is omitted, that joint is not moved. The following example moves only joint 1
and joint 3.

JMOVE j1,,j3

If more expressions are specified than there are joints for a robot, the extra expressions are
ignored.

Related Keyword

JHERE program instruction

JMOVE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 309

JOG program instruction

Syntax

JOG (status) robot, mode, axis, speed, location, appro_dist

Function

Moves ("jogs") the specified joint of the robot, or moves the robot tool along the specified
Cartesian direction. Each time JOG is executed, the robot moves for up to 300 ms.

Usage Considerations

The specified robot cannot be attached by any other task when using amode other than
COMP. Otherwise, the error message *Robot interlocked* is generated. The robot can be
attached by the current program, but it does not need to be attached. If the robot is not
attachedwhen the JOG instruction is executed, remember to attach the robot after the JOG
instruction before executing any other motion instructions.

After the robot is movedwith the JOG instruction, the system is left in MANUAL mode (i.e.,
as though amanual mode had been selected on the pendant). JOGmode 5 (or the pendant)
can be used to restore COMPmode. Otherwise, an error *COMPmode disabled* will be
returnedwhen a task attempts to attach the robot.

If a joint is out of range, the JOG instruction can be used to bring the joint back into range.
See the Details section for more information.

Parameters

status An optional status variable (returns 1 for success; otherwise, contains
a eV+ error code)

robot Specifies the robot number.

mode Specifies the jogmode, as follows:

-1 Keep-alive mode. Continues the previous instruction for
another 300 ms.

1 Free joint mode. A positive speedwill put the specified
joint(s) in Free mode. A negative speedwill put the
specified joint(s) out of Free mode.

2 Individual joint control.

JOG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 310

3 World coordinates control.

4 Tool coordinates control.

5 Restore COMPmode.

6 unused.

7 Jog toward the specified location using the specified
speed.

8 Jog toward alignment of the robot tool-Z axis with the
nearest World axis.

9 Cartesian control relative to a frame defined by the
specified location.

(See theDetails for information about errors associated with the
modes.)

axis Specifies the joint number or Cartesian coordinate (X=1, Y=2, ...),
depending on the specified jogmode (see above), for the desired
motion.

This parameter is ignored for modes 7 and 8, but a value must always
be specified.

speed Specifies the speed and direction of the motion. This is interpreted as a
percentage of the speed in manual mode. Values above 100 are
interpreted as 100%, values below -100 are interpreted as -100%.

If Free mode is specified, a positive speedwill put the given joint in free
mode and a negative speedwill put the joint out of free mode.

location Optional transformation, precision point, location function, or
compound transformation that specifies the destination to which the
robot is to move. This parameter is ignored (and can be omitted) for all
modes except 7 and 9.

appro_dist Optional real-valued expression that specifies the distance along the
robot tool Z axis between the specified location and the actual desired
destination.

A positive distance sets the tool back (negative tool-Z) from the
specified location; a negative distance offsets the tool forward (positive
tool-Z). This parameter is used only for mode 7.

JOG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 311

Details

When the status variable is supplied, and there is an error, the JOG instruction does not
cause program execution to stop. The error is simply returned in the STATUS variable.

Each time the JOG instruction is executed, the robot moves for up to 300 ms. Another JOG
can be executed before the previous motion is completed. In fact, for extended smooth
motion, subsequent JOG instructions should be executed within 300 ms of the previous JOG
instruction. The keep-alive mode can be used for that purpose. The keep-alive mode will
have no effect after the timeout of 300 ms; it has an effect only before the robot stops.

The following error conditions can be reported when the instruction is processed:

l Mode 1: The error *Illegal joint number* (-609) is returned if FREE mode is not
permitted for the specified joint.

l Mode 2: The error *Joint control of robot not possible* (-938) is returned if the robot
does not support joint control.

l Modes 3, 4, 8, 9: The error *Cartesian control of robot not possible* (-635) is
returned if the robot does not support Cartesian control.

l Mode 7: If the location cannot be reached, the motion stops at the limit of possible
motion and the error *Location out of range* (-610) is returnedwhen the motion
stops. If any other motion error occurs during the motion (e.g., an obstacle is
encountered), the associated error is reported.

l Modes 7 and 9: The error *Missing argument* (-454) is returned if a location is not
specified. For mode 7, a straight-line motion is performed toward the specified location
if the location is specified with a transformation. A joint-interpolatedmotion is
performed if the location is specified with a precision point. However, if the robot does
not permit the type of motion associated with how the location is specified (e.g., the
Quattro robot does not permit joint-interpolatedmotion), the motion is performed in
the manner that is permitted by the robot.

When a robot joint is out-of-range, it can be driven into range in either of these ways:

l Go into MANmode on the pendant, andmanually control the joint.

l Put the pendant in COMPmode, and use the JOG instruction to move the joint back
into range. (JOG is allowed only in pendant COMPmode.)

NOTE: Use of COMPmode when a joint is out of range is very restricted. All motion
instructions (except JOG) return a *Position out of range* error in that situation.
In addition, JOG can move the joint only in the direction that moves the joint back
into range..

Examples

The following are some examples of proper use of the JOG instruction:

JOG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 312

JOG 1, 2, 3, -10 ;JOG joint 3 in negative direction in
; JOINT mode

JOG 1, 3, 1, 10 ;JOG X-axis in WORLD mode
JOG 1, 4, 2, 10 ;JOG Y-axis in TOOL mode
JOG 1, 7, 1, 10,loc1 ;JOG toward loc1
JOG 1, 7, 1, 10,loc1, 50 ;JOG toward 50 mm above loc1

Related Keywords

JMOVE program instruction

JOGmonitor command

MOVE program instruction

JOG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 313

KEYMODE program instruction

Syntax

KEYMODE first_key,last_key = mode

Function

Set the behavior of a group of keys on the pendant.

Usage Considerations

The pendant must be attached before KEYMODE can be processed. For details on the
pendant key numbers, see Programming the T20 Pendant in the eV+ Language User's
Guide.

Parameters

first_key Real-valued expression that defines the first key number in a set of
keys to be affected.

last_key Real-valued expression that defines the last key number in a set of
keys to be affected.

mode Real-valued expression that defines the key mode to be set for the
specified set of keys. The modemust have one of the following
values (the modes are described below):

0 Keyboardmode
1 Toggle mode
2 Level mode

Details

The various key modes are described below. See the description of the PENDANT real-valued
function for more information on interaction with the pendant.

0 - Keyboard Mode

Keys programmed in this mode function similar to a terminal keyboard. A program can use
the function PENDANT(0) to request the number of the next key pressed. The program then
wait until one of the keys programmed in KEYBOARDMODE is pressed. The number of the
key is returned. Type-ahead is not possible-the program does not see any keys that are
pressedwhile there is no PENDANT(0) function pending.

KEYMODE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 314

1 - Toggle Mode

The state of the key may be read back on the fly. When you press a key that is in this mode,
the internal state maintained by eV+ is toggled. Also, the LED on the key (if any) is toggled.
The LED is on when the key's state is ON. The state of the key is available even when the
pendant is not in USERmode, but only if the pendant is attached.

2 - Level Mode

The key's current level is maintained by the pendant andmay be read on the fly. If the
pendant is not in USERmode, the level returned for the key is zero. The key's state is ON only
when it is actually being held down. This is useful, for example, for cursor control. The value
returned is not valid if the pendant is not attached.

Whenever a key is programmed in level mode, its repeat mode is turned off.

Attach/Detach Requirements

The pendant must be attached (with the ATTACH program instruction) before the program
can read keys using the PENDANT function, set the modes of any of the keys, or send text to
the display.

Defaults

The key modes default to keyboardmode when the pendant is attached.

Examples

Set the manual control soft keys to level mode.

KEYMODE 1,5 = 2

Related Keywords

ATTACH program instruction

KEYMODE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 315

KILL program instruction

Syntax

KILL task_number

Function

Clear a program execution stack and detach any I/O devices that are attached.

Usage Considerations

KILL cannot be usedwhile the specified program task is executing.

KILL has no effect if the specified task execution stack is empty.

Parameter

task_number Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be cleared. (See
below for the default. See the eV+ Language User's Guide for
information on tasks.)

Details

This operation clears the selected program execution stack, closes any open files, and
detaches any I/O devices that may have been left attached by abnormal program
termination.

This situation can occur if a program executes a PAUSE instruction or is terminated by an
ABORT command or instruction, or an error condition, while an I/O device is attached or a file
is open. If a limited-access I/O device (such as the serial I/O device) is left attached, no other
program task can use that device until it is detached.

The KILL instruction always accesses task #0 if the task number is omitted.

Related Keywords

ABORTmonitor command

ABORT program instruction

EXECUTE monitor command

EXECUTE program instruction

STATUSmonitor command

KILL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 316

LAST real-valued function

Syntax

LAST (array_name[])

Function

Return the highest index used for an array (dimension).

Usage Considerations

If an automatic variable is referenced (see the AUTO instruction), this function returns the
index specified in the AUTO statement that declared this array, regardless of which elements
have been assigned values.

Parameter

array_name[] Name of the array to be tested. Any type of eV+ array variable
can be specified: real-value, location, string, or belt. At least
one array index must be omitted (see below).

Details

This function can be used to determine which elements of an array have already been
defined. For one-dimension arrays (for example, part[]), this function returns the largest
array index for which an element is defined. (See the first example below.)

For multiple-dimension arrays (for example, $names[,]), this function returns the largest
array index for which an element is defined for the (left-most) dimension that is omitted
from the array specification. (See the second example below.) There cannot be an index
specified to the right of an omitted index.

Note that the value returned by this function is an index, not an array element.
Furthermore, the value is not a count of the array elements that are defined-it is the largest
index for which an array element is defined.

The value -1 is returned if the array does not have any elements defined for the requested
dimension. That is, -1 is returned if any of the following situations occur:

l The array does not exist.

l The array has more or fewer dimensions than the number indicated in the function
call. (For example, LAST(a[]) will return -1 if the array a has two dimensions.)

l The specified dimension in a multiple-dimension array has not been defined at all. (For
example, LAST(a[20,]) returns -1 if LAST(a[,]) returns 19. That is, no elements a
[20,i] exist.)

LAST real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 317

The error *Illegal array index* results if there is not at least one blank index in the array
specification supplied to this function, or if there is an index specified to the right of a blank
index.

Examples

If the array part[] has all its elements defined from part[0] through part[10], the following
example returns the value 10 (not 11, the number of elements defined).

LAST(part[])

If the given two-dimension array has elements [2,0], [2,3], and [2,5] defined, the following
example returns the value 5 (regardless of the status of elements [i,j] for i other than 2).

LAST($names[2,])

LAST real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 318

LATCH transformation function

Syntax

LATCH (select)

Function

Return a transformation value representing the location of the robot at the occurrence of the
last external trigger or Stop on Digital Signal.

Usage Considerations

LATCH(0) returns information for the robot selected by the task executing the function. If
the eV+ system is not configured to control a robot, use of the LATCH(0) function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

Parameter

select Optional integer, expression, or real variable specifying:

0 Robot position latch of currently selected robot (default)
n Robot position latch of robot n

Details

LATCH() returns a transformation value that represents the location of the robot when the
last external trigger occurred or the last Stop On Digital Signal occurred. The LATCHED real-
valued function should be used to determinedwhen an external trigger has occurred and a
valid location has been recorded.

Operation of the external trigger can be configured from the eV+ System Configuration
Editor in the ACE software. For details, see the ACE User's Guide.with ACE.

See the Adept Intelligent Force Sensor User's Guide for details of the Stop on Digital Signal
option.

The DEVICE real-valued function may be used to read the latched value of an external
encoder

Related Keywords

DEVICE real-valued function

LATCHED real-valued function

CLEAR.LATCHES program instruction

LATCH transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 319

#PLATCH precision-point function

LATCH transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 320

LATCHED real-valued function

Syntax

LATCHED (select)

Function

Return the status of the position latch andwhich input triggered it or the status of the Stop
On Digital Signal.

Parameter

select Integer, expression, or real variable that determines whether any
latches have occurred since the last time the function was executed:

0 Returns latch information for currently selected robot

-n (< 0) Returns latch information for belt n

+n (> 0) Returns latch information for robot n

Return
Value

0 if no latch has been detected
N if position latch on the rising edge of input N was detected
-N if position latch on the falling edge of input N was detected

NOTE: N represents any digital input signal on the controller, from
1001 to 1012

Details

This function returns a nonzero value if a position latch or the Stop on Digital Signal event
occurred (and thus the robot location or belt-encoder position has been latched) since the
LATCHED function was last used. Otherwise, the function returns the value FALSE.When
this function returns a nonzero value, the data for the latch event is made available for
retrieval by the following functions:

l DEVICE Returns position of external encoder
l BELT Returns position of external encoder
l LATCH Returns robot location as a transformation
l #PLATCH Returns robot location as a precision point

LATCHED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 321

NOTE: After one or multiple nonzero values are returned by this function and the latch
buffer is empty, subsequent use of the function returns the value FALSE until the next
occurrence of a latch trigger.

Operation of the position latch can be configured from the eV+ System Configuration Editor
in the ACE software. For details, see the ACE User's Guide.

Related Keywords

DEVICE real-valued function

BELT real-valued function

LATCH transformation function

LATCH transformation function

CLEAR.LATCHES program instruction

#PLATCH precision-point function

LATCHED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 322

LEFTY program instruction

Syntax

LEFTY

Function

Request a change in the robot configuration during the next motion so that the first two
links of a SCARA robot resemble a human's left arm.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a left-handed configuration, this instruction is ignored
by the robot.

The LEFTY instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the LEFTY instruction
causes an error.

The following figure shows the LEFTY/RIGHTY configurations (top view of robot).

LEFTY/RIGHTY

LEFTY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 323

Related Keywords

CONFIG real-valued function

RIGHTY program instruction

SELECT program instruction

SELECT real-valued function

LEFTY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 324

LEN real-valued function

Syntax

LEN (string)

Function

Return the number of characters in the given string.

Parameter

string String constant, variable, or expression whose length is to be
computed.

Example

Return the number of characters in the string $str:

$str = "Hello"
str.len = LEN($str)

LEN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 325

LNGB real-valued function

Syntax

LNGB ($string, first_char)

Function

Return the value of four bytes of a string interpreted as a signed 32-bit binary integer.

Usage Considerations

Since single-precision numbers are stored internally with only 24 bits of significance, input
values that contain more than 24 significant bits are converted with some loss in precision.

Double-precision numbers are stored with 32 bits of significance with the MSB being the sign
bit. Doubles are converted with no loss of precision.

Parameters

$string String constant, variable, or expression that contains the four bytes
to be converted.

first_char Optional real value, variable, or expression (interpreted as an
integer) that specifies the position of the first of the four bytes in the
string. An error results if first_char specifies a series of four bytes
that goes beyond the end of the input string.

If first_char is omitted or has the value 0 or 1, the first four bytes of
the string are extracted. If first_char is greater than 1, it is
interpreted as the character position for the first byte (see below).

Details

Four sequential characters (bytes) of a string are interpreted as being a 2's-complement 32-
bit signed binary integer. The first of the four bytes contains bits 25 to 32 of the integer, the
second of the four bytes contains bits 17 to 24, etc.

For example, if first_char has the value 9, then the ninth character (byte) in the input string
contains bits 25 to 32 of the integer, the tenth byte of the string contains bits 17 to 24, and
so forth.

The main use of this function is to convert binary numbers from an input data record to
values that can be used internally by eV+.

LNGB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 326

Example

Return the value 65541.

LNGB($INTB(1)+$INTB(5))

Related Keywords

ASC real-valued function

DBLB real-valued function

FLTB real-valued function

INTB real-valued function

$LNGB string function

TRANSB transformation function

VAL real-valued function

LNGB real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 327

$LNGB string function

Syntax

$LNGB (value)

Function

Return a 4-byte string containing the binary representation of a 32-bit integer.

Usage Considerations

Real values are rounded and any fractional part is lost. Values must be in the range
^H7FFFFFFF to -^H80000000

Parameter

value Real value, variable, or expression whose value is to be converted to its
binary representation.

Details

The integer part of a real value is converted into its binary representation; the low 32-bits of
that binary representation are packed into a string as four 8-bit characters. Bits 25 to 32 are
packed into the first byte, followed by bits 17 to 24 in the second byte, and so forth.

The main use of this function is to convert integer values to binary representation within an
output record of a data file.

The operation performed by this function is equivalent to the following expression:

$CHR(INT(value/^H1000000) BAND ^HFF)
+ $CHR(INT(value/^H10000) BAND ^HFF)
+ $CHR(INT(value/^H100) BAND ^HFF)
+ $CHR(INT(value) BAND ^HFF)

Example

Returns the value $INTB(67)+$INTB(12345).

$LNGB(67*65536+12345)

Related Keywords

$CHR string function

$FLTB string function

$INTB string function

$LNGB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 328

LNGB real-valued function

$TRANSB string function

$LNGB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 329

LOCAL program instruction

Syntax

LOCAL type variable, ..., variable

Function

Declare permanent variables that are defined only within the current program.

Usage Considerations

Subroutines can be called simultaneously by multiple program tasks and recursively by a
single task. Local and global variables can be corrupted if such calls occur inadvertently.
Thus, the use of automatic variables in place of local variables is recommended.

LOCAL statements must appear before any executable statement in the program.

If a variable is listed in a LOCAL statement, any global variable with the same name cannot
be accessed directly by that program.

The values of local variables are not saved (or restored) by the STORE (or LOAD)monitor
command.

Parameters

type Optional parameter specifying the type of a variable. The acceptable
types are:

LOC Location variable (transformation or precision
point)

REAL Single-precision real variable

DOUBLE Double-precision real variable

See the description of the GLOBAL program
instruction for details on the default type.

variable Variable name (belt, precision point, real-value, string, or
transformation). Each variable can be a simple variable or an array.
Array variables must not have their indexes specified. If a type is
specified, all variables must be of that type.

LOCAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 330

Details

This instruction is used to declare variables to be defined only within the current program.
That is, a local variable can be referenced only within its own program. Also, the names of
local variables can be selected without regard for the names of local variables defined in other
programs.

Local variables are allocated only once during program execution, and their values are
preserved between successive subroutine calls. These values are also shared if the same
program is executed by multiple program tasks.

If a program that uses LOCAL (or global) variables is called by several different program tasks,
or called recursively by a single task, the values of those variables can be modified by the
different program instances and cause very strange program errors. Therefore, automatic
variables should be used for all temporary local variables to minimize the chance of errors.
(See the AUTO instruction.)

Variables can be defined as automatic, global, or local. Once a variable has been assigned to a
class, an attempt to assign the variable to a different class will result in the error *Attempt to
redefine variable class*.

Variables can be defined only once within the same context (automatic, local, or global).
Attempting to define a variable more than once (that is, with a different type) will yield the
error *Attempt to redefine variable type*. For details, see Data Types and Operators in the
eV+ Language User's Guide.

Local variables can be referencedwith monitor commands such as BPT, DELETE_, DO, HERE,
LIST_, POINT, TEACH, TOOL, andWATCH by using the optional context specifier @. The
general syntax is:

command @task:program command_arguments

For more information on specifying program context, see the section Programming eV+ in
the eV+ Language User's Guide.

Example

Declare the variables loc.a, $ans, and i to be local to the current program:

LOCAL loc.a, $ans, i

Related Keywords

AUTO program instruction

GLOBAL program instruction

LOCAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 331

LOCK program instruction

Syntax

LOCK priority

Function

Set the program reaction lock-out priority to the value given.

Usage Considerations

LOCK 0 is assumedwhenever program execution is initiated andwhen a new execution cycle
begins.

Changing the priority may affect how reactions are processed. Before using this instruction,
be sure you know what reactions are active (and their priorities).

Parameter

priority Real-valued expression with a value from 0 to 127, which becomes the
new reaction lock-out priority.

Details

When a program is EXECUTEd, it is placed on the execution stack. When the program's task
becomes the highest priority task in a time slice, the program's priority is set to 0 and it
begins execution. During actual execution, a program's task can be suspended at the end of
a time slice, in which case the task waits until the next time it is the highest priority task in a
time slice. The LOCK instruction does not affect the task priority value within a time slice: It
only changes the program priority of an executing program.

Program priority becomes important when a reaction routine (REACT, REACTE, REACTI) is
invoked. A program can defer execution of a REACT or REACTI routine by setting the
temporary program priority to a value higher than the REACT or REACTI program priority.
This is the function of a LOCK instruction. For example, if a LOCK instruction changes the
temporary program priority to 20, any REACT or REACTI interrupts with lower priority values
are deferred. (REACTE routines cannot be deferred by priority considerations.)

Deferred reactions are not ignored. Every time a new LOCK instruction is processed, any
deferred reaction programs are checked to see if their priority is high enough for them to
execute. As soon as the program priority is lowered, all pending reaction routines with a
higher priority are run according to their relative priority.

The PRIORITY real-valued function can be used to determine the program priority at any
time.

LOCK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 332

NOTE: Although a LOCK instruction can be used to change the program priority within a
reaction program, the priority still returns to its prereaction value when a RETURN is
executed in the program. This occurs only when executing a RETURN from a reaction
program.

Example

Increase the program priority by 10:

LOCK PRIORITY+10

Related Keywords

PRIORITY real-valued function

REACT program instruction

REACTI program instruction

LOCK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 333

MAX real-valued function

Syntax

MAX (value, ..., value)

Function

Return the maximum value contained in the list of values.

Parameter

value Each value in the list can be specified as a real-valued constant,
variable, or expression.

Details

The list of values provided is scanned for the largest value, and that value is returned by the
function.

The sign of each value is considered. Thus, for example, the value -10 is considered larger
than -100.

Example

The program instruction:

max.value = MAX(x, y, z, 0)

setsmax.value to the largest value of the variables x, y, and z, or to zero if all three
variables have values less than zero.

Related Keyword

MIN real-valued function

MAX real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 334

MC program instruction

Syntax

MC monitor_command

Function

Introduce amonitor commandwithin a command program.

Usage Considerations

The MC instruction can be contained only within a command program. (Command programs
can contain onlyMC instructions, blank lines, and comment lines.)

Parameter

monitor_command Any valid eV+ monitor command.

Details

Command programs are created using one of the eV+ editors. To indicate to the editor that a
command program, rather than a normal program, is being created, every operation line of a
command program must begin with the letters MC (that is, for Monitor Command follows)
followed by one or more spaces. As with regular application programs, command programs
can contain blank lines and comment lines to add clarity.

Every nonblank line of a command program must contain a monitor command (or a
comment). Monitor commands and program instructions cannot be mixed. Program
instructions can be included, however, by using the DO command. That is, to include an
instruction in a command program, you can type a line with the formmc do instruction. See
the eV+ Operating System Reference Guide for details on monitor commands.

Example

The following command program loads disk files, prepares for execution of a program, and
begins the execution. Note that a DO command is used to include a MOVE instruction:

1 .PROGRAM setup()
2 MC LOAD C:project
3 MC LOAD B:project.lc
4 MC SPEED 50
5 MC DO MOVE safe.loc
6 MC EXECUTE motion, -1
7 .END

Related Keywords

COMMANDSmonitor command

MC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 335

MCS program instruction

MC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 336

MCS program instruction

Syntax

MCS string

Function

Invoke amonitor command from an application program.

Parameter

string String value, variable, or expression that defines one of the eV+ monitor
commands listed below.

Details

Normally, monitor commands can be invoked only from the system terminal or from
command programs (which contain only monitor commands). The MCS instruction can be
used to invoke the followingmonitor commands from an application program:

DELETE DELETEL DELETEM DELETEP DELETER

DELETES FCOPY LOAD STORE STOREL

STOREM STOREP STORER STORES VRENAME

Using these commands, an application program can store, load, and copy programs to and
from disk, and also delete programs from memory tomake room for other programs.
Similarly, variables can be deleted from memory when they are no longer needed. Also,
vision prototypes can be renamed.Loading, storing, and deleting programs and global
variables is not interlocked for multi-task access in eV+. Therefore, if you are incorporating
multiple MCS instructions in a program, you will need to use TAS interlocks to prevent
multiple tasks from issuing the instructions. For details, see the TAS program instruction.

NOTE:If the monitor command specified in the string parameter contains a blank
program context (that is, it contains @), any variables listed in the command are treated
as though they are referencedwithin the program containing the MCS instruction. (See
the
eV+ Language User's Guide for more information on program context.)

Program execution is not stopped if an error occurs while processing the monitor command.
The ERROR real-valued function can be used after the MCS instruction to check for the
occurrence of an error.

MCS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 337

NOTE: If a DELETE_ command is usedwithin a subroutine to delete one of the subroutine
parameters (that is, one of the variables in the .PROGRAM statement), the variable is not
deleted and no error condition is recorded.

Normal output by the monitor command to the system terminal is done if the MCS.MESSAGE
system switch is enabled. For example, the LOAD command outputs the .PROGRAM lines
from each program loaded. (The MCS.MESSAGE switch is normally disabled.)

If the FCOPY option is used, logical units 5 (disk #1) and 6 (disk #2)must be available. If
LOAD or STORE_ is used, logical unit # 5 must be available.

Example

The following program loads a disk file, executes the program in the file, and deletes the
program from the system memory. Another program file is then loaded into memory and
executed. (Although this simple example can also be implementedwith a command program,
the following demonstrates use of the MCS instruction in a normal program.)

.PROGRAM admin()
MCS "LOAD C:setup"
CALL setup
MCS "DELETEP setup"
MCS "LOAD C:demo_1"
CALL demo_main

.END

Related Keywords

ERROR real-valued function

MC program instruction

MCS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 338

MESSAGES system switch

Syntax

... MESSAGES

Function

Enable or disable output to the system terminal from TYPE instructions.

Details

If this switch is enabled, output from TYPE instructions is displayed on the system terminal.
Otherwise, output is suppressed.

By default, this switch is enabled, allowing output to occur.

Related Keywords

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

TYPE program instruction

MESSAGES system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 339

$MID string function

Syntax

$MID (string, first_char, num_chars)

Function

Return a substring of the specified string.

Parameters

string String variable, constant, or expression from which the substring is
extracted.

first_char Optional real-valued expression that specifies the first character of
the substring.

num_chars Real-valued expression that specifies the number of characters to be
copied to the substring.

Details

If first_char is omitted or has a value less than or equal to 1, the substring starts with the
first character of string. If first_char is larger than the length of the input string, the
function returns an empty string.

If there are fewer than num_chars characters from the specified starting character position
to the end of the input string, the output string consists of only the characters up to the end
of the input string. That is, no error results and the output string is not extended to the
requested length.

Example

The instructions below result in the string variable $substring containing the string cd, since
cd is the 2-character string that starts at character position 3 of the string abcde contained in
the string variable $string:

$string = "abcdef"
$substring = $MID($string, 3, 2)

Related Keyword

$UNPACK string function

$MID string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 340

MIN real-valued function

Syntax

MIN (value, ..., value)

Function

Return the minimum value contained in the list of values.

Parameter

value Each value in the list can be specified as a real-valued constant,
variable, or expression.

Details

The list of values provided is scanned for the smallest value, and that value is returned by the
function.

The sign of each value is considered. Thus, for example, the value -100 is considered smaller
than -10.

Example

The program instruction:

min.value = MIN(1000, x, y, z)

sets min.value to the smallest value of the variables x, y, and z, or to the value 1000 if all
three variables have values greater than 1000.

Related Keyword

MAX real-valued function

MIN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 341

MMPS keyword

Syntax

SPEED value MMPS ALWAYS

Function

Specify the units for a SPEED instruction as millimeters per second.

NOTE: To specify units in inches per second, use the IPS conversion factor.

Usage Considerations

MMPS can be used only as a parameter for a SPEED program instruction.

The speed setting specified is scaled by the monitor speed in effect when the robot motion
occurs.

Speeds specified with the MMPS parameter apply to straight-line motions. Joint-interpolated
motions do not maintain the specified tool speed.

Details

This is an optional parameter for the SPEED program instruction, which specifies the units to
be used for the speed value. That is, when MMPS is specified in a SPEED instruction, the
speed value is interpreted as millimeters/second (for straight-line motions).

See the description of the SPEED program instruction for further details on settingmotion
speeds with the IPS conversion factor.

Example

Set the default program speed for straight-line motions to 10 millimeters per second
(assuming the monitor speed is set to 100):

SPEED 10 MMPS ALWAYS

Related Keywords

IPS keyword

SPEED program instruction

MMPS keyword

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 342

MOD operator

Syntax

... value MOD value ...

Function

Compute the modulus of two values.

Details

The MOD operator operates on two values, resulting in a value that is the remainder after
dividing the first value by the second value. (The second value cannot be zero.)

For details on how operators are evaluated within expressions, see the Order of Evaluation.

Examples

Return 1 (5/2 is 2 with a remainder of 1):

5 MOD 2

Return 0 (81/27 is 3 with a remainder of 0):

81 MOD 27

MOD operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 343

MOVE and MOVES program instruction

Syntax

MOVE location

MOVES location

Function

Initiate a robot motion to the position and orientation described by the given location.

Usage Considerations

MOVE causes a joint-interpolatedmotion.

MOVES causes a straight-line motion, during which no changes in configuration are
permitted.

These instructions can be executed by any program task as long as the task has attached a
robot. The instructions apply to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Parameter

location Transformation, precision point, location function, or compound
transformation that specifies the destination to which the robot is to
move.

Details

The MOVE instruction causes a joint-interpolatedmotion. That is, intermediate set points
between the initial and final robot locations are computed by interpolating between the initial
and final joint positions. Any changes in configuration requested by the program (for
example, by a LEFTY instruction) are executed during the motion.

The MOVES instruction causes a straight-line motion. During such amotion the tool is
moved along a straight-line path and is smoothly rotated to its final orientation. No changes
in configuration are allowed during straight-line motions.

Examples

MOVE #pick Move by joint-interpolatedmotion to the location described by
the precision point #pick.

MOVE andMOVES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 344

MOVES ref:place Move along a straight-line path to the location described by the
compound transformation ref:place.

Related Keywords

APPRO program instruction

APPROS program instruction

DEPART program instruction

DEPARTS program instruction

MOVEC program instruction

MOVEF program instruction

MOVESF program instruction

MOVET program instruction

MOVEST program instruction

SELECT program instruction

SELECT real-valued function

MOVE andMOVES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 345

MOVEC program instruction

Syntax

MOVEC(angle, turn) location1, location2

MOVEC(angle, turn) center

Function

Initiate a circular/arc-path robot motion using the positions and orientations described by
the given locations.

Usage Considerations

This instruction can be executed by any program task as long as the task has attached a
robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing this instruction causes an
error.

Parameters

angle Real-valued expression that specifies the angle of the arc in degrees.
This parameter is optional if location2 is specified. angle can be a
positive or negative number but must be within [-360, +360].

turn Optional boolean expression that specifies whether the tool should
rotate with the arc. If turn is omitted or zero, then the tool orientation
will stay constant with a MOVEC(angle) center syntax and end at the
orientation of location2 for a MOVEC location1, location2 syntax. If
turn is non-zero, the tool orientation will be rotated by the angle of the
arc around the axis of the circle andmaintain a constant orientation
relative to the trajectory. This is useful for dispensing applications.

center Transformation, precision point, location function, or compound
transformation that specifies the center of the circle.

location1 Transformation, precision point, location function, or compound
transformation that specifies an intermediate location on the circle/arc
through which the robot is to move.

location2 Optional transformation, precision point, location function, or
compound transformation that specifies the end-point of the circle/arc
to which the robot is to move. If this parameter is not supplied, then
anglemust be specified.

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 346

Details

MOVEC(angle,turn) location1, location2

This MOVEC program instruction syntax is designed to create a circle/arc path that starts
from the current robot position or, in case of Continuous Path, the current robot destination,
and ends at a location defined by location2. The intermediate location (location1) is used to
define the plane of the circle and the angle of the arc. See the following figure.

MOVECwith Location1 and Location2

If the three points are aligned or two of them coincide, MOVECwill cause a straight-line
motion instead of creating a circle or arc.

With this syntax, the orientation of location1 is not used.

If angle is specified then the robot will move by angle degrees and not necessarily end up at
location2. In other words, the angle has higher priority than location2 in defining the final
position.

When angle is specified, the orientation of location2 is ignored. The final orientation is
determined entirely by the turn parameter: if it is omitted or zero, then the final orientation
will be the orientation of the start position; if turn is non-zero, then the final orientation is the
one of the start position rotated by angle around the axis of the arc.

When turn is non-zero, MOVEC will generate an *invalid orientation* error for 4-axis robots
(like the Cobra and Quattro robots, or Python linear modules) if the plane of the circle is not
parallel to the XY plane of the Tool Center Point.

As with straight-line motion, circular motion is compatible with multi-turn rotation. This
means that if location2 is a precision point, the multi-turn joint can rotate more than 360
degrees.

MOVEC(angle,turn) center

This MOVEC program instruction syntax is designed to create a circle/arc path that starts
from the current robot position or, in case of Continuous Path, the current robot destination.
The path is centered around the center location; the end location is specified with angle
degrees.

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 347

The plane of the circle is defined as the plane passing through the start position and parallel
to the XY plane of the center location. In other words, if the Z-orientation of the center
location is not perpendicular to the straight line passing through center and the start
position, then the center of the circle is not the location center; rather, it is the intersection
of the Z-axis of center and a plane that is perpendicular to this axis and passes through the
start position.

After the actual center of the circle is defined, the radius of the circle is simply the distance
from the start position to the actual center.

MOVECwith Angle and Center

Examples

The following example shows MOVEC being usedwith transformations.

MOVEC loc1, loc2

Continuous Path Example

The following example shows MOVEC being usedwith Continuous Path. Also, see the
following figure.

MOVES p1

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 348

MOVEC p2, p3
MOVES p4
BREAK

MOVEC Combinedwith Continuous Path

Full Circle Example

The following example shows MOVEC being used to create a full circle with an Cobra 600
robot.

SET center = TRANS(300,0,210,90,30,0)
SET start_pos = TRANS(420, 0, 210, 0, 180, 0)

MOVES start_pos
BREAK

; Do a full circle
MOVEC(360) center
BREAK

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 349

MOVEC Creating a Full Circle.

NOTE: In the previous figure, note that "MOVEC(360,1) center" would have returned an
invalid orientation error because the Cobra robot cannot maintain a constant
orientation relative to a non-horizontal circle.

Half Circle Examples

The following example shows MOVEC being used to create a half circle with rotating
orientation for dispensing with an Viper 650.

SET center = TRANS(300,0,250,0,-150,0)
SET start_pos = center:TRANS(0,0,0,-90):TRANS(100,,,,-30)

MOVES start_pos
BREAK

; Do a half circle with rotating orientation
MOVEC(180,TRUE) center
BREAK

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 350

MOVEC Creating a Half Circle with rotating orientation (e.g. the "turn"
parameter is set).

By changing the last 3 lines of the code, the example can be modified to create the same
motion but without rotating the orientation, as follows:

; Same motion without rotating the orientation
MOVEC(180) center
BREAK

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 351

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 352

MOVEC Creating a Half Circle with constant orientation (e.g. the "turn"
parameter is omitted).

Related Keywords

APPRO program instruction

APPROS program instruction

DEPART program instruction

DEPARTS program instruction

MOVE program instruction

MOVES program instruction

SELECT program instruction

SELECT real-valued function

MOVEC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 353

MULTIPLE program instruction

Syntax

MULTIPLE ALWAYS

Function

Allow full rotations of the robot wrist joints.

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

This is the default state of the eV+ system. MULTIPLE ALWAYS is assumedwhenever
program execution is initiated andwhen a new execution cycle begins.

The MULTIPLE instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the MULTIPLE instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes MULTIPLE as the default condition.
That is, if ALWAYS is specified, MULTIPLE will remain in effect
continuously until disabled by a SINGLE instruction. If ALWAYS is not
specified, the MULTIPLE instruction applies only to the next robot
motion.

Details

While MULTIPLE is in effect, full rotations of the wrist joints are used, as required, during
motion planning and execution.

The MULTIPLE setting is ignored if NOOVERLAP is in effect.

Related Keywords

CONFIG real-valued function

NOOVERLAP program instruction

OVERLAP program instruction

SELECT program instruction

SELECT real-valued function

MULTIPLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 354

SINGLE program instruction

MULTIPLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 355

NETWORK real-valued function

Syntax

NETWORK (component, code)

Function

Return network status and IP address information

Parameters

component Real-valued expression that identifies the component of the
network that is of interest.

1 = TCP
3 = FTP

code Real-valued expression that further identifies the information
desired. This value is only used for TCP:

0 = Return status value as described later (default).
1 = Return AD1*256 + AD2
2 = Return AD3*256 + AD4
3 = Return NM1*256 + NM2
4 = Return NM3*256 + NM4

11 = Return AD1
12 = Return AD2
13 = Return AD3
14 = Return AD4
15 = Return NM1
16 = Return NM2
17 = Return NM3
18 = Return NM4

where ADn is the nth byte of the IP address and NMn is the nth byte
of the Network Mask

Details

This function returns one of the following values if status is requested (that is, if the code
argument is omitted or set to 0):

NETWORK real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 356

Value Meaning

 0 Hardware not present, or license not installed

-1 Hardware present and license detected

 1 Driver is running

NETWORK real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 357

NEXT program instruction

Syntax

NEXT count

Function

Branch to the END statement of the nth nested loop, perform the loop test, and loop if
appropriate.

Usage Considerations

This instruction can be usedwith the FOR,WHILE, and DO control structures.

Parameter

count Optional integer specifying the number of nested structures to branch
to the END of (expressions and variables are not acceptable).

Details

When a NEXT instruction is processedwith count = 1, execution continues at the END of the
control structure. If count > 1, execution continues at the END of count number of nested
control structures.

Example

If error = 1, branch to the END of the innermost control structure. If error = 2, branch to the
END of the outermost control structure:

45 FOR i = 1 to 20
46 FOR j = 1 to 10
47 FOR k = 10 to 50
48 IF error == 1 THEN
49 NEXT ;branch to step 54
50 END
51 IF error == 2 THEN
52 NEXT 3 ;branch to step 56
53 END
54 END
55 END
56 END
57

Related Keywords

DO program instruction

NEXT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 358

EXIT program instruction

FOR program instruction

WHILE program instruction

NEXT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 359

NOFLIP program instruction

Syntax

NOFLIP

Function

Request a change in the robot configuration during the next motion so that the pitch angle
of the robot wrist has a positive value.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a no-flip configuration, this instruction is ignored by
the robot.

The NOFLIP instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the NOFLIP instruction
causes an error.

For more details, see the description of the FLIP program instruction.

Related Keywords

CONFIG real-valued function

FLIP program instruction

SELECT program instruction

SELECT real-valued function

NOFLIP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 360

NONULL program instruction

Syntax

NONULL ALWAYS

Function

Instruct the eV+ system not to wait for position errors to be nulled at the end of continuous-
path motions.

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

NULL ALWAYS is assumedwhenever program execution is initiated andwhen a new
execution cycle begins.

The NONULL instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the NONULL instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes NONULL as the default condition.
That is, when ALWAYS is included in a NONULL instruction, NONULL
remains in effect continuously until disabled by a NULL instruction. If
ALWAYS is not specified, the NONULL instruction applies only to the
next robot motion.

Details

When NONULL is in effect and a BREAK in the robot motion occurs, eV+ does not wait for the
servos to signal that all moving joints have reached their specified positions before it begins
the next motion. That is, at the end of the allotted time, eV+ assumes that the joints have
all reached their final positions and starts commanding the next motion.

Like COARSE mode, this mode allows faster motion if high final-position accuracy is not
required. However, since no position-error checking is done, large position errors can occur.

Related Keywords

COARSE program instruction

CONFIG real-valued function

NONULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 361

DELAY.IN.TOL program instruction

FINE program instruction

NULL program instruction

SELECT program instruction

SELECT real-valued function

NONULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 362

NOOVERLAP program instruction

Syntax

NOOVERLAP ALWAYS

Function

Generate a program error if a subsequent motion is planned that causes a selectedmulti-
turn axis to move more than ±180 degrees to avoid a limit stop.

Usage Considerations

NOOVERLAP applies to the operation of the following robots/joints:

l For Viper and PUMA robots: joints 1, 4, and the final joint

l For all SCARA robots: joint 4

l For Quattro robots: tool rotation

OVERLAP ALWAYS is assumedwhenever program execution is initiated andwhen a new
execution cycle begins.

The NOOVERLAP instruction can be executed by any program task as long as the robot
selected by the task is not attached by any other task. The instruction applies to the robot
selected by the task.

If the eV+ system is not configured to control a robot, executing the NOOVERLAP instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes NOOVERLAP as the default condition.
That is, if ALWAYS is specified, NOOVERLAP remains in effect
continuously until disabled by an OVERLAP instruction. If ALWAYS is not
specified, the NOOVERLAP instruction applies only to the next robot
motion.

Details

When NOOVERLAP is set, and the transformation destination of a joint-interpolated or
straight-line motion requires that a multiple-turn axis rotate more than ±180 degrees to
avoid a limit stop, a program error will occur (and the motion will not be performed). If the
destination is specified as a precision point, this test is not performed.

In general, given a transformation destination, a multiple-turn axis normally attempts to
move to a new position by moving in the direction that requires less than 180 degrees of

NOOVERLAP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 363

motion. The only conditions that force an axis to make a larger change are if SINGLE is
specified, or if a software limit stop would be violated.

When NOOVERLAP is set, the setting of SINGLE or MULTIPLE mode is ignored.

As with other user program errors, the error condition generated as a result of the
NOOVERLAP test can be trapped by a standard REACTE subroutine if desired.

Related Keywords

MULTIPLE program instruction

OVERLAP program instruction

SELECT program instruction

SELECT real-valued function

SINGLE program instruction

NOOVERLAP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 364

NORMAL transformation function

Syntax

NORMAL (transformation_value)

Function

Correct a transformation for any mathematical round-off errors.

Usage Considerations

For most robot programs, transformation normalizing never has to be performed.

Parameter

transformation_value Transformation, transformation valued function, or
compound transformation whose value is to be
normalized.

Details

Use this function after a lengthy series of computations that modifies a transformation
value. For instance, a procedural motion that incrementally changes the orientation of a
transformation should occasionally normalize the resultant value. Within a transformation,
the orientation of the robot is represented by three perpendicular unit vectors. Because of
the small inaccuracies that occur in computer computations, after being incrementally
modifiedmany times, these vectors can become nonperpendicular or not of unit length.

The NORMAL function returns a transformation value that is essentially the same as the
input argument but has the orientation portion of the value corrected for any small buildup
of computational errors that may have occurred.

NORMAL transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 365

NOT operator

Syntax

... NOT value ...

Function

Perform logical negation of a value.

Usage Considerations

The word "not" cannot be used as a program name or variable name.

Details

The NOT operator operates on a single value, converting it from logically true to false, and
vice versa. If the single value is zero, a -1.0 (TRUE) is returned. Otherwise, a 0.0 (FALSE)
value is returned.

Refer to the eV+ Language User's Guide for the order in which operators are evaluated
within expressions.

Examples

IF NOT initialized THEN ;If the variable "initialized" has
a

CALL appl.setup() ;FALSE value, the instructions in
the

initialized = TRUE ;IF structure will be executed.
END

NOT operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 366

NOT.CALIBRATED system parameter

Syntax

... NOT.CALIBRATED

Function

Indicate (or assert) the calibration status of the robots connected to the system.

Usage Considerations

The current value of the NOT.CALIBRATED parameter can be determinedwith the
PARAMETERmonitor command or real-valued function.

You can modify the value of this parameter at any time; refer to the next section for details.

The parameter name can be abbreviated.

Details

The value of this parameter, which can range from -1 to 32767, should be interpreted as a
bit mask. Bits 1 through 15 correspond to robots 1 through 15, respectively. For example,
the following values have the following interpretations:

Value of
parameter Interpretation

0 All robots are calibrated.

1 Robot 1 is not calibrated.

3 Robots 1 and 2 are not calibrated.

7 Robots 1 through 3 are not calibrated.

On power-up, this parameter is set to indicate that all installed robots are not calibrated. If a
robot is not connected or not defined, its NOT.CALIBRATED bit is always off.

The CALIBRATE command and instruction attempt to calibrate any enabled ROBOT that has
its NOT.CALIBRATED bit set.

When the calibration operation completes, the NOT.CALIBRATEd bits are updated as
appropriate. For example, consider a system that has only one robot installed. If the
CALIBRATE command is issued, and it succeeds, NOT.CALIBRATED is set to 0. If three robots
are connected, and the CALIBRATE command succeeds in calibrating robots 1 and 2, but not
robot 3, NOT.CALIBRATED is set to 4 (binary 100-robots 1 and 2 calibrated, 3 not calibrated).

NOT.CALIBRATED system parameter

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 367

The purpose of this parameter is to allow one of the bits to be set to force the corresponding
robot to be calibrated the next time a CALIBRATE command or instruction is executed. This
parameter can also be used to determine the calibration status of the robot(s).

The parameter value can be changed at any time. The following rules describe how a new
asserted value is treated:

l If the new value asserts that a robot is not calibrated, the eV+ system behaves as if
the robot is not calibrated whether or not the servo software believes that the robot is
not calibrated.

l If the new value asserts that a robot is calibrated, the servo software is checked and
eV+ tracks the calibrated/not calibrated state indicated by the servo software for that
robot.

NOTE:It is usually not meaningful to use PARAMETER NOT.CALIBRATED to clear a bit.

Examples

Mark all installed robots as uncalibrated:

PARAMETER NOT.CALIBRATED = -1

Mark only robots 1 and 2 as uncalibrated:

PARAMETER NOT.CALIBRATED = 3

Related Keywords

CALIBRATE monitor command

CALIBRATE program instruction

PARAMETERmonitor command

PARAMETER program instruction

PARAMETER real-valued function

ROBOT system switch

NOT.CALIBRATED system parameter

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 368

NULL program instruction

Syntax

NULL ALWAYS

Function

Instruct the eV+ system to wait for position errors to be nulled at the end of continuous path
motions.

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

This is the default state of the eV+ system. NULL ALWAYS is assumedwhenever program
execution is initiated andwhen a new execution cycle begins.

The NULL instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the NULL instruction causes
an error.

The word "null" cannot be used as a program name or variable name.

Parameter

ALWAYS Optional qualifier that establishes NULL as the default condition. That is,
if ALWAYS is specified, NULL remains in effect continuously until
disabled by a NONULL instruction. If ALWAYS is not specified, the NULL
instruction applies only to the next robot motion.

Details

When NULL is in effect and a BREAK in the robot motion occurs, eV+ waits for the servos to
signal that all moving joints have reached their specified positions before it begins the next
motion. The accuracy to which the electronics verify that all joints have reached their
destination positions is determined by the COARSE and FINE program instructions.

Related Keywords

COARSE program instruction

DELAY.IN.TOL program instruction

FINE program instruction

NONULL program instruction

NULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 369

NULL program instruction

SELECT program instruction

SELECT real-valued function

NULL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 370

NULL transformation function

Syntax

NULL

Function

Return a null transformation value-one with all zero components.

Usage Considerations

The word "null" cannot be used as a program name or variable name.

Details

A null transformation corresponds to a null vector (X = Y= Z = 0) and no rotation (yaw =
pitch = roll = 0). Such a transformation is useful, for example, with a SHIFT function to
create a transformation representing a translation with no rotation.

Example

Define a new transformation (new.loc) to be the result of shifting an existing transformation
(old.loc) in the World coordinate directions.

new.loc = SHIFT(NULL BY x.shift,y.shift,z.shift):old.loc

Determine the length of the vector described by the transformation test.loc.

dist = DISTANCE(NULL, test.loc)

Related Keywords

CONFIG real-valued function

NULL program instruction

NULL transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 371

OFF real-valued function

Syntax

OFF

Function

Return the value used by eV+ to represent a logical false result.

Usage Considerations

The word "off" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where on and off conditions need to be specified.
The value returned is 0.

This function is equivalent to the FALSE function.

Related Keywords

FALSE real-valued function

ON real-valued function

OFF real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 372

ON real-valued function

Syntax

ON

Function

Return the value used by eV+ to represent a logical true result.

Usage Considerations

The word "on" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where on and off conditions need to be specified.
The value returned is -1.

This function is equivalent to the TRUE function.

Related Keywords

OFF real-valued function

TRUE real-valued function

ON real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 373

OPEN program instruction

Syntax

OPEN

OPENI

Function

Open the robot gripper.

Usage Considerations

OPEN causes the hand to open during the next robot motion.

OPENI causes a BREAK in the current continuous-path motion and causes the hand to open
immediately after the current motion completes.

The OPEN instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

The OPENI instruction can be executed by any program task as long as the task has attached
a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Details

These instructions cause the control valves for the pneumatic hand to receive a signal to
open. If the OPEN instruction is used, the signal is sent when the next robot motion begins.

NOTE: You can use the Robot Configuration Utility program to set the digital signals that
control the pneumatic hand. The utility program is on the Utility Disk. See the manual
Instructions for Adept Utility Programs for information on use of the program.

The OPENI instruction differs from OPEN in the followingways:

l A BREAK occurs if a continuous-path robot motion is in progress.

l The signal is sent to the control valves at the conclusion of the current motion or
immediately if nomotion is in progress.

l Robot motions are delayed for a brief time to allow the hand actuation to complete.
The length of the delay (in seconds) is the current setting of the HAND.TIME system
parameter.

OPEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 374

Examples

During the next robot motion, cause the pneumatic control valves to assume the open state:

OPEN

Cause the pneumatic control valves to assume the open state at the conclusion of the
current motion:

OPENI

Related Keywords

CLOSE program instruction

CLOSEI program instruction

HAND.TIME system parameter

RELAX program instruction

RELAXI program instruction

SELECT program instruction

SELECT real-valued function

OPEN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 375

OR operator

Syntax

... value OR value ...

Function

Perform the logicalOR operation on two values.

Details

The OR operator operates on two values, resulting in their logical OR combination. For
example, during the OR operation

c = a OR b

the following four situations can occur:

a b c

FALSE FALSE -> FALSE

FALSE TRUE -> TRUE

TRUE FALSE -> TRUE

TRUE TRUE -> TRUE

That is, the result is TRUE if either (or both) of the two operand values is logically TRUE. To
review the order of evaluation for operators within expressions, see the section Order of
Evaluation in the eV+ Language User's Guide.

Example

In the following sequence, the instructions immediately following the IF instruction are
executed if either ready is TRUE (that is, nonzero) or count equals 1. The instructions are not
executed if both ready is FALSE and count is not equal to 1.

IF ready OR (count == 1) THEN
.
.
.

END

OR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 376

Related Keywords

AND operator

BOR operator

XOR operator

OR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 377

OUTSIDE real-valued function

Syntax

OUTSIDE (low, test, high)

Function

Test a value to see if it is outside a specified range.

Parameters

low Real value, expression, or variable specifying the lower limit of the range
to be tested.

test Real value, expression, or variable to test against the range.

high Real value, expression, or variable specifying the upper limit of the
range to be tested.

Details

Returns TRUE (-1) if test is less than low or greater than high. Returns FALSE (0)
otherwise.

Related Keywords

MAX real-valued function

MIN real-valued function

OUTSIDE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 378

OVERLAP program instruction

Syntax

OVERLAP ALWAYS

Function

Disable the NOOVERLAP limit-error checking either for the next motion or for all subsequent
motions.

Usage Considerations

OVERLAP applies to the operation of the following robots/joints:

l For Viper and PUMA robots: joints 1, 4, and the final joint

l For all SCARA robots: joint 4

l For Quattro robots: tool rotation

This is the default state of the eV+ system. OVERLAP ALWAYS is assumedwhenever
program execution is initiated andwhen a new execution cycle begins.

The OVERLAP instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the OVERLAP instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes OVERLAP as the default condition.
That is, if ALWAYS is specified, OVERLAP remains in effect continuously
until disabled by a NOOVERLAP instruction. If ALWAYS is not specified,
the OVERLAP instruction applies only to the next robot motion.

Details

If OVERLAP is specified, the settings of SINGLE andMULTIPLE affect the robot motion.

When OVERLAP is set, and the transformation destination of a joint-interpolated or straight-
line motion requires that a multiple-turn axis rotate more than ±180 degrees, the motion is
executed without generating a program error.

OVERLAP disables the limit-error checking of NOOVERLAP. The OVERLAP setting is applied
whenever program execution is initiated andwhen a new execution cycle begins.

OVERLAP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 379

Related Keywords

MULTIPLE program instruction

NOOVERLAP program instruction

SELECT program instruction

SELECT real-valued function

SINGLE program instruction

OVERLAP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 380

PACK program instruction

Syntax

PACK string_array[index], first_char, num_chars = string

PACK string_var, first_char, num_chars = string

Function

Replace a substring within an array of (128-character) string variables, or within a
(nonarray) string variable.

Parameters

string_array String array variable that is modified by the substring on the
right-hand side of the equal sign. Each element within the string
array is assumed to be 128 characters long (see below).

index Optional integer value that identifies the first array element to be
considered. The first_char value is interpreted relative to the
element specified by this index. If no index is specified, element
zero is assumed.

string_var String variable that is modified by the substring on the right-
hand side of the equal sign.

first_char Real-valued expression that specifies the position of the first
character of the substring within the string array. A value of 1
corresponds to the first character of the specified string array
element. This value must be greater than zero.

The value of first_char can be greater than 128. In that case
the array element accessed follows the element specified in the
function call. For example, a value of 130 corresponds to the
second character in the array element following that specified by
index.

num_chars Real-valued expression that specifies the number of characters
to be copied from the string to the array. This value can range
from 0 to 128.

string String variable, constant, or expression from which the substring
is to be extracted. The stringmust be at least num_chars long.

PACK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 381

Details

This instruction replaces a substring within an array of strings or within a string variable.
When an array of strings is beingmodified, the substring is permitted to overlap two elements
of the string array. For example, a 10-character substring whose first character is to replace
the 127th character in element [3] supersedes the last two characters in element [3] and
the first eight characters of element [4].

If the array element to be modified is not defined, the element is created and filled with ASCII
NUL characters (^H00) up to the specified start of the substring. Similarly, if the array
element to be modified is too short, the string is paddedwith ASCII NUL characters to the
start of the substring.

In order to efficiently access the string array, this function assumes that all of the array
elements, from the start of the array until the element before the element accessed, are
defined and are 128 characters long. For multidimensional arrays, only the right-most array
index is incremented to locate the substring. Thus, for example, element [2,3] is followed by
element [2,4].

When a string variable is modified, the replacement is done in a manner similar to that for an
individual array element. However, an error results if the operation causes the string to be
longer than 128 characters.

Example

The instruction below replaces 11 characters within the string array $list[]. The replacement
is specified as starting in array element $list[3]. However, since the first character replaced is
to be number 130, the 11-character substring actually replaces the second through 12th
characters of $list[4].

PACK $list[3], 130, 11 = $string

Related Keywords

$MID string function

$UNPACK string function

PACK program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 382

PANIC program instruction

Syntax

PANIC

Function

Simulate an external E-Stop or panic button press; stop all robots immediately, but do not
turn off HIGH POWER.

Usage Considerations
If the eV+ system is controllingmore than one robot, all the robots are stopped.

This instruction has no effect on nonrobot systems.

Details

This instruction performs the following actions:

l Immediately stops robot motion

l Stops execution of the robot control program if the robot is attached and no REACTE
has been executed to enable program processing of error.

l Causes *PANIC command* to appear on the monitor screen

Unlike pressing the emergency stop button on the pendant, high power is left turned on
after a PANIC instruction is processed.

Related Keywords

ABORTmonitor command

ABORT program instruction

ESTOP program instruction

ESTOPmonitor command

PANICmonitor command

PANIC program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 383

PARAMETER program instruction

Syntax

PARAMETER parameter_name = value

PARAMETER parameter_name[index] = value

Function

Set the value of a system parameter.

Usage Considerations

If the specified parameter accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the parameter array are assigned the value given.

Parameters

parameter_name Name of the parameter whose value is to be modified.

index For parameters that can be qualified by an index, this is an
optional real value, variable, or expression that specifies the
specific parameter element of interest (see above).

value Real value, variable, or expression defining the value to be
assigned to the system parameter.

Details

This instruction sets the given system parameter to the value on the right. The parameter
name can be abbreviated to the minimum length that identifies it uniquely.

NOTE: A regular assignment statement cannot be used to set the value of a system
parameter.

The parameter names acceptable with the standard eV+ system are summarized in the
section Parameters in the eV+ Language User's Guide.

Other system parameters are available when options are installed. Refer to the option
documentation for details. For example, the parameters associated with the AdeptVision
options are described in the section Descriptions of Vision Keywords in the AdeptVision
Reference Guide.

PARAMETER program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 384

Example

Set the TERMINAL system parameter to 4:

PARAMETER TERMINAL = 4

Related Keywords

BELT.MODE system parameter

HAND.TIME system parameter

NOT.CALIBRATED system parameter

PARAMETERmonitor command

PARAMETER program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 385

PARAMETER real-valued function

Syntax

PARAMETER (parameter_name)

PARAMETER (parameter_name[index])

Function

Return the current setting of the named system parameter.

Parameters

parameter_name Name of the system parameter whose value is to be
returned.

index For parameters that can be qualified by an index, this is a
(required) real value, variable, or expression that specifies
the specific parameter element of interest.

Details

This function returns the current setting of the given system parameter. The parameter
name can be abbreviated to the minimum length that identifies it uniquely.

Other system parameters are available when options are installed. Refer to the option
documentation for details. For example, the parameters associated with the AdeptVision
options are described in the section Descriptions of Vision Keywords in the AdeptVision
Reference Guide.

Examples

The following example illustrates how the current setting of the TERMINAL parameter can be
displayed on the system terminal during program execution:

TYPE "The TERMINAL parameter is set to", PARAMETER(TERMINAL)

The PARAMETER function can also be used in any expression to include the value of a
parameter. For example, the following program statement can be used to increase the time
delay for hand actuation:

PARAMETER HAND.TIME = PARAMETER(HAND.TIME) + 0.15

Note that the left-hand occurrence of PARAMETER is the instruction name and the right-
hand occurrence is the function name.

PARAMETER real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 386

Related Keywords

BELT.MODE system parameter

HAND.TIME system parameter

NOT.CALIBRATED system parameter

PARAMETERmonitor command

PARAMETER program instruction

PARAMETER real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 387

PAUSE program instruction

Syntax

PAUSE

Function

Stop program execution but allow the program to be resumed.

Usage Considerations

Unlike HALT and STOP, the PAUSE instruction does not force FCLOSE or DETACH on the disk
or serial communication logical units. If the program has a file open and you decide not to
continue execution of the current program, you should issue a KILL command (with the
appropriate task number) to close all files and detach all logical units.

Details

Causes a BREAK and terminates execution of the application program, displaying the
message (PAUSED). Execution can subsequently be continued by typing proceed and the
appropriate task number, and pressing the RETURN key.

When debugging a program, a PAUSE instruction can be inserted to stop program execution
temporarily while the values of variables are checked.

NOTE: Any robot motion in progress when a PAUSE instruction is processed completes
normally.

Related Keywords

HALT program instruction

KILL monitor command

KILL program instruction

PROCEEDmonitor command

STOP program instruction

PAUSE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 388

#PDEST precision-point function

Syntax

#PDEST

Function

Return a precision-point value representing the planned destination location for the current
robot motion.

Usage Considerations

The #PDEST function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the #PDEST function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

The name "pdest" cannot be used for a variable or a program.

Details

The #PDEST function can be used to determine the robot's destination before its motion was
interrupted.

The #PDEST function is equivalent to the DEST transformation function and can be used
interchangeably with DEST, depending upon the type of location information that is desired.
Please refer to the description of the DEST function for more information on the use of both
the #PDEST and DEST functions.

Related Keywords

DEST transformation function

HERE transformation function

SELECT program instruction

SELECT real-valued function

#PDEST precision-point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 389

PDNT.CLEAR program instruction

Syntax

PDNT.CLEAR

Function

Clears the current notification window or custom message window on the T20 pendant, if
any, and returns the T20 pendant back to the Home screen.

Usage Considerations

Parameters

None

Details

None

Example

The following code:

PDNT.CLEAR

Clears the screen on the T20 pendant.

Related Keywords

PDNT.WRITE program instruction

PDNT.NOTIFY program instruction

PDNT.CLEAR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 390

PDNT.NOTIFY program instruction

Syntax

PDNT.NOTIFY $title, $msg

Function

Creates a pendant notification.

Usage Considerations

The pendant does not need to be attached using an ATTACH instruction prior to using this
function.

Parameters

$title Optional string constant, variable, or expression that contains the title
of the pendant notification.

$msg Optional string constant, variable, or expression that contains the
message of pendant notification.

Details

PDNT.NOTIFY is used to create a simple notification box on the T20 Pendant screen that can
be cleared by pressing the OK or Cancel buttons on the pendant or with a eV+call to
PDNT.CLEAR.

Example

The following code:

PDNT.NOTIFY “Manual Mode”, “To enable power, press and hold the
enable switch.”

Creates the screen:

PDNT.NOTIFY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 391

Related Keywords

PDNT.WRITE program instruction

PDNT.CLEAR program instruction

PDNT.NOTIFY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 392

PDNT.WRITE program instruction

Syntax

PDNT.WRITE (msgsize) $title, $msg, $f1, $f2, $f3, $f4

Function

Sets the pendant's Custom Message screen.

Usage Considerations

The pendant does not need to be attached using an ATTACH instruction prior to using this
function.

Parameters

msgsize Optional Real value, variable, or expression whose value represents the
array size of $msg.

$title Optional string constant, variable, or expression that contains the title
of the pendant’s Custom Message screen.

$msg Optional string constant, variable, or expression that contains the body
of the pendant’s Custom Message screen. This can accept html tags to
create an html-formatted text box. If $msg is an array andmsgsize > 1,
it will concatenate all the elements of the array. See the example code
that follows.

$f1 Optional string constant, variable, or expression that contains the label
of the F1 Key of the Custom Message Screen.

$f2 Optional string constant, variable, or expression that contains the label
of the F2 Key of the Custom Message Screen.

$f3 Optional string constant, variable, or expression that contains the label
of the F3 Key of the Custom Message Screen.

$f4 Optional string constant, variable, or expression that contains the label
of the F4 Key of the Custom Message Screen.

Details

PDNT.WRITE is used to set the screen of the T20 Pendant. This is used to create a user
interface to program the pendant through eV+. The screen can be either updatedwith a

PDNT.WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 393

subsequent PDNT.WRITE or cleared with a PDNT.CLEAR.While the screen is displayed, all
green keys, as well as Select Robot, are active, so that the robot can always be jogged. All
other keys have no effect aside from being sent to the eV+ software.

Example: Using PDNT.WRITE with the Pendant

The following instructions:

$p.title = "Operator Control"
$p.msg[0] = "Select Options from buttons below"
$p.f[1] = "Apps"
$p.f[2] = "Status"
$p.f[3] = ""
$p.f[4] = ""
PDNT.WRITE $p.title, $p.msg[], $p.f[1], $p.f[2], $p.f[3], $p.f[4]

Create the screen:

Screen Generatate by Preceding Instructions

Example

The following code:

AUTO $testmsg[0]

$testmsg[0] = “This is a TEST msg”

PDNT.WRITE (1) “title”, $testmsg[], “F1”, “F2”, “F3”, “F4”

Creates the screen:

PDNT.WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 394

Tag Example

Paragraph <p>This is a paragraph.</p>

Line Break

Horizontal Rule <hr>

Bold Text Bold text

Emphasized Text Emphasized text

Italic Text <i>Italic text</i>

Smaller Text <small>Smaller text</small>

Important Text Important text

Related Keywords

PDNT.NOTIFY program instruction

PDNT.CLEAR program instruction

PDNT.WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 395

PENDANT real-valued function

Syntax

PENDANT (select)

Function

Return input from the manual control pendant.

Usage Considerations

The pendant must be attached using an ATTACH instruction prior to using this function. See
Details below.

Parameter

select Real-valued expression whose value selects what type of pendant
information is returned (see below).

Details

The value returned depends upon the select parameter as follows:

select> 0

Immediately returns a value that reflects the actual state of the key with the given key
number at the instant the function is called. The state of the key depends upon the key
mode setting for that key. See the KEYMODE program instruction for information about
setting key modes and see the section Programming the pendant in the eV+ Language
User's Guide, for a table of the key numbers. The value returned is meaningful only if the
pendant is connected.

If a key is in keyboardmode, the value ON (-1) indicates that the key is pressed. The value
OFF (0) indicates that the key is not pressed.

If a key is in level mode, the value ON (-1) indicates that the pendant is attached in USER
mode and that the key is pressed. The value OFF (0) indicates that the pendant is not in
USERmode, or that the key is not pressed.

If a key is in toggle mode, the value ON (-1) indicates that the key is on and the value OFF
(0) indicates that the key is off. If the pendant is not in USERmode, the value returned still
accurately reflects the state of the toggled key.

select = 0

Returns the key number of the next keyboardmode key pressed. Program execution is
suspended until a keyboardmode key is pressed. If no key is programmed in this mode, an

PENDANT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 396

error occurs.

select = -2

Returns the current value from the speed label, in the range of 0 to 100 (decimal). When the
Pendant Jogmode is COMP, the monitor speed is returned. In other jogmodes, the jog speed
is returned.

select = -3

Returns the current display screen active on the pendant.

The display modes should be interpreted as follows:

Display mode Interpretation

1 Home screen

2 Other screens

3 Error screen

4 USER (custom) screen

select = -4

Returns the version number of the manual control software. This is the same as the value
returned by the real-valued function ID(1,2). The value -1 is returned if the pendant is not
connected to the system.

Examples

This example sets the manual control soft keys to keyboardmode, and then waits for one of
them to be pressed (also see the section Soft Signals in the eV+ Language User's Guide).

ATTACH (1) ;Attach the pendant LUN
KEYMODE 1,5 = 0 ;Set soft keys to keyboard mode
key = PENDANT(0) ;Wait and return next key hit
TYPE "Soft key #", key, " pressed"
DETACH (1) ;Detach the pendant LUN

This example sets the DONE key to level mode and loops until the key is pressed.

ATTACH (1) ;Attach the pendant LUN
KEYMODE 8 = 2 ;Set DONE key (8) to level mode
WAIT PENDANT(8) ;Pause until DONE key is pressed
DETACH (1) ;Detach the pendant LUN

PENDANT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 397

Related Keywords

ATTACH program instruction

PENDANT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 398

#PHERE precision-point function

Syntax

#PHERE

Function

Return a precision-point value representing the current location of the currently selected
robot.

Usage Considerations

The function #PHERE is considered to be a precision-point name. Thus, the # character
must precede the function name whenever it is used.

PHERE is a reservedword in eV+ and cannot be used for a variable or program name.

Details

The PHERE real-valued function is equivalent to the program instruction HERE #pp.

Example:

The following example shows #PHERE being used to set a precision point value, in this case
#pp.

SET #pp = #PHERE

Related Keyword

HERE program instruction

#PHERE precision-point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 399

PI real-valued function

Syntax

PI

Function

Return the value of the mathematical constant pi (3.141593).

NOTE: TYPE, PROMPT, and similar instructions display the result of the above example as
a single-precision value. However, pi is actually stored andmanipulated as a double-
precision value. The LISTRmonitor command displays real values to full precision.

Usage Considerations

The word "pi" cannot be used as a program name or variable name.

PI real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 400

PING monitor command

Syntax

PING node

Function

Test the network connection to a node.

Usage Considerations

This command is relevant only to controllers with the AdeptNet option.

Parameters

node Name or dotted-decimal IP address of the network node with which
communication will be attempted. If a node name is used, it must have
been defined in the eV+ configuration file or by an FSET command or
instruction.

Details

This command tests the network connection to a named or addressed node. If the node
responds, the command displays Success. If the node does not respondwithin 5 seconds,
the command displays Node not reachable.

Examples

To determine if a node named server2 is successfully connected, type

ping server2

The Success response indicates that the connection was successful.

The response Node not reachable indicates that the connection was not successful.

To determine if a node whose IP address is 172.16.200.1 is connected, type

ping 172.16.200.1

Related Keywords

FSETmonitor command

NETmonitor command

PINGmonitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 401

#PLATCH precision-point function

Syntax

#PLATCH (select)

Function

Return a precision-point value representing the location of the robot at the occurrence of the
last external trigger or a Stop on Digital Signal.

Usage Considerations

The function name #PLATCH is considered to be a precision-point name. Thus, the #
character must precede all uses of the function.

#PLATCH(0) returns information for the robot selected by the task executing the function. If
the eV+ system is not configured to control a robot, use of the #PLATCH function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

Parameter

select Optional integer, expression, or real variable specifying:

0 Robot position latch of currently selected robot (default)
n Robot position latch of robot n

Details

#PLATCH() returns a precision-point value that represents the location of the robot when
the last trigger occurred. The LATCHED real-valued function should be used to determine
when an external trigger has occurred and a valid location has been recorded.

Operation of the external trigger can be configured from the eV+ System Configuration
Editor in the ACE software. For details, see the ACE User's Guide.

See the Adept Intelligent Force Sensor User's Guide for details of the Stop on Digital Signal
option.

Related Keywords

LATCH transformation function

LATCHED real-valued function

#PLATCH precision-point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 402

POS real-valued function

Syntax

POS (search_string, sub_string, start)

Function

Return the starting character position of a substring in a string.

Parameters

search_string String expression to be searched for the occurrence of a
substring.

sub_string String expression containing the substring to be searched for
within the search string.

start Optional expression indicating the character position within the
search string where searching is to begin.

Details

Returns the character position in search_stringwhere sub_string begins. If the substring
does not occur within the search string, a value of 0 is returned.

If start is provided, it indicates the character position within search_stringwhere
searching will begin. A value of 1 indicates the first character. If start is omitted or less than
1, searching begins with the first character. If start is greater than the length of search_
string, a value of 0 is returned.

When checking for a matching substring, uppercase and lowercase letters are considered to
be the same.

Examples

POS("file.ext", ".") ;Returns 5
POS("file", ".") ;Returns 0
POS("abcdefgh", "DE") ;Returns 4
POS("1-2-3-4", "-", 5) ;Returns 6

POS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 403

POWER system switch

Syntax

... POWER

Function

Control or monitor the status of high power.

Usage Considerations

DANGER: Do not use the POWER switch to enable power from
within a program unless your system is subject to European
certification. With European certification, special safety features are
built-in to the system to prevent the robot from being activated
without warning. See Details for additional information.

Using this switch to turn on high power is potentially dangerous when performed from a
program because the robot can be activated without direct operator action. Turning on high
power from the terminal can be hazardous if you do not have a clear view of the robot
workspace or do not have immediate access to an Emergency Stop button.

Details

Enabling this switch is equivalent to pushing the COMP/PWR button on the pendant to turn
on high power. If there is no error condition that prevents power from coming on, the
enabling process proceeds to the second step, in which you must press the HIGH POWER
button on the FP. (Systems not subject to European certification do not require the second
step.)

Disabling this switch requests the robot to perform a controlled deceleration and power-down
sequence. This sequence consists of:

1. Decelerating all robots according to the user-specified parameters. (See the following
Note.)

2. Turning on the brakes.

3. Waiting for the user-specified brake-delay interval. (See the following Note.)

4. Turning off the amplifiers and power.

5. Asserting the backplane Emergency Stop signal and deasserting the High Power
Enable (HPE) signal.

Note that DISABLE POWERmay take an arbitrarily long time due to long deceleration times
and long brake turn-on delays. (Use the ESTOP command or program instruction when you

POWER system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 404

desire an immediate shutdown.) The value of this switch can be checked at any time with the
SWITCH real-valued function to determine if high power is on or off.

To disable power from a robot program without generating an error condition, the program
must either be in DRY.RUN mode or DETACH the robot from program control. See the
DRY.RUN switch or DETACH program instruction for details.

Example

The following program segment detaches the robot, turns high power off, andwaits for you to
turn high power back on.

DETACH ;Detach robot from program
DISABLE POWER ;Turn off power
TYPE "Press the COMP/PWR button to continue"
ATTACH ;Wait for power on and attach
TYPE "Robot program continuing..."

Related Keywords

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

ESTOP program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

POWER system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 405

#PPOINT precision- point function

Syntax

#PPOINT (j1_value, j2_value, j3_value, j4_value, j5_value, j6_value, j7_value, j8_value,
j9_value, j10_value, j11_value, j12_value)

Function

Return a precision-point value composed from the given components.

Usage Considerations

The #PPOINT function name is considered to be a precision-point name. Thus, the #
character must precede all uses of the function.

Parameters

j1_value Optional real-valued expressions for the respective robot joint
positions. (If more values are specified than the number of robot
joints, the extra values are ignored.)j2_value

j3_value

...

j12_value

Details

Returns a precision-point value composed from the given components, which are the
positions of the first through last robot joints, respectively.

A zero value is assumed for any parameter that is omitted.

Examples

Assume that you want to perform a coordinatedmotion of joints 2 and 3 of a robot with 4
joints, starting from its current location. The following program segment performs such a
motion:

 HERE #ref ;Define current location
 DECOMPOSE x[] = #ref ;Fill array with components
;Move to new precision point defined with modified components
 MOVE #PPOINT(x[0], x[1]+a, x[2]-a/2, x[3])

#PPOINT precision- point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 406

The following steps lead to the same final location, but the robot joints are not moved
simultaneously with this method.

 DRIVE 2, a, 100 ;Drive joint 2
 DRIVE 3, -a/2, 100 ;Drive joint 3

Related Keywords

DECOMPOSE program instruction

TRANS transformation function

#PPOINT precision- point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 407

PRIORITY real-valued function

Syntax

PRIORITY

Function

Return the current reaction lock-out priority for the program.

Usage Considerations

The name "priority" cannot be used as a program name or variable name.

This function returns the reaction lock-out priority, not the program priority of the executing
program.

Details

The reaction lock-out priority for each program task is set to zero when execution of the task
is initiated. The priority can be changed by the program at any time with the LOCK
instruction, or the priority is set automatically when a reaction occurs as prescribed by a
REACT or REACTI instruction.

The PRIORITY function can be used to determine the current setting of the reaction lock-out
priority for the task executing the function.

Example

This example raises the priority, performs some operation that requires a reaction routine to
be locked out, and then restores it to its previous value.

 save = PRIORITY ;Save the current priority

 IF save < 10 THEN ;Raise priority to at least 10
LOCK 10

 END

; Access data shared by a reaction routine.
 LOCK save ;Set priority to original value

Related Keywords

LOCK program instruction

REACT program instruction

REACTI program instruction

PROCEED program instruction

PRIORITY real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 408

Syntax

PROCEED task

Function

Resume execution of an application program.

Usage Considerations

A program cannot resume if it has completed execution normally or has stopped due to a
HALT instruction.

Parameter

task Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be executed. If no
task number is specified: Task number 0 is assumed.

Details

This instruction resumes execution of the specified program task at the step following the one
where execution was halted due to a PAUSE instruction, an ABORT instruction, a breakpoint,
a watchpoint, single-step execution, or a runtime error.

In addition to continuing execution of a suspended program, this instruction can be used to
initiate execution of a program that has been prepared for execution with the PRIME
command.

If the specified task is executing and the program is at a WAIT or WAIT.EVENT instruction (for
example, waiting for an external signal condition to be satisfied), typing proceed has the
effect of skipping over the WAIT or WAIT.EVENT instruction.

This instruction has no effect if the specified task is executing and the program is not at a
WAIT or WAIT.EVENT instruction.

PROCEED differs from RETRY in the followingmanner: If a program instruction generated an
error, RETRY attempts to reexecute that instruction, but PROCEED resumes execution at the
instruction that follows. If a robot motion was in progress when the program stopped, RETRY
attempts to complete that motion, but PROCEED goes on to the next motion.

Related Keywords

ABORTmonitor command

ABORT program instruction

EXECUTE monitor command

PROCEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 409

EXECUTE program instruction

PRIME monitor command

PROCEEDmonitor command

RETRYmonitor command

RETRY program instruction

STATUSmonitor command

SSTEPmonitor command

XSTEPmonitorcommand

PROCEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 410

.PROGRAM program instruction

Syntax

.PROGRAM program_name(argument_list) ;comment

Function

Define the arguments that are passed to a program when it is invoked.

Usage Considerations

This instruction is inserted automatically by the eV+ editors when a new program is edited.

This special instruction must be the first line of every program.

The .PROGRAM statement cannot be deleted from a program.

Parameters

program_name Name of the program in which this instruction is found.

argument_list Optional list of variable names, separated by commas. Each
variable can be any one of the data types available with eV+
(belt, precision point, real-value, string, and transformation).
Each variable can be a simple variable or an array with all of its
indexes left blank.

;comment Optional comment that is displayedwhen the program is
loaded from a disk file andwhen the DIRECTORY command is
processed. (The semicolon [;] should be omitted if no
comment is included.)

Details

The eV+ editors automatically enter a .PROGRAM line when you edit a new program. They
also prevent you from deleting the line or changing the program name. You can, however,
edit the line to add, delete, or modify the argument list. (The RENAME monitor command
must be used to change the program name.)

The variables in the argument list are considered automatic variables for the named
program. (See the AUTO instruction.)

When a program begins execution (for example, via an EXECUTE command or instruction or
a CALL instruction), the arguments in the .PROGRAM instruction are associated with those in
the EXECUTE or CALL. This association allows values to be passed between a program and its
caller.

.PROGRAM program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 411

See the description of the CALL instruction for an explanation of how the program arguments
receive their values from a calling program and return their values to the calling program. The
following rules apply to any program argument that is omitted when the program executes:

l Real-valued scalar parameters can be assigned a value within a program if they are
omitted.

l Location, string, and belt (scalar or array) parameters, and real-valued array
parameters, cannot be assigned a value within a program if they are omitted. (AUTO
variables can be used to work around this restriction, as shown in the example below.)
However, undefined parameters can be passed as program arguments and then be
assigned a value.

NOTE: If a program attempts to assign a value to one of these omitted variables, the error
Undefined value results. In that case, the error refers to the variable on the left side of
the assignment instruction.

l If an undefined or omitted parameter is passed to another program through a
subsequent CALL instruction, and the type of the variable is ambiguous (i.e., the type
could be real-valued or location), the parameter is assumed to be real-valued.

l Elements of an omitted array parameter cannot be passed by reference in a
subsequent CALL instruction.

The DEFINED real-valued function can be usedwithin a program to check whether a program
parameter is defined (meaning both: passed as a argument, and as an argument that has
been assigned a value previously). The example below shows how a program can be written
to accommodate undefined or omitted parameters.

A comment can be included on the .PROGRAM line, which is displayedwhen the program is
loaded from the disk and by the DIRECTORY command.

Examples

Define a program that expects no arguments to be passed to it:

.PROGRAM get()

Define a program that expects a string-valued argument and either a location or real-valued
argument (the type of the second argument is determined by its use in the program):

.PROGRAM test($n, dx)

The following program segment shows how a program can be written to deal with undefined
or omitted parameters. The example shows part of the program example, which has a real-
valued parameter and a string parameter.

.PROGRAM example(real, $string)
AUTO $internal.var

; Check for undefined or omitted real-valued scalar parameter.
IF NOT DEFINED(real) THEN ;If parameter is undefined

.PROGRAM program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 412

real = 1 ;assignment of desired
END ;default value is okay

;Check for undefined or omitted string parameter.
IF DEFINED($string) THEN ;If parameter is defined,

$internal.var = $string ;use the parameter value
ELSE ;Otherwise,

$internal.var = "default" ;use default value
END

;(Program continues...)
.END

Refer to the DEFINED function for more details and for testing nonreal arguments.

Related Keywords

CALL program instruction

CALLP program instruction

CALLS program instruction

EXECUTE monitor command

EXECUTE program instruction

PRIME monitor command

SSTEPmonitor command

XSTEPmonitorcommand

.PROGRAM program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 413

PROMPT program instruction

Syntax

PROMPT output_string, variable_list

Function

Display a string on the system terminal andwait for operator input.

Parameters

output_string Optional string expression that is output to the system terminal.
The cursor is left at the end of the string.

variable_list A list of real-valued variables, or a single string variable, that
receives the data.

Details

Displays the text of the output string on the system terminal, andwaits for you to type in a
line terminated by pressing the RETURN key.

The input line can be processed in either of two ways:

1. If a list of real-valued variables is specified as the variable list, the line is assumed to
contain a list of numbers separated by space characters and/or commas. Each
number is converted from text to its internal representation, and its value is stored in
the next variable contained in the variable list. If more values are read than the
number of variables specified, the extra values are ignored. If fewer values are read,
the remaining variables are set to zero. If data is read that is not a number, an error
occurs and program execution stops. Each PROMPT instruction should request only
one value to avoid confusion and to reduce the possibility of error.

2. If a single string variable is specified as the variable list, the entire input line is stored
in the string variable. The program must then process the string appropriately.

If you press the RETURN key, or press CTRL+C, an empty line is read. This results in all the
real variables being set to zero, or the string variable being assigned an empty string.

If you press CTRL+Z, an end-of-file error condition results. If there is no REACTE instruction
active, program execution is terminated and an error message is displayed. Thus, CTRL+Z
can be a useful way to abort program execution at a PROMPT.

Examples

Consider the instruction:

PROMPT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 414

PROMPT "Enter the number of parts: ", part.count

The result of executing this instruction is the display of the message

Enter the number of parts:

on the system terminal to ask you to type in the desired value. After you type a number and
press the RETURN key, the variable part.count is set equal to the value typed, and program
execution resumes.

Consider changing the above instruction to:

PROMPT "Enter the number of parts: ", $input

Even if you enter characters that are not valid for numeric input, eV+ does not output an
error message. The application program can use the various string functions to extract
numeric values from the input string.

If you want to include format specifications in the string output to the terminal (such as /Cn
to skip lines), you can use either the $ENCODE function or the TYPE instruction. For example,
the instruction

PROMPT $ENCODE(/B,/C1,/X10)+"Enter the number of parts: ", $input

beeps the terminal, spaces down a line, spaces over ten spaces, outputs the string, andwaits
for your input. (Note that a + sign has to be used between the $ENCODE function and the
quoted string because the entire output_string parameter must be a single string
expression.)

The following pairs of instructions are equivalent to the previous example:

TYPE /B, /C1, /X10, /S
PROMPT "Enter the number of parts: ", $input

or

TYPE /B, /C1, /X10, "Enter the number of parts: ", /S
PROMPT , $input

Note that /S must be included in the TYPE instructions as shown to have the prompt string
output on one line, and to have the cursor remain on that line.

Related Keywords

GETC real-valued function

READ program instruction

TYPE program instruction

PROMPT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 415

RANDOM real-valued function

Syntax

RANDOM

Function

Return a pseudorandom number.

Usage Considerations

The word "random" cannot be used as a program name or variable name.

Details

Returns a pseudorandom number in the range 0.0 to 1.0, inclusive. Thus, each time the
RANDOM function is evaluated, it returns a different value.

The numbers generated by this function are pseudorandom because the sequence repeats
after this function has been called 224 (16,777,216) times.

RANDOM real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 416

REACT program instruction

Syntax

REACT signal_num, program, priority

Function

Initiate continuousmonitoring of a specified digital signal and automatically trigger a
subroutine call if the signal properly transitions.

Usage Considerations

The REACT (and REACTI) instruction can be executed by any of the program tasks. That is,
each task can have its own, independent reaction definition.

Any of the first twelve external input signals (1001 to 1012) can be simultaneously
monitored.

Reactions are triggered by signal transitions and not levels. Thus, if a signal is going to be
monitored for a transition from off to on and the signal is already on when a REACT (or
REACTI) instruction is executed, then the reaction does not occur until the signal goes off
and then on again.

A signal must remain stable for at least 18 milliseconds to assure detection of a transition.

NOTE:If software signals are being used to trigger reactions, the WAIT instruction (with
no argument) should be used as required to ensure that the signal state remains
constant for the required time period.

The requested signal monitoring is enabled as soon as a REACT (or REACTI) instruction is
executed. Because of the way eV+ processes program instructions, this can result in an
effect on the motion initiated by the motion instruction preceding the REACT (or REACTI)
instruction in the program. (See the section Motion Control Examples in the eV+ Language
User's Guide for a discussion of robot motion processing.)

Parameters

signal_num Real-valued expression representing the signal to be monitored.
The signal number must be in the range 1001 to 1012 (external
input signals) or 2001 to 2008 (internal software signals). (The
software signals can thus be used by one program task to interrupt
another task.) If the signal number is positive, eV+ looks for a
transition from off to on; if signal_num is negative, eV+ looks for
a transition from on to off.

program Name of the subroutine that is to be called when the signal

REACT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 417

transitions properly.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value of this
expression is interpreted as an integer value and can range from 1
to 127. See the LOCK instruction for additional details on priority
values. The default value is 1.

Details

When the specified signal transition is detected, eV+ reacts by checking the priority specified
with the REACT instruction against the program priority setting at that time. (The program
priority is always set to 0 when execution begins. It can be changedwith the LOCK
instruction.) If the REACT priority is greater than the program priority, the normal program
execution sequence is interrupted and the equivalent of a CALL program instruction is
executed. Also, the program priority is temporarily raised to the REACT priority, locking out
any reactions of equal or lower importance. When a RETURN instruction is executed in a
reaction subroutine, the program priority is restored to the value it had before the reaction
program was invoked.

If the REACT priority is less than or equal to the program priority when the signal transition is
detected, the reaction is queued and does not occur until the program priority is lowered.
Therefore, depending upon the relative priorities, there can be a considerable delay between
the time a signal transition is noticed by eV+ and the time the reaction program is actually
invoked.

If multiple reactions are pending because of a priority lockout, the reaction with the highest
priority is serviced first when the locking priority is lowered. If multiple pending reactions have
the same priority, the one associated with the highest signal number is processed first.

The subroutine call to program is performed such that when a RETURN instruction is
encountered, the next instruction to be executed is the one that follows the last instruction
processed before the reaction program was initiated. If there is a sequence of instructions
that you do not want interrupted by a reaction program, you should use the LOCK instruction
to raise the program priority during that sequence.

The signal monitoring continues until one of the following occurs:

l An IGNORE instruction is executed for the signal.

l A reaction occurs (in which case IGNORE signal_num is automatically performed).

l A REACT (or REACTI) instruction is executed that refers to the same signal. That is, if
the signal specified in a REACT instruction is already beingmonitored by a previous
REACT or REACTI instruction, the old instruction is canceled when the new REACT
instruction is executed.

REACT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 418

Example

The instruction below monitors the external input signal identified by the value of the
variable test. If the desired signal transition occurs (as specified by the sign of the value of
test), program execution branches to program delay as soon as the program priority drops to
0 (since no priority is specified in the instruction). (The program priority is raised to 1 [the
default value] when the subroutine is invoked; the program priority returns to 0 when the
program returns.)

REACT test, delay

Related Keywords

IGNORE program instruction

LOCK program instruction

PRIORITY real-valued function

REACTE program instruction

REACTI program instruction

SIG.INS real-valued function

REACT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 419

REACTE program instruction

Syntax

REACTE program_name

Function

Initiate the monitoring of errors that occur during execution of the current program task.

Usage Considerations

The main purpose for the REACTE instruction is to allow for an orderly shutdown of the
system if an unexpected error occurs. If a robot hardware error occurs, for example, a
REACTE program can set external output signal lines to shut down external equipment.
Using the REACTE instruction for other purposes requires extreme caution.

The REACTE instruction can be executed by any of the program tasks. That is, each task can
have its own, independent REACTE definition. (A task cannot directly trap errors caused by
another task, but tasks can signal each other via global variables or software signals.)

The ERROR real-valued function must be called before a REACTE with no program name,
since the REACTE clears the previous errors

See the list below for other considerations.

Parameter

program_name Optional name of the program that is to be called when a program
error occurs. If no program is specified, the previous REACTE is
canceled, and any pending error message is discarded.

Details

If an error occurs after a REACTE instruction has been executed, the specified program is
invoked, rather than stopping normal program execution. (The program is invoked as
though by the CALL program instruction.) The ERROR real-valued function can be used
within the error-handling program to determine what error caused the program to be
invoked.

There are several special considerations that must be kept in mindwhen using this facility:

l The program priority is raised to 254 when the error-handling program is invoked,
locking out all reaction programs.

l Execution of the program task stops if an error occurs while the system is processing a
previous error.

l There must be room on the user program stack for one more subroutine. Therefore,

REACTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 420

the error *Toomany subroutine calls* cannot be processed. (See the STACKmonitor
command.)

l The error-handling program can contain a RETURN instruction. When it is executed,
the program tries to re-execute the instruction that caused the error. Note that this
may cause an endless loop if the error continues to occur.

l Before the error-handling program is entered, a DETACH instruction for the robot
(logical unit number 0) is effectively executed. Thus, an ATTACH instruction must be
executed for the robot before program control of the robot can resume.

l If a STOP, HALT, or PAUSE instruction is executed within the error-handling program,
the original error message is output unless the error-handling program contains a
REACTE instruction with no argument.

l Unlike REACT and REACTI, execution of the REACTE error-handling program is never
deferred because of priority considerations.

Example

Initiate monitoring of errors so that the program error.trap is executed if any error should
occur during execution of the current program task:

REACTE error.trap

Related Keywords

ERROR real-valued function

REACT program instruction

REACTI program instruction

RETURNE program instruction

REACTE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 421

REACTI program instruction

Syntax

REACTI signal_num, program, priority

Function

Initiate continuousmonitoring of a specified digital signal. Automatically stop the current
robot motion if the signal transitions properly and optionally trigger a subroutine call.

Usage Considerations

For most applications, the REACTI instruction should be used only in a robot control program.
(See below for more information.)

When a REACTI triggers, the robot that is stopped is the one selected by the task at the time
of the trigger, regardless of which robot was selected at the time the REACTI instruction was
executed.

Also see the considerations listed for the REACT program instruction.

Parameters

signal_num Real-valued expression representing the signal to be monitored. The
signal number must be in the range 1001 to 1012 (external input
signals) or 2001 to 2008 (internal software signals). (The software
signals can thus be used by a secondary program to interrupt the
robot control program, and vice versa.)

If the signal number is positive, eV+ looks for a transition from off to
on; if signal is negative, eV+ looks for a transition from on to off.

program Optional name of the subroutine that is called when the signal
transitions properly.

priority Optional real-valued expression that indicates the relative
importance of this reaction as explained below. The value of this
expression is interpreted as an integer value and can range from 1 to
127. If this argument is omitted, it defaults to 1. See the LOCK
instruction for additional details on priority values.

Details

When the specified signal transition is detected, eV+ reacts by immediately stopping the
current robot motion. If a program is specified, eV+ then continues processing the reaction
just as it would for a REACT instruction. (See the description of the REACT instruction for a
full explanation of this processing).

REACTI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 422

When REACTI is used by a program task that is not actually controlling the robot, care must
be exercised tomake sure the robot control program does not nullify the intended effect of
the reaction subroutine. That is, if your application has one program task monitoring the
signal and a different program task controlling the robot, you should keep the following points
in mindwhen planning for processing of the reaction:

l The robot motion in process at the time of the reaction is stopped, as if a BRAKE
instruction were executed, but execution of the robot control program is not directly
affected.

l If a reaction subroutine is specified, that routine is executed by the task that is
monitoring the reaction (not by the task controlling the robot).

The signal monitoring continues until one of the following occurs:

l An IGNORE instruction is executed for the signal.

l A reaction occurs (in which case IGNORE signal_num is automatically performed).

l A REACTI (or REACT) instruction is executed that refers to the same signal. That is, if
the signal specified in a REACTI instruction is already beingmonitored by a previous
REACTI or REACT instruction, the old instruction is canceled when the new REACTI
instruction is executed.

If you do not want the robot motion to stop until the reaction program is actually called, you
should use a REACT instruction and put a BRAKE instruction in the reaction program.

Example

The instruction below initiates monitoring of external input signal #1001. The robot motion is
stopped immediately if the signal ever changes from on to off (since the signal is specified as a
negative value). A branch to program alarm then occurs when the program priority falls
below 10 (if it is not already at or below that level).

REACTI -1001, alarm, 10

Related Keywords

IGNORE program instruction

LOCK program instruction

PRIORITY real-valued function

REACT program instruction

REACTE program instruction

SIG.INS real-valued function

REACTI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 423

READ program instruction

Syntax

READ (lun, record_num,mode) var_list

Function

Read a record from an open file or from an attached device that is not file oriented. For an
network device, read a string from an attached and open TCP connection.

Usage Considerations

The logical unit referenced by this instruction must have been attached previously.

For file-oriented devices, a file must already have been openedwith an FOPEN_ instruction.

Parameters

lun Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_num Optional real-valued expression that specifies the record to read for
file-oriented devices opened in random-access mode (see the
FOPEN_ instructions). For nonfile-oriented devices or for sequential
access of a file, this parameter should be 0 or omitted. Records are
numbered from one to a maximum of 16,777,216.

When accessing the TCP device with a server program, this
parameter is an optional real variable that returns the client handle
number. The handle can be used to identify the client accessing a
multiple-client server.

mode Optional real-valued expression that specifies the mode of the read
operation. Currently, the mode is used only for the terminal and
serial I/O logical units. The value is interpreted as a sequence of bit
flags as detailed below. (All bits are assumed to be clear if nomode
value is specified.)

Bit 1 (LSB)Wait (0) vs. No-wait (1) (mask value = 1)

If this bit is clear, program execution is suspended until the read
operation is completed. If the bit is set and the requested data is not
available, program execution continues immediately and the
IOSTAT function returns the error code for *No data received*
(-526).

READ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 424

NOTE: For a no-wait READ to access a serial line, the line must
be configured to use DDCMP.

Bit 2 Echo (0) vs. No-echo (1) (mask value = 2)

If this bit is clear, input from the terminal is echoed back to the
source. If the bit is set, characters are not echoed back to the
source. (This mode bit is ignored for the serial lines.)

var_list Either a list of real-valued input variables or a list of string variables,
which receives the data (see following details).

Details

This is a general-purpose data input instruction that reads a record from a specified logical
unit. A record can contain an arbitrary list of characters but must not exceed 512 characters
in length. For files that are opened in fixed-length recordmode, this instruction continues to
read characters until it has read exactly the number of characters specified during the
corresponding FOPEN_ instruction.

For variable-length recordmode (with most devices), this instruction reads characters until
the first carriage-return (CR) and line-feed (LF) character sequence (or Ctrl+Z) is
encountered. Thus, for example, if you perform a variable-length recordmode read from the
disk, you receive all the characters until a CR and LF are encountered.

The special character Ctrl+Z (26 decimal) indicates the logical end of the file, which is
reported as an error by the IOSTAT function. No input characters can be read beyond that
point.

READ operations from the terminal, the pendant, and the serial lines are always assumed to
be in variable-length recordmode. Except as noted below, the records are terminated by CR
and LF (which are not returned as part of the record). Thus, a READ from these devices is not
complete until a CR and LF are received as input. For example, if you perform a READ from
the terminal, you receive all the characters until the RETURN key is pressed.

NOTE:When a CR is received from the system terminal, eV+ automatically adds a LF.
Similarly, the pendant's DONE key is interpreted as CR and LF.

The GETC real-valued function can be used instead of the READ instruction if you want to
receive the CR and LF characters at the end of a record.

When a READ instruction accesses a serial line configured to use DDCMP, the recordmay
contain arbitrary data, including CR and LF characters.

If bit 1 is set in the mode value, a read operation that is not complete does not cause the
program to wait, but returns immediately with the error *No data received* (error code -

READ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 425

526). Then, additional READ instructions must be executed, until one is complete, in order to
obtain the data in the variable list. The IOSTAT function can be used to determine when such
a READ is complete.

Once a record has been read, it is processed in one of the following two ways:

1. If the var_list parameter is a list of real-valued variables, the record is assumed to
contain a list of numbers separated by space characters and/or commas. Each
number is converted from text to its internal representation, and its value is stored in
the next variable contained in the variable list. If more values are read than the
number of variables specified, the extra values are ignored. If fewer values are read,
the remaining variables are set to zero. If data is read that is not a number, an error
occurs and program execution stops (or an error reaction occurs).

2. If the var_list parameter is a list of string variables, the entire record is stored in the
string variables as follows. The first 128 bytes in the record are copied to the first
string variable. If there are more than 128 bytes in the record, the second string
variable is filled with the next 128 bytes. This continues until the entire record has
been processed or all the string variables have been filled.

If there is not enough data to fill all the string variables, the unused string
variables are set to the empty string (""). If there is toomuch data for the
number of string variables specified, an error is reported by the IOSTAT real-
valued function.

When a READ is performed in variable-length recordmode, the strings contain
all the characters up to, but not including, the terminating CR and LF, which
are discarded.

Any error in the specification of this instruction (such as attempting to read from an invalid
unit) causes a program error and halts program execution. However, errors associated with
performing the actual read operation (such as end of file or device not ready) do not halt
program execution since these errors may occur in the normal operation of a program. These
normal errors can be detected by using the IOSTAT function after performing the read. In
general, it is good practice always to test whether each read operation completed
successfully by testing the value from IOSTAT.

When accessing a network device, the record_num parameter allows a server to
communicate with multiple clients on a single logical unit. In this context, the parameter
provides ahandle number that you can use to identify the client from which the READ data
was received. Handles are allocated when a client connects to the server and are deallocated
when the client disconnects. In order to determine when the client connection or
disconnection is done, you must use the IOSTAT real-valued function after the READ. Refer
to the documentation for IOSTAT.

The READ instruction with TCP/IP reads data until either the input string is full or the buffer
is empty, at which point the instruction returns. READ with TCP/IP does not allow fixed-
length records and does not terminate when encountering a delimiter.

READ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 426

Example

Read a line of text from the disk and store the record in the string variable $disk.input:

READ (5) $disk.input

For an example of using the READ instruction with the TCP device, refer to the Example
section for the IOSTAT real-valued function.

Related Keywords

ATTACH program instruction

FOPEN_ program instruction

FSEEK program instruction

GETC real-valued function

IOSTAT real-valued function

PROMPT program instruction

READ program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 427

READY program instruction

Syntax

READY

Function

Move the robot to the READY location above the workspace, which forces the robot into a
standard configuration.

Usage Considerations

Before executing this instruction with the DOmonitor command (DO READY), make sure
that the robot will not strike anything while moving to the READY location.

The READY instruction can be executed by any program task as long as the task has
attached a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the READY instruction
causes an error.

Details

This instruction always succeeds, regardless of where the robot is located at the time.

A Cobra robot has the following configuration when it is at the READY location:

l Joint 2 is close to 90 degrees

l The axis of joint 3 is in the World X-Z plane (that is, Y = 0)

l The alignment keyway in the end-effector flange is directed along the positive X axis
(that is, the tool X axis is parallel to the world X axis)

The following table lists the joint positions for the READY locations for various Omron Adept
robots.

Joint Cobra
350

Cobra
600

Cobra
800

Quattro
650/800

Viper
650/850
/1300

Viper
1700/
1700D

1 -61.2° -43.5° -42.9° 0° 0° 0°

2 90.3° 96.8° 93.4° 0° -90° -90°

3 10.0
mm

10.0
mm

10.0
mm

0° 180° 180°

READY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 428

Joint Cobra
350

Cobra
600

Cobra
800

Quattro
650/800

Viper
650/850
/1300

Viper
1700/
1700D

4 29.1° 53.8° 50.5° 0° 0° 0°

5 N/A N/A N/A N/A 0° 90°

6 N/A N/A N/A N/A 0° 0°

Related Keyword

SELECT program instruction

SELECT real-valued function

READY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 429

RELAX and RELAXI program instruction

Syntax

RELAX

RELAXI

Function

Limp the pneumatic hand.

Usage Considerations

RELAX causes the hand to limp during the next robot motion.

RELAXI causes a BREAK in the current continuous-path motion and causes the hand to limp
immediately after the current motion completes.

The RELAX instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

The RELAXI instruction can be executed by any program task as long as the task has
attached a robot. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing these instructions causes
an error.

Details

These instructions turn off both the open and close pneumatic control solenoid valves,
causing the pneumatic hand to become limp. If the RELAX instruction is used, the signal is
sent when the next robot motion begins.

The RELAXI instruction differs from RELAX in the followingways:

l A BREAK occurs if a continuous-path robot motion is in progress.

l The signals are sent to the control valves at the conclusion of the current motion or
immediately if nomotion is in progress.

l Robot motions are delayed for a brief time to allow the hand actuation to complete.
The length of the delay (in seconds) is the current setting of the HAND.TIME system
parameter.

Related Keywords

CLOSE program instruction

CLOSEI program instruction

RELAX and RELAXI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 430

HAND.TIME system parameter

OPEN program instruction

OPENI program instruction

SELECT program instruction

SELECT real-valued function

RELAX and RELAXI program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 431

RELEASE program instruction

Syntax

RELEASE

Function

Allow the next available program task to run.

Details

This instruction releases control to another task that is ready to run. For more information
on task scheduling, see the section Scheduling of Program Execution Tasks in the eV+
Language User's Guide.

This instruction can be used in place of the WAIT instruction (with no arguments) in cases
where other tasks must be given an opportunity to run, but a delay until the next trajectory
cycle is not desired.

Related Keywords

WAIT program instruction

WAIT.EVENT program instruction

RELEASE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 432

RESET program instruction

Syntax

RESET

Function

Turn off all the external output signals.

Details

The RESET program instruction is useful in the initialization portion of a program to ensure
that all the external output signals are in a known state.

DANGER: Before issuing this instruction, make sure all devices
connected to the output signals can safely be turned off. Be
especially careful of signals that start an action when they are
turned off.

Related Keywords

BITSmonitor command

BITS program instruction

BITS real-valued function

IOmonitor command

RESETmonitor command

SIG real-valued function

SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

RETRY program instruction

Syntax

RETRY task

Function

Repeat execution of the last interrupted program instruction and continue execution of the
program.

RESET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 433

Usage Considerations

RETRY cannot be processedwhen the specified task is executing.

A program cannot be resumed if it has completed execution normally or has stopped due to a
HALT instruction.

Parameter

task Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be executed. If no
task number is specified: Task number 0 is assumed. (See the eV+
Operating System User's Guide for information on tasks.)

Details

This instruction restarts execution of the specified task similar to the PROCEED instruction.
After a RETRY instruction, however, the point at which execution resumes depends on the
status at the time execution was interrupted. If a program step or robot motion was
interrupted before its completion, use of a RETRY instruction causes the interrupted
operation to be completed before execution continues normally. This allows you to retry a
step that has been aborted or that caused an error.

If no program step or robot motion was interrupted, the RETRY instruction has the same
effect as the PROCEED instruction.

NOTE:When a RETRY instruction is used to resume an interruptedmotion, all motion
parameters are restored to the settings in effect before the motion was interrupted.

Related Keywords

PROCEED program instruction

PROCEEDmonitor command

SSTEPmonitor command

STATUSmonitor command

XSTEPmonitorcommand

RETRY monitor command

Syntax

RETRY task

RETRYmonitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 434

Function

Repeat execution of the last interrupted program instruction and continue execution of the
program.

Usage Considerations

RETRY cannot be processedwhen the specified task is executing.

A program cannot be resumed if it has completed execution normally or has stopped due to a
HALT instruction.

Parameter

task Optional real value, variable, or expression (interpreted as an
integer) that specifies which program task is to be executed. If no
task number is specified: Task number 0 is assumed. (See the eV+
Operating System User's Guide for information on tasks.)

Details

This instruction restarts execution of the specified task similar to the PROCEED instruction.
After a RETRY instruction, however, the point at which execution resumes depends on the
status at the time execution was interrupted. If a program step or robot motion was
interrupted before its completion, use of a RETRY instruction causes the interrupted
operation to be completed before execution continues normally. This allows you to retry a
step that has been aborted or that caused an error.

If no program step or robot motion was interrupted, the RETRY instruction has the same
effect as the PROCEED instruction.

NOTE:When a RETRY instruction is used to resume an interruptedmotion, all motion
parameters are restored to the settings in effect before the motion was interrupted.

Related Keywords

PROCEED program instruction

PROCEEDmonitor command

SSTEPmonitor command

STATUSmonitor command

XSTEPmonitorcommand

RETRYmonitor command

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 435

RETURN program instruction

Syntax

RETURN

Function

Terminate execution of the current subroutine, and resume execution of the suspended
program at its next step. A program may have been suspended by issuing a CALL, CALLP, or
CALLS instruction, or by the triggering of a REACT, REACTE, or REACTI condition.

Details

A RETURN instruction in a main program has the same effect as a STOP instruction.

A RETURN instruction is assumed if program execution reaches the last step of a subroutine.
However, it is not good programming style to use this feature-an explicit RETURN instruction
should be included as the last line of each subroutine.

The effect of a RETURN instruction in an error reaction subroutine differs slightly. In that
case, if the reaction subroutine was invoked because of a program error (as opposed to an
asynchronous servo error or PANIC button press), the statement that caused the error is
executed again. That is, the error may occur again immediately. The RETURNE instruction
should be used in error reaction subroutines to avoid that situation.

If a RETURN instruction is used to exit from a reaction routine, the program reaction priority
is restored to whatever it was before the reaction routine started execution.

Related Keywords

CALL program instruction

CALLP program instruction

CALLS program instruction

LOCK program instruction

REACT program instruction

REACTE program instruction

REACTI program instruction

RETURNE program instruction

RETURN program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 436

RETURNE program instruction

Syntax

RETURNE

Function

Terminate execution of an error reaction subroutine and resume execution of the last-
suspended program at the step following the instruction that caused the subroutine to be
invoked.

Details

The RETURNE instruction is intended for use in error reaction subroutines. That is,
subroutines that are invoked, through the REACTE mechanism, as a result of an error during
program execution.

If a RETURNE instruction is used to exit from an error reaction routine, the program reaction
priority is restored to whatever it was before the error reaction routine started execution.

When a RETURNE instruction is executed in an error reaction subroutine, then execution
continues with the statement following the one executing when the error occurred. (Note
that in this situation, a RETURN instruction results in the statement that generated the
error being executed again, possibly causing an immediate repeat of the error.)

NOTE: Because of the forward processing ability of eV+, the instruction that is the source
of an error may not be the one executing when the error is actually registered. For
example, when a MOVE instruction is processed, the robot begins moving, but during the
motion several additional instructions may be processed. If an envelope or similar error
occurs after this forward processing, the RETURNE is based on the instruction processing
when the error occurs, not the MOVE instruction.

It may be helpful to note that the RETURNE instruction behaves similarly to the PROCEED
command. The RETURN instruction behaves similarly to the RETRY command (except that
with RETURN an interrupted robot motion is not restarted).

A RETURNE instruction in a program that is not executed in response to an error has the
same effect as a RETURN instruction. RETURNE, however, takes slightly longer to execute
than does RETURN.

Related Keywords

REACTE program instruction

RETURN program instruction

RETURNE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 437

RIGHTY program instruction

Syntax

RIGHTY

Function

Request a change in the robot configuration during the next motion so that the first two
links of the robot resemble a human's right arm.

Usage Considerations

Configuration changes cannot be made during straight-line motions.

If the selected robot does not support a right-handed configuration, this instruction is
ignored by the robot.

The RIGHTY instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task, however if the robot is not attached, this
instruction has no effect. The instruction applies to the robot selected by the task.

If the eV+ system is not configured to control a robot, executing the RIGHTY instruction
causes an error.

See LEFTY/RIGHTY.

Related Keywords

CONFIG real-valued function

LEFTY program instruction

SELECT program instruction

SELECT real-valued function

RIGHTY program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 438

ROBOT system switch

Syntax

... ROBOT [index]

Function

Enable or disable one robot or all robots.

Usage Considerations

The ROBOT system switches may be modified only when both of the following conditions are
satisfied:

1. The POWER system switch is OFF.

2. When the eV+ system was booted from disk, at least one robot started upwithout
reporting a fatal error.

The maximum number of robots supported depends on your controller configuration.

Some controllers do not allow a robot to be calibrated unless all robots with lower index
numbers are enabled.

Parameter

index Optional real value, variable, or expression (interpreted as an integer)
that specifies the robot to be enabled or disabled. The value should be 1
through 15 (corresponding to robots 1 through 15, respectively). If the
index is omitted or zero in an ENABLE or DISABLE command or
instruction, the settings for all robots are altered. Otherwise, only the
setting for the specified robot is affected.

Details

When the eV+ system starts up (after booting from disk), all the robots that started up
without reporting a fatal error are enabled by default, and all the corresponding ROBOT
switches are enabled. After start up, the ROBOT switches can be used to selectively disable
robots. For example, this can aid in the debugging of individual robots.

The ROBOT switches may be modified only for robots that are present and that started up
without a fatal error.

When a robot is disabled by use of the ROBOT switch, that robot is bypassedwhen:

l Power is enabled for all robots with the COMP/PWR button on the pendant or with the
POWER system switch.

ROBOT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 439

l All the robots are calibrated via the CALIBRATE monitor command or program
instruction.

Motion instructions should not be executed for a robot that has been disabled.

The settings of these switches can be checked at any time with the SWITCHmonitor
command or real-valued function to determine which robots are enabled.

Related Keywords

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

ROBOT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 440

ROBOT.OPR program instruction

Syntax

ROBOT.OPR (function_code) exp1, exp2, ..., expn

Function

Execute operations that are specific to the currently selected robot or robot module.

Usage Considerations

ROBOT.OPR is a general-purpose instruction whose interpretation varies from one robot type
to another.

The instruction is ignored if there is no robot attached.

An error is reported if the robot is tracking a belt or if ALTER is active.

Parameters

function_code Optional real value that specifies a function for the selected robot
module.

exp1, exp2, ...,
expn

Optional expressions whose interpretation is determined by the
selected robot module.

NOTE: An *Invalid argument* error is returned if the "function_code" value used is not
valid. The same error is returned if an "exp" value exceeds its allowable range. The valid
"function_code" and "exp" values are described in the device module documentation for
your robot. See the Adept Robot Device Modules menu in the Adept Document Library to
access the device module for your robot.

Details

This instruction executes operations that are specific to the currently selected robot or robot
module. If the selected robot does not support any special operations, this instruction has no
effect.

The following table shows the "function" and "exp" values for the supported robot modules.
For additional details about the applicability and use of this instruction, refer to the
documentation for your specific robot module. See the Adept Robot Device Modules menu to
access the documentation for the device module for your robot.

NOTE: Only device modules for non-Omron Adept robots are documented.

ROBOT.OPR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 441

Robot
Modul-
e

function_
code

exp1,
exp2,...exp-

n
Description

XY3
(modul-
e ID
21)

When the system is first booted, the first Z/Theta pair is selected as the
primary head, and the second and third heads are not slaved. The
ROBOT.OPR program instruction must be executed to specify a different
primary head, and to slave heads.

The following points should be kept in mindwhen utilizing ROBOT.OPR to
change the head selection:

1. This instruction breaks any executing continuous-path motion and
modifies the head selection after the robot has come to a stop.

2. Before you slave one head to another head, you should ensure that the
Z and Theta values for the slave head are identical to those of the primary
head. If any differences exist, at the start of the next motion, the axes of
the slave headwill quickly jump to the same joint positions as the primary
head.

0 enables
selection of
the primary
and slaved
axes

exp1 Number of the primary Z/Theta axes (1-
N).

exp2 (Optional) Number of the secondary
Z/Theta axes (1-N).

exp3 (Optional) Number of the third Z/Theta
axes (1-N).

exp4 (Optional) Number of the fourth Z/Theta
axes (1-N).

NOTE: "N" is the number of configured Z/Theta pairs,
which can be 1 to 4. There is no check for an axis pair
being specifiedmore than once.

1 enables
definition of
the

exp1 Z offset for first slaved axes.

Supported Robot Modules

ROBOT.OPR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 442

Robot
Modul-
e

function_
code

exp1,
exp2,...exp-

n
Description

position-
offset
values that
are added
to the
commande-
d Z and RZ
positions
for each
slave axis

exp2 (Optional) RZ offset for first slaved axes.

exp3 (Optional) Z offset for second slaved axes.

exp4 (Optional) RZ offset for second slaved
axes.

exp5 (Optional) Z offset for third slaved axes.

exp6 (Optional) RZ offset for third slaved axes.

NOTE: The offsets for the fourth set of slaved axes
cannot be set.

DLT
(modul-
e ID
27)

For this robot, this instruction sets the Cartesian acceleration parameters
to one of three sets of values. The purpose of this operation is to adjust
the dynamic performance of the robot depending upon the payload being
carried.

NOTE:When utilizing ROBOT.OPR to change the acceleration values,
the robot must be attached and stoppedwhen this instruction is
executed, to ensure no adverse interactions with any current motion
execution.

ROBOT.OPR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 443

Robot
Modul-
e

function_
code

exp1,
exp2,...exp-

n
Description

0 sets the
Cartesian
acceleratio-
n
parameters
to one of
three sets
of values.

exp1 Number of the set of Cartesian
acceleration parameters to utilize (1-3).
The parameters are intended to be used
as follows:

Parameter Set
Number

Intended
Payload

1 0-1 kg

2 1-3 kg

3 3-5 kg

Quattro
650
Robot1

For this robot, this instruction sets the Cartesian acceleration parameters
to one of two sets of values. The purpose of this operation is to adjust the
dynamic performance of the robot depending upon the payload being
carried.

NOTE:When utilizing ROBOT.OPR to change the acceleration values,
the robot must be attached and stoppedwhen this instruction is
executed, to ensure no adverse interactions with any current motion
execution.

0 (must be
set to 0)

exp1 Number of the set of Cartesian
acceleration parameters to utilize (1 or 2).
(Parameter set #1 is applied when the
eV+ system is booted from disk.)

ROBOT.OPR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 444

Robot
Modul-
e

function_
code

exp1,
exp2,...exp-

n
Description

Paramete-
r Set

Number

Intende-
d

Payload
Notes

1 Default Parameter
sets 1-7 are
available
with all
Quattro
robots.

NOTE:
Payloads
greater
than 6 kg
with a
Quattro
650
robot, or
4 kgwith
a Quattro
800
robot,
should be
used only
with the
P30
(fixed)
platform.

2 0-1 kg

3 1-2 kg

4 2-4 kg

5 4-6 kg

6 6-8 kg

7 8-10 kg

8 10-12 kg These
selections
are available
only with
the Quattro
650H/650H-
S robots.

9 12-15 kg

1. The Quattro 650 robot device module (QPL) is not published, because this is an

ROBOT.OPR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 445

Robot
Modul-
e

function_
code

exp1,
exp2,...exp-

n
Description

Omron Adept Robot.

Related Keyword

ROBOT.OPR real-valued function

ROBOT.OPR program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 446

ROBOT.OPR real-valued function

Syntax

ROBOT.OPR (mode, index)

Function

Returns robot-specific data for the currently selected robot.

Parameters

mode,
index

The values of these two parameters select what robot-specific data is
returned.

Details

The following table shows the mode and index information for the supported robot modules.
For additional details about the applicability and use of this instruction, refer to the
documentation for your specific robot module. See the Adept Robot Device Modules menu to
access the documentation for the device module for your robot.

NOTE: Only device modules for non-Omron Adept robots are documented.

Robot Module Mode Indices Description

XY3 (module ID 21) 1 1 - 5 The number of the primary ZTheta
pair, followed by the number of
the first slave pair, the second
slave pair, and the third slave pair.

The first zero value indicates the
end of the list of active slave pairs.

2 1, 2 Always 0

3 Z offset for the first slaved ZTheta

4 RZ offset for the first slaved
ZTheta

5 Z offset for the second slaved
ZTheta

Supported Robot Modules

ROBOT.OPR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 447

Robot Module Mode Indices Description

6 RZ offset for the second slaved
ZTheta

7 Z offset for the third slaved ZTheta

8 RZ offset for the third slaved
ZTheta

Quattro 650 Robot1 1 1 Number of the set of acceleration
parameters that is in effect. The
value 0 indicates no set has been
explicitly selected, and the default
parameters (set #1) are in effect.

2 Number of sets of acceleration
parameters that are available for
the current robot.

2 1 Maximum tool-flange rotation
angle (i.e., maximum deflection
from 0 degrees).

2 Size of the tool-flange rotation
"ambiguity" zone at each end of
the range of tool-flange rotation.

1 The Quattro 650 robot device module (QPL) is not published, because this is an
Omron Adept robot.

Related Keywords

ROBOT.OPR program instruction

SELECT program instruction

SELECT real-valued function

ROBOT.OPR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 448

RUNSIG program instruction

Syntax

RUNSIG signal_num

Function

Turn on (or off) the specified digital signal as long as execution of the invoking program task
continues.

Usage Considerations

Only one RUNSIG signal can be in effect for each program task.

Parameter

signal_num Optional real-valued expression that specifies one of the digital
output signals (or an internal software signal) that is to be
controlled.

The signal is set to on during program execution if the value is
positive. A negative value results in the signal being set to off during
program execution, and turned on when execution stops.

If no signal is specified, any RUNSIG in effect for the task is canceled.

Details

This instruction causes the specified digital signal to be turned on (or off) as soon as the
instruction is executed. The signal is turned off (or on) as soon as execution of the invoking
program task stops (or the STOP instruction is executed).

This instruction is useful in an application where auxiliary equipment must be stopped if an
error occurs during program execution.

Only one signal can be activated by a RUNSIG instruction at any one time (for each program
task). An error condition results unless a program cancels the first RUNSIG before
attempting to initiate a second.

If program execution is interrupted after a RUNSIG instruction has been executed, the
specified signal returns to the selected state again if a PROCEED or RETRY command is
issued. If an SSTEP or XSTEP command is issued, the signal returns to the specified state
during execution of the instruction that is invoked. Similarly, processing of a DO command
temporarily activates the RUNSIG signal for the corresponding program task. (The EXECUTE
command and instruction cancel any previous RUNSIG for the specified program task.)

RUNSIG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 449

Example

Turn on the digital signal identified by the value of the variable run.signal (assuming the
value is positive):

RUNSIG run.signal

The signal remains on throughout execution of the current program. The signal goes off
when execution ends.

Related Keywords

IOmonitor command

RESETmonitor command

SIG real-valued function

SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

RUNSIG program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 450

RX, RY, RZ transformation functions

Syntax

RX (angle)

RY (angle)

RZ (angle)

Function

Return a transformation describing a rotation.

Parameter

angle Real-valued expression that represents the rotation angle in degrees.

Details

These functions generate a transformation whose value consists of a rotation about the axis
associated with the function name and a zero displacement
(X, Y, Z = 0).

Example

Produce a transformation that describes a pure 30-degree rotation about the World X axis:

RX(30)

Related Keyword

DX real-valued function

DY real-valued function

DZ real-valued function

RX, RY, RZ transformation functions

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 451

SCALE transformation function

Syntax

SCALE (transformation BY scale_factor)

Function

Return a transformation value equal to the transformation parameter with the position
scaled by the scale factor.

Parameters

transformation Transformation expression that is to be scaled.

scale_factor Real-valued expression that is used to scale the transformation
parameter value.

Details

The value returned is equal to the value of the input transformation parameter value except
that the X, Y, and Z position components are multiplied by the scale factor parameter. The
rotation components have their values unchanged.

Example

If the transformation x has the value:

(200, 150, 100, 10, 20, 30)

then executing the instruction:

SET y = SCALE(x BY 1.25)

results in the transformation y receiving the value:

(250, 187.5, 125, 10, 20, 30)

Related Keyword

SHIFT transformation function

SCALE transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 452

SCALE.ACCEL system switch

Syntax

... SCALE.ACCEL [robot_num]

Function

Enable or disable the scaling of acceleration and deceleration as a function of program speed,
as long as the program speed is below a preset threshold.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected. If the index
is omitted or zero in an ENABLE or DISABLE command or instruction,
the settings for all robots are altered. Otherwise, only the setting for
the specified robot is affected.

Details

This switch is enabled when the eV+ system is initialized.

If robot_num is omitted or zero in an ENABLE or DISABLE command or instruction, the
settings for all robots are altered. Otherwise, only the setting for the specified robot is
affected. If robot_num is omitted or zero when the switch is accessedwith the SWITCH real-
valued function, the setting of the switch for robot #1 is returned.

When this switch is enabled and the program speed is below the preset threshold value, the
effective acceleration and deceleration for that robot are calculated as follows:

effective acceleration = program_speed * acceleration_setting
effective deceleration = program_speed * deceleration_setting

where acceleration_setting and deceleration_setting are values set by the ACCEL
instruction.

For example, if program speed 50% is specified and the threshold value is 150, the effective
acceleration and deceleration are 50% of the current settings. If the program speed is higher
than 150% with the threshold set to 150, the current acceleration and deceleration are
usedwithout modification.

All robot modules have the SCALE.ACCEL speed threshold set by default to a very large
value, effectively forcing the scaling of accelerations and deceleration for all speeds when this
switch is enabled.

SCALE.ACCEL system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 453

CAUTION: For program speeds over 100%, if the default setting for
the SCALE.ACCEL limit is used and SCALE.ACCEL is enabled, the
robot is driven at much higher rates of acceleration and
deceleration, as compared to V+ 11.0.

If the SCALE.ACCEL switch is disabled for a robot, accelerations and decelerations are not
scaled based on the program speed. In this case, accelerations and decelerations are higher
than normal at reduced speeds. This is particularly noticeable at very slow speeds. As a result,
robot motions may appear to be more rough or jerky.

Example

Turn off acceleration scaling for robot #2:

DISABLE SCALE.ACCEL[2]

Related Keywords

ACCEL program instruction

ACCEL real-valued function

SPEEDmonitor command

SPEED program instruction

SCALE.ACCEL.ROT system switch

SCALE.ACCEL system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 454

SCALE.ACCEL.ROT system switch

Syntax

... SCALE.ACCEL.ROT [robot_num]

Function

Specify whether or not the SCALE.ACCEL switch takes into account the Cartesian rotational
speed during straight-line motions.

Parameter

robot_num Optional real value, variable, or expression (interpreted as an
integer) that indicates the number of the robot affected. If the index
is omitted or zero in an ENABLE or DISABLE command or
instruction, the settings for all robots are altered. Otherwise, only
the setting for the specified robot is affected.

Details

If SCALE.ACCEL.ROT is enabled for a selected robot, the lesser of the Cartesian linear and
rotational speeds is used to scale acceleration and deceleration during straight-line motions.
If SCALE.ACCEL.ROT is disabled for a selected robot, only the Cartesian linear speed is
considered when SCALE.ACCEL is in effect. The SCALE.ACCEL.ROT switch is enabled for all
robots by default when the eV+ system is initialized.

Example

Cause SCALE.ACCEL not to use Cartesian rotational speed for robot #2:

DISABLE SCALE.ACCEL.ROT[2]

Related Keywords

ACCEL program instruction

ACCEL real-valued function

SCALE.ACCEL system switch

SPEEDmonitor command

SPEED program instruction

SCALE.ACCEL.ROT system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 455

SELECT program instruction

Syntax

SELECT device_type = unit

Function

Select a unit of the named device for access by the current task.

Usage Considerations

The SELECT instruction needs to be used only if there are multiple devices of the same type
connected to your system controller. This option is available only if your system is equipped
with the eV+ Extensions option.

The SELECT instruction affects only the task in which the instruction is executed.

The instruction SELECT ROBOT can be executed only if there is no robot attached to the
current task. (If there is any doubt about whether or not a robot is attached, a program
should execute a DETACH instruction before executing the SELECT instruction.)

Parameters

device_type Keyword that identifies the type of device that is to be selected.
Valid device types are ROBOT, VISION, and FORCE (which must be
specified without quotation marks). The device-type keyword can
be abbreviated.

unit Real value, variable, or expression (interpreted as an integer) that
specifies the particular unit to be selected. The values that are
accepted depend on the configuration of the system.

Details

SELECT ROBOT

In a multiple-robot system, this program instruction selects the robot with which the current
task is to communicate. (The SELECTmonitor command specifies which robot the eV+
monitor is to access.) The program instruction specifies which robot receives motion
instructions (for example, APPROACH andMOVE) and returns robot-related information (for
example, for the HERE function).

Each time a program task begins execution, robot #1 is automatically selected. If a robot is
selected, information about the robot (for example, its current position) can be accessed. In
order for a program tomove a robot, however, the robot must be selected and attached
(with the ATTACH instruction).

SELECT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 456

As an example, if robot #2 is selected by a SELECT instruction, all motion instructions
executed by the current task are directed to that robot (until another SELECT instruction is
issued). Also, all robot-related functions (such as HERE) return information about robot #2.

NOTE: As a convenience, when task #0 is executed, robot #1 is automatically selected
and attachedwhen program execution begins.

In order for any task to change its selected robot, no robot can be attached by the task. More
than one task can have a particular robot selected, but only one task can have a robot
attached. If a robot is already attached to a different task, an ATTACH waits or generates an
error (depending on the mode parameter for the ATTACH instruction).

SELECT VISION

In a system with multiple vision systems, this instruction selects the vision system with
which the current task is to communicate. (The SELECTmonitor command specifies which
vision system the eV+ monitor is to access.) This program instruction specifies which vision
system receives vision instructions (for example, ENABLE VISION) and also which system
returns vision-related information (for example, from the VSTATUS function).

The vision system currently selected by the monitor is automatically selected when a
program begins execution.

SELECT FORCE

In a system with multiple force sensors, this monitor command or program instruction
selects the force sensor with which the current task is to communicate. The SELECTmonitor
command specifies which force sensor the eV+ monitor is to access. The program instruction
specifies which force sensor receives force instructions (for example, FORCE.READ) and
returns force sensor-related information (for example, for the LATCH function).

Each time a program task begins execution, force sensor #1 is automatically selected.

Example

SELECT ROBOT Example Program

The following program selects robot #3 andmoves it. This program is normally not executed
by task #0, since that task is attached to robot #1 by default.

.PROGRAM test()
SELECT ROBOT = 3 ;Select robot 3
ATTACH (0,1) ;Get control of robot 3 without waiting
IF IOSTAT(0) < 0 THEN

TYPE /B, "Error attaching robot: ", $ERROR(IOSTAT(0))
PAUSE

END
MOVE x ;Move robot 3 to location "x"
MOVE y ;Move robot 3 to location "y"

SELECT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 457

DETACH ;Detach robot 3
.END

SELECT VISION Example Program

The following program segment selects vision system #2 and accesses that system.

.PROGRAM vision.2()
SELECT VISION = 2 ;Select vision system #2
ENABLE VISION ;Enable that vision system
VSTATUS(1,0) status[] ;Get status information
IF status[0] == 0 THEN ;If vision system is idle,

VPICTURE(1) ;take a picture
END

.END

SELECT FORCE Example Program

The following program selects force sensor #2 and reads the current forces from it.

.PROGRAM test()
SELECT FORCE = 2 ;Select force sensor 2
FORCE.READ f[] ;Read sensor 2 forces
TYPE "Current forces on sensor", SELECT(FORCE), /S
TYPE "are ", /F0.1, f[0], /X1, f[1], /X1, f[2]

.END

Related Keywords

ATTACH program instruction

SELECT real-valued function

SELECT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 458

SELECT real-valued function

Syntax

SELECT (device_type,mode)

Function
Return the unit number that is currently selected by the current task for the device named.

Parameters

device_type Keyword that identifies the type of device that is to be selected.
The only valid type is ROBOT. The device-type keyword can be
abbreviated.

mode Optional real value, variable, or expression (interpreted as an
integer) that specifies the mode for the function. If this parameter
is omitted or has the value 0, the function returns the number of
the unit currently selected, or 0 if no unit is selected. If mode has
the value -1, the function returns the total number of units
available for the specified device.

Details

This function returns either the number of the specified device that is currently selected, or
the total number of devices connected to the system controller. Multiple devices of the same
type are supported only if your system includes the optional eV+ Extensions software.

If the eV+ system is not configured to control a robot, the selected robot is always #1, and
the total number of robots is zero.

SELECT(ROBOT) returns the number of the currently selected robot. SELECT(ROBOT,-1)
returns the maximum robot number in a eV+ system.

Examples

Return the unit number of the robot selected for the current task:

our.robot = SELECT(ROBOT)

Return the total number of robots connected to the controller:

num.robots = SELECT(ROBOT,-1)

Related Keywords

SELECTmonitor command

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 459

SELECT program instruction

SELECT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 460

SET program instruction

Syntax

SET location_var = location_value

Function

Set the value of the location variable on the left equal to the location value on the right of the
equal sign.

Parameters

location_var Single location variable or compound transformation that ends with
a transformation variable.

location_value Location value of the same type as the location variable on the left
of the equal sign, defined by a variable or function (or compound
transformation).

Details

An error message is generated if the right-hand side is not defined or is not the same type of
location representation (that is, transformation or precision point).

If a compound transformation is specified to the left of the equal sign, only its right-most
relative transformation is defined. An error condition results if any other transformation in
the compound transformation is not already defined.

If a transformation variable is specified on the left-hand side, the right-hand side can contain
a transformation, a compound transformation, or a transformation function.

Examples

Set the value of the transformation pick equal to the location of corner plus the location of
shift relative to corner:

SET pick = corner:shift

Set the value of the precision point #place equal to that of the precision point #post:

SET #place = #post

Set the value of the transformation part to the current robot location, relative to the
transformation pallet.

SET pallet:part = HERE

Set the value of loc1 to X = 550,Y = 450, Z = 750, y = 0, p = 180, r = 45:

SET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 461

SET loc1 = TRANS(550, 450, 750, 0, 180, 45)

Related Keywords

HERE monitor command

HERE program instruction

SET program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 462

SET.EVENT program instruction

Syntax

SET.EVENT task, flag

Function

Set an event associated with the specified task.

Parameters

task Optional real value, variable, or expression (interpreted as an integer)
that specifies the task for which the event is to be set. The valid range is
0 to 27, inclusive. If this parameter is omitted, the number of the
current task is used.

NOTE: All 28 tasks are available only in systems equippedwith the
optional eV+ Extension.

flag Not used, defaults to 1.

Details

This instruction sets the event associated with the specified task. For example, if a task had
been suspended by aWAIT.EVENT 1 instruction, executing the SET.EVENT instruction for
that task causes it to resume execution (during the next available time slice for which it is
eligible).

Related Keywords

CLEAR.EVENT program instruction

GET.EVENT real-valued function

WAIT.EVENT program instruction

SET.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 463

#SET.POINT precision point function

Syntax

#SET.POINT

Function

Return the commanded joint-angle positions computed by the trajectory generator during
the last trajectory-evaluation cycle.

Usage Considerations

The name "set.point" cannot be used as a program or variable name.

Details

For each trajectory-evaluation cycle, joint-angle positions are computed, converted to
encoder counts, and sent to the servos as the commandedmotor positions. You can use this
function to capture these positions.

#SET.POINT precision point function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 464

SETBELT program instruction

Syntax

SETBELT %belt_var = expression

Function

Set the encoder offset of the specified belt variable equal to the value of the expression.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The BELT switch must be enabled for this instruction to be executed.

The SETBELT instruction is generally used in conjunction with the BELT real-valued function
to set the effective belt position to zero. (See Details section andWARNING below.)

SETBELT cannot be executed while the robot is moving relative to the specified belt variable.

The belt variable referencedmust have been defined already using a DEFBELT instruction.

Parameters

%belt_var Name of belt variable associated with the encoder offset to be set.

expression Real-valued expression that specifies a signed 24-bit encoder offset
value.

Details

When computing the position of a belt associated with a belt variable, eV+ subtracts the
offset value from the current belt position value and uses the difference, modulo
16,777,216.

The expression value is normally a signed number in the range -8,388,608 to 8,388,607. If
the number is outside this range, its value modulo 16,777,216 is used.

The SETBELT instruction is generally used in conjunction with the BELT real-valued function
to set the effective belt position to zero. This must be done each time the robot will perform a
sequence of motions relative to the belt, andmust be done shortly before the first motion of
such a sequence.

WARNING: It is important to execute SETBELT each time the robot is
going to track the belt, to make sure the difference between the current
belt position (as returned by the BELT function) and the belt position of
the specified belt variable does not exceed 8,388,607 (^H7FFFFF)

SETBELT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 465

during active belt tracking. Unpredictable robot motion may result if the
difference does exceed this value while tracking the belt.

The SETBELT instruction can be used to synchronize robot motion with the encoder value
latched by an external signal or by the AdeptVision system. See the LATCHED real-valued
function and the DEVICE real-valued function for more information.

Example

The following example waits for a digital signal and then sets the belt position to zero. That is
done by setting the belt offset equal to the current belt position. Finally, the robot is moved
onto the belt.

WAIT sig(1001)
SETBELT %belt1 = BELT(%belt1)
MOVES %belt1:pickup

Related Keywords

BELT real-valued function

BELT system switch

DEFBELT program instruction

DEVICE real-valued function

LATCHED real-valued function

WINDOW program instruction

WINDOW real-valued function

SETBELT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 466

SETDEVICE program instruction

Syntax

SETDEVICE (type, unit, error, command) p1, p2, ...

Function
Initialize a device or set device parameters. (The actual operation performed depends on the
device referenced.)

Usage Considerations

The syntax contains optional parameters that apply only to specific device types and
commands.

Parameters

type Real value, variable, or expression (interpreted as an integer) that
indicates the type of device being referenced. The following types are
currently available:

0 = Belt encoder
1 = (Not used)
2 = Force Processor Board (for Omron Adept use only)
3 = Robot device (i.e., servo, for Omron Adept use only)
4 = Vision
5 = 1394 bus (for Omron Adept use only)

unit Real value, variable, or expression (interpreted as an integer) that
indicates the device unit number. The value must be in the range 0
to (max -1), where max is the maximum number of devices of the
specified type. The value should be 0 if there is only one device of the
given type.

error Optional real variable that receives a standard system error number
that indicates if this instruction succeeded or failed. If this parameter
is omitted, any device error stops program execution. If an error
variable is specified, the program must explicitly check it to detect
errors.

command Real value, variable, or expression that specifies which device
command or parameters are being set by this instruction. Some
commands are standard and recognized by all devices. Other
commands apply only to particular device types.

p1, p2, ... Optional real values, variables, or expressions, the values of which
are sent to the device as data for a command. The number of
parameters specified and their meanings depend upon the particular

SETDEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 467

device type being accessed.

Details

SETDEVICE is a general-purpose instruction for initializing external devices. It initializes the
software and allows various parameters associated with the device to be set.

Two standard SETDEVICE commands are recognized by all devices:

command= 0 Initialize device
This command should be issued once before accessing the device
with any other command. Normally, no additional parameters are
required, but some device types may permit them.

command= 1 Reset device
This command resets the device. Normally no additional parameters
are required, but some device types may permit them.

See the supplementary documentation for specific devices for details and examples.

For information on using the SETDEVICE instruction to access external encoders, see the
section External Encoder Device in the
eV+ Language User's Guide.

Related Keywords

DEVICE program instruction

DEVICE real-valued function

DEVICES program instruction

SETDEVICE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 468

SHIFT transformation function

Syntax

SHIFT (transformation BY x_shift, y_shift, z_shift)

Function

Return a transformation value resulting from shifting the position of the transformation
parameter by the given shift amounts.

Parameters

transformation Transformation expression that is to be shifted.

x_shift Optional real-valued expressions that are added to the
respective position components of the transformation
parameter.y_shift

z_shift

Details

The value returned is equal to the value of the input transformation parameter value except
that the three shift parameter values are added to the X, Y, and Z position components. If
any shift parameter is omitted, its value is assumed to be zero.

Example

If the transformation x has the value:

(200, 150, 100, 10, 20, 30)

then executing the instruction:

SET y = SHIFT(x BY 5,-5,10)

results in the transformation y receiving the value:

(205, 145, 110, 10, 20, 30)

Related Keywords

SCALE transformation function

TRANS transformation function

SHIFT transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 469

SIG real-valued function

Syntax

SIG (signal_num, ..., signal_num)

Function

Returns the logical AND of the states of the indicated digital signals.

Parameter

signal_num Real-valued expression that evaluates to a digital I/O or internal
signal number. A negative value indicates negative logic for that
signal.

Details

Returns a TRUE (-1) or FALSE (0) value obtained by performing a logical AND of the states of
all the indicated digital signals. That is, SIG will return TRUE if all the specified signal states
are TRUE. Otherwise, SIG will return FALSE.

The magnitude of each signal_num parameter determines which digital or internal signal is
to be considered. Signals 1 - 8 and 33 - 512 are digital outputs. Signals 1001 - 1012 and
1033 - 1512 are digital inputs. Signals 2001 to 2512 are internal (software) inputs or
outputs. Only digital signals that are actually installed can be used. You can use the IO
monitor command (or the SIG.INS function) to check your current digital I/O configuration.
Signals 3001 and 3002 refer to the robot selected by the current task. Signal 3001 is the
state of the hand-close solenoid. Signal 3002 is the state of the hand-open solenoid.

If the sign of a signal_num parameter is positive, the signal is interpreted as being TRUE if
it has a high value. If the sign of a signal_num parameter is negative, the signal is
interpreted as being TRUE if it has a low value.

NOTE: SIG(0) returns a value of TRUE.

Example

Assume that the following digital I/O signals are installed and have the indicated values.

l Input signal 1001 is On

l Input signal 1004 is Off

l Input signal 33 is Off

The following SIG function references return the indicated values:

SIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 470

SIG(1001) ;Returns -1.0 (TRUE)
SIG(1004) ;Returns 0.0 (FALSE)
SIG(-1004) ;Returns -1.0 (TRUE)
SIG(1001,1004) ;Returns 0.0 (FALSE)
SIG(1001,-1004) ;Returns -1.0 (TRUE)

Related Keywords

BITSmonitor command

BITS program instruction

BITS real-valued function

IOmonitor command

RESETmonitor command

RUNSIG program instruction

SIGNAL monitor command

SIGNAL program instruction

SIG real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 471

SIG.INS real-valued function

Syntax

SIG.INS (signal_num)

Function

Return an indication of whether a digital I/O signal is installed in the system, or whether a
software signal is available in the system.

Parameter

signal_num Real-valued expression that defines the number of the digital I/O or
software signal to check. (The absolute value is used, so negative
signal numbers are allowed.)

Details

This function returns TRUE (-1) if the specified digital I/O or software signal is available for
use by the system. Otherwise, FALSE (0.0) is returned. The function always returns TRUE if
signal_number is zero.

This function can be used tomake sure the digital I/O signals are installed as expected by the
application program.

Example

The following program segment checks whether digital I/O signal #12 is installed as an input
signal (referenced as signal #1012). A message is displayed on the system terminal if the
signal is not configured correctly:

in.sig = 1012
IF NOT SIG.INS(in.sig) THEN

TYPE "Digital I/O signal ", in.sig, "is not installed"
END

Related Keywords

BITSmonitor command

BITS program instruction

BITS real-valued function

IOmonitor command

RESETmonitor command

RUNSIG program instruction

SIG.INS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 472

SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

SIG.INS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 473

SIGN real-valued function

Syntax

SIGN (value)

Function

Return the value 1, with the sign of the value parameter.

Parameter

value Real-valued expression.

Details

This function returns -1.0 if the value of the parameter is less than zero. If the parameter
value is greater than or equal to zero, +1.0 is returned.

Example

SIGN(0) ;Returns 1.0
SIGN(0.123) ;Returns 1.0
SIGN(-5.462) ;Returns -1.0
SIGN(1.3125E+2) ;Returns 1.0

SIGN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 474

SIGNAL program instruction

Syntax

SIGNAL signal_num, ..., signal_num

Function

Turn on or off external digital output signals or internal software signals.

Parameter

signal_num Real-valued expression that evaluates to a digital output or internal
signal number. A positive value indicates turn on; a negative value
indicates turn off. (SIGNAL ignores parameters with a zero value.)

Details

The magnitude of a signal_num parameter determines which digital or internal signal is to
be considered. Only digital output signals (numbered from 1 to 8 and 33 to 512) and internal
(software) signals (numbered from 2001 to 2512) can be specified. Only digital signals that
are actually installed and configured as outputs can be used. To check your current digital I/O
configuration, use the IOmonitor command. Signals 3001 and 3002 refer to the robot
selected by the current task. Signal 3001 is the state of the hand-close solenoid. Signal 3002
is the state of the hand-open solenoid.

If the sign of the signal_num parameter is positive, the signal is turned on. If the sign of
the signal_num parameter is negative, the signal is turned off.

NOTE: All eV+ digital output instructions do not wait for a 16 millisecond eV+ cycle, they
are turned on immediately. However, digital inputs are checked every 16 milliseconds by
the eV+ operating system. Allowing the possibility to turn on and off a signal before the
system can read the output.

Examples

Turn off the external output signal specified by the value of the variable reset (assuming the
value of reset is positive), and turn on external output signal #4:

SIGNAL -reset, 4

Turn external output signal #1 off, external output signal #4 on, and internal software
signal #2010 on:

SIGNAL -1, 4, 2010

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 475

Related Keywords

BITSmonitor command

BITS program instruction

BITS real-valued function

IOmonitor command

NOOVERLAP program instruction

OVERLAP program instruction

RESETmonitor command

RUNSIG program instruction

SIG real-valued function

SIG.INS real-valued function

SIGNAL monitor command

SIGNAL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 476

SIN real-valued function

Syntax

SIN (value)

Function

Return the trigonometric sine of a given angle.

Usage Considerations

The angle parameter must be measured in degrees.

The parameter is interpreted as modulo 360 degrees, but excessively large values may cause
a loss of accuracy in the returned value.

Parameter

value Real-valued expression that defines the angular value to be considered.

Details

Returns the trigonometric sine of the argument, which is assumed to have units of degrees.
The resulting value is always in the range of -1.0 to +1.0, inclusive.

Examples

SIN(0.123) ;Returns 2.146753E-03
SIN(-5.462) ;Returns -0.09518556
SIN(30) ;Returns .5

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LISTRmonitor command displays real values to full precision.

SIN real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 477

SINGLE program instruction

Syntax

SINGLE ALWAYS

Function

Limit rotations of the robot wrist joint to the range -180 degrees to +180 degrees.

Usage Considerations

Only the next robot motion is affected if the ALWAYS parameter is not specified.

MULTIPLE ALWAYS is assumedwhenever program execution is initiated andwhen a new
execution cycle begins.

The SINGLE instruction can be executed by any program task as long as the robot selected
by the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the SINGLE instruction
causes an error.

Parameter

ALWAYS Optional qualifier that establishes SINGLE as the default condition. That
is, if ALWAYS is specified, SINGLE remains in effect continuously until
disabled by a MULTIPLE instruction. If ALWAYS is not specified, the
SINGLE instruction applies only to the next robot motion.

Details

When moving to a transformation-specified location, the robot normally moves the wrist
joint the minimum distance necessary to achieve the required orientation. In some cases,
this action can move the wrist close to a limit stop so that a subsequent straight-line motion
hits the stop.

Specifying SINGLE causes subsequent motion(s) to force the wrist back to near the center of
its range, so that straight-line motions will not fail in this way.

SINGLE is commonly specified during an APPRO to pick up an object whose position and
orientation were unknown at robot programming time. Once the object is acquired, the wrist
motion can be kept to a minimum.

The SINGLE setting is ignored if NOOVERLAP is in effect.

Related Keywords

CONFIG real-valued function

SINGLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 478

MULTIPLE program instruction

NOOVERLAP program instruction

OVERLAP program instruction

SELECT program instruction

SELECT real-valued function

SINGLE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 479

SOLVE.ANGLES program instruction

Syntax

SOLVE.ANGLES o.jts[o.idx], o.flags, error = trans, i.jts[i.idx],i.flags

Function

Compute the robot joint positions (for the current robot) that are equivalent to a specified
transformation.

Usage Considerations

Since the computation performed by this instruction is a function of the geometry of the
robot (link dimensions, number of axes, tool offsets, base offsets), robots with different
geometric parameters yields different results. In fact, since robots of the same general type
may differ slightly in their dimensions, this instruction may return slightly different results
when executed on two different robot systems of the same type.

The SOLVE.ANGLES instruction returns information for the robot selected by the task
executing the instruction.

If the eV+ system is not configured to control a robot, executing this instruction does not
generate an error because of the absence of a robot. However, the information returnedmay
not be meaningful.

Parameters

o.jts Real-valued array in which the computed joint angles are returned. The
first specified element of the array contains the position for joint #1,
the second element contains the value for joint #2, etc. For rotating
joints, the joint positions are in degrees. For translational joints, the
joint positions are in millimeters.

If a computed joint position is outside the working range for the joint,
the limit stop closest to the initial joint position (as indicated by i.jts[])
is returned.

o.idx Optional real value, variable, or expression (interpreted as an integer)
that identifies the array element to receive the position for joint #1. If
no index is specified, array element zero contains the position for joint
#1.

o.flags Real variable that receives a bit-flag value that indicates the
configuration of the robot corresponding to the computed joint
positions. The bit flags are interpreted as follows:

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 480

Bit Flag Description

Bit 1 (LSB) RIGHTY
(mask value = 1)

If this bit is set, the position has the
robot in a right-arm configuration.
Otherwise, the position has the
robot in a left-arm configuration.

Bit 2 BELOW
(mask value = 2)

If this bit is set, the position has the
robot configured with the elbow
below the line from the shoulder to
the wrist. Otherwise, the robot
elbow is above the shoulder-wrist
line. (This bit is always 0 when a
SCARA robot is in use.)

Bit 3 FLIP
(mask value = 4)

If this bit is set, the position has the
robot configured with the pitch axis
of the wrist set to a negative angle.
Otherwise, the pitch angle of the
robot wrist has a positive value.
(This bit is always 0 when the robot
does not have a three-axis wrist,
which is the case for a SCARA robot.)

error Real variable that receives a bit-flag value that indicates whether any
joint positions were computed to be outside of their working range, or
whether the XYZ position of the destination was outside the working
envelope of the robot. The bit flags are interpreted as follows:

Bit Flag Description

Bits 1 - 12
Joint/Motor out of range

If set, the computed value for the
joint or motor was found to be
outside of its limit stops:

Bit Joint/
Motor #

Mask Value

1 1 ^H1

2 2 ^H2

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 481

Bit Flag Description

3 3 ^H43 3 ^H43 3 ^H4

4 4 ^H8

5 5 ^H10

6 6 ^H20

7 7 ^H40

8 8 ^H80

9 9 ^H100

10 10 ^H200

11 11 ^H400

12 12 ^H800

Bit 13 Collision
(mask value = ^H1000)

When this bit is turned on, a
collision has been detected.

Bit 14 Too close
(mask value = ^H2000)

The XYZ position of the destination
cannot be reached because it was
too close to the column of the robot.

Bit 15 Too far
(mask value = ^H4000)

The XYZ position of the destination
cannot be reached because it was
too far away from the robot.

Bit 16 Joint vs. motor
(mask value = ^H8000)

If set, a motor is limiting. Otherwise,
a joint is limiting.

trans Transformation variable, function, or compound transformation that
defines the robot location of interest.

i.jts Real array that contains the joint positions representing the starting

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 482

location for the robot. These values are referenced: (1) for multiple-turn
joints to minimize joint rotations, and (2) when a computed joint
position is out of range to determine which limit stop to return.

The first specified element of the array must contain the position for
joint #1. The second element must contain the value for joint #2, etc.
For rotating joints, the joint positions are assumed to be in degrees. For
translational joints, the joint positions are assumed to be in millimeters.

i.idx Optional real value, variable, or expression (interpreted as an integer)
that identifies the array element that contains the position value for
joint #1. If no index is specified, element zeromust contain the position
for joint #1.

i.flags Real value, variable, or expression whose value is interpreted as bit flags
that indicate: (1) the initial configuration of the robot, (2) any changes
in configuration that are to be made, and (3) special operatingmodes.
The bit flags are interpreted as follows:

Bit Flag Description

Bit 1: (LSB) RIGHTY
(mask value = 1)

If this bit is set, the robot is assumed
initially to be in a right-arm
configuration. Otherwise, the robot
is assumed to be in a left-arm
configuration.

Bit 2: BELOW
(mask value = ^H2)

If this bit is set, the robot is assumed
initially to have its elbow below the
line from the shoulder to the wrist.
Otherwise, the robot is assumed to
have its elbow above that line. (This
bit is ignored for robots, like the
SCARA configurations, that do not
have an elbow that moves in a
vertical plane.)

Bit 3: FLIP
(mask value = ^H4)

If this bit is set, the robot is assumed
initially to have the pitch axis of the
wrist set to a negative value.
Otherwise, the pitch angle is
assumed to be set to a positive
value. This bit is ignored if the robot
does not have a three-axis wrist.

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 483

Bit Flag Description

Bit 9: Change
RIGHTY/LEFTY
(mask value = ^H100)

If this bit is set, the instruction
attempts to compute a set of joint
positions corresponding to the
RIGHTY/LEFTY configuration
specified by bit 10.

Bit 10: Change to
RIGHTY (mask value =
^H200)

When bit 9 is set and this bit is set,
the instruction attempts to compute
joint positions for a right-arm
configuration. If bit 9 is set and this
bit is 0, the instruction attempts to
compute a set of joint positions for a
left-arm configuration.

Bit 11: Change
BELOW/ABOVE
(mask value = ^H400)

If this bit is set, the instruction
attempts to compute a set of joint
positions corresponding to the
BELOW/ABOVE configuration
specified by bit 12. This bit is ignored
for robots, like the SCARA
configurations, that do not have an
elbow that moves in a vertical plane.

Bit 12: Change to
BELOW (mask value =
^H800)

When bit 11 is set and this bit is set,
the instruction attempts to compute
joint positions for an elbow-down
configuration. If bit 11 is set and this
bit is 0, the instruction attempts to
compute joint positions for an
elbow-up configuration. This bit is
ignored for robots, like the SCARA
configurations, that do not have an
elbow that moves in a vertical plane.

Bit 13: Change
FLIP/NOFLIP
(mask value = ^H1000)

If this bit is set, the instruction
attempts to compute a set of joint
positions corresponding to the
FLIP/NOFLIP configuration specified
by bit 14. This bit is ignored if the
robot does not have a three-axis

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 484

Bit Flag Description

wrist.

Bit 14: Change to FLIP
(mask value = ^H2000)

When bit 13 is set and this bit is set,
the instruction attempts to compute
joint positions for a FLIP wrist
configuration. If bit 13 is set and this
bit is 0, the instruction attempts to
compute joint positions for a NOFLIP
wrist configuration. This bit is
ignored if the robot does not have a
three-axis wrist.

Bit 21: Avoid degeneracy
(mask value =
^H100000)

When this bit is set, if the computed
value of joint #2 is within 10
degrees of having the outer link
straight out (that is, joint 2 between
-10 and+10 degrees in value), an
out-of-range error for joint 2 is
signaled.

Bit 22: Single-turn joint
4 (mask value =
^H200000)

When this bit is set, the computed
value of joint 4 is restricted to the
range of -180 to +180 degrees.

Bit 23: Straight-line
motion (mask value =
^H400000)

When this bit is set, the joint
positions returnedmust correspond
to the same configuration as those
initially specified. That is, no change
in robot configuration is allowed.

Details

This instruction computes the joint positions that are equivalent to a specified transformation
value using the geometric data of the robot connected to the system. The specified
transformation is interpreted to be the position and location of the end of the robot tool in the
World coordinate system, taking into consideration the current TOOL transformation and
BASE offsets.

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 485

Example

The instructions below do not perform any useful function but are intended to illustrate how
the SOLVE.ANGLES instruction operates. After execution of these instructions, both the jts2
and jts arrays contain approximately the same values. Any differences in the values are due
to computational round-off errors:

HERE #cpos
DECOMPOSE jts[] = #cpos
SOLVE.TRANS new.t, error = jts[]
SOLVE.ANGLES jts2[], flags, error = new.t, jts[], SOLVE.FLAGS(jts
[])

Related Keywords

DECOMPOSE program instruction

SELECT program instruction

SELECT real-valued function

SOLVE.FLAGS real-valued function

SOLVE.TRANS program instruction

SOLVE.ANGLES program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 486

SOLVE.FLAGS real-valued function

Syntax

SOLVE.FLAGS (joints[index])

Function

Return bit flags representing the robot configuration specified by an array of joint positions.

Usage Considerations

The SOLVE.FLAGS function returns information for the robot selected by the task executing
the function.

If the eV+ system is not configured to control a robot, use of the SOLVE.FLAGS function
causes an error.

Parameters

joints Real array that contains the robot joint positions. The first specified
element of the array must contain the position for joint #1, the second
element must contain the value for joint #2, etc. For rotating joints,
the joint positions are assumed to have units of degrees. For
translational joints, the joint positions are assumed to have units of
millimeters.

index Optional real value, variable, or expression (interpreted as an integer)
that identifies the array element that contains the position for joint #1.
If no index is specified, element zeromust contain the position for joint
#1.

Details

This function returns bit flags that indicate the configuration of the robot (for example,
RIGHTY or LEFTY) for a given set of joint positions. This function is useful for providing the
configuration data required by the SOLVE.ANGLES program instruction.

The bits of the value returned by this function are interpreted as follows:

Bit 1 (LSB) RIGHTY (mask value = 1)

If this bit is set, the position has the robot in a right-arm configuration. Otherwise, the
position is for a left-arm configuration.

Bit 2 BELOW (mask value = 2)

SOLVE.FLAGS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 487

If this bit is set, the position has the robot configured with the elbow below the line from the
shoulder to the wrist. Otherwise, the robot elbow is above the shoulder-wrist line. (This bit is
always 0 when a SCARA robot is in use.)

Bit 3 FLIP (mask value = 4)

If this bit is set, the position has the robot configured with the pitch axis of the wrist set to a
negative angle. Otherwise, the wrist pitch angle has a positive value. (This bit is always 0
when the robot does not have a three-axis wrist, as is the case for a four-axis SCARA robot.)

Related Keywords

ABOVE program instruction

BELOW program instruction

DECOMPOSE program instruction

LEFTY program instruction

RIGHTY program instruction

FLIP program instruction

NOFLIP program instruction

SELECT program instruction

SELECT real-valued function

SOLVE.ANGLES program instruction

SOLVE.TRANS program instruction

SOLVE.FLAGS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 488

SOLVE.TRANS program instruction

Syntax

SOLVE.TRANS transform, error = joints[index]

Function

Compute the transformation equivalent to a given set of joint positions for the current robot.

Usage Considerations

Since the computation performed by this instruction is a function of the geometry of the
robot (link dimensions, number of axes, tool offsets, base offsets), robots with different
geometric parameters yield different results. In fact, since robots of the same general type
may differ slightly in their dimensions, this instruction may return slightly different results
when executed on two different robot systems of the same type.

The SOLVE.TRANS instruction refers to the robot selected by the task executing the
instruction.

If the eV+ system is not configured to control a robot, executing the SOLVE.TRANS
instruction does not generate an error because of the absence of a robot. However, the
information returnedmay not be meaningful.

Parameters

transform Transformation variable or transformation array element in which the
result is stored.

error Real variable that is set to a eV+ error code if a computational error
occurred during processing of the instruction. This variable is set to 0 if no
error occurs. (The only error that is currently reported is arithmetic
overflow [-409], so this parameter can be considered as returning a TRUE
or FALSE value.)

joints Real-valued array that contains the joint positions that are to be
converted to an equivalent transformation. The first specified element of
the array must contain the position for joint #1, the second element
must contain the value for joint #2, etc. For rotating joints, the joint
positions are assumed to have units of degrees. For translational joints,
the joint positions are assumed to have units of millimeters.

index Optional integer value that identifies the array element that contains the
position for joint #1. If no index is specified, element zeromust contain
the position for joint #1.

SOLVE.TRANS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 489

Details

This instruction converts a set of joint positions to an equivalent transformation value using
the geometric data of the robot connected to the system. The computed transformation
represents the position and orientation of the end of the tool in the World coordinate system
taking into consideration the current TOOL transformation and BASE offsets.

Example

The series of instructions below computes the position and orientation to which the robot is
moved if its current location is altered by rotating joint #1 by 10 degrees:

HERE #cpos
DECOMPOSE joints[1] = #cpos
joints[1] = joints[1]+10
SOLVE.TRANS new.trans, error = joints[1]

Related Keywords

DECOMPOSE program instruction

SELECT program instruction

SELECT real-valued function

SOLVE.ANGLES program instruction

SOLVE.FLAGS real-valued function

SOLVE.TRANS program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 490

SPEED program instruction

Syntax

SPEED speed_factor, r_speed_factor units ALWAYS

Function

Set the nominal speed for subsequent robot motions.

Usage Considerations

SPEED 100,100 ALWAYS is assumedwhenever program execution is started andwhen a
new execution cycle begins.

Motion speed has different meanings for joint-interpolatedmotions and straight-line
motions.

The speed of robot motions is determined by a combination of the program speed setting and
the monitor speed setting.

The SPEED instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the SPEED instruction
causes an error.

Parameters

speed_factor Real value, variable, or expression whose value is used as a new
speed factor. The value 100 is considered normal full speed, 50 is 1/2
of full speed, and so on. If IPS or MMPS is specified for units, the value
is considered the linear tool tip speed.

r_speed_factor Optional real value, variable, or expression whose value is used as a
new straight-line motion rotational speed factor. The value 100 is
considered normal full speed, 50 is 1/2 of full speed, etc.

units Optional keyword—either IPS (for inches per second), MMPS (for
millimeters per second), or MONITOR—that determines how to
interpret the speed_factor parameter.

ALWAYS Optional qualifier. If specified, the program speed_factor will be in
effect until the next SPEED instruction changes program speed.
Otherwise, it is in effect only for the next motion instruction
(including APPROaches and DEPARTs).

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 491

Details

If the units parameter is omitted, this instruction determines the program speed—the
nominal robot motion speed, assuming that the monitor speed factor is 100%.

If MONITOR is specified for units, the monitor speed is set. In this case, the parameter r_
speed_factor is ignored and ALWAYS is assumed. The speed at which motions are actually
performed is determined by combining the values specified in this instruction with the
current program speed setting. Monitor speed changes take place immediately, including the
remaining portion of a currently executingmove.

If IPS or MMPS is specified in the units parameter, speed_factor is interpreted as the
absolute tool-tip speed for straight-linemotions. In this case, the speed_factor parameter
has no direct meaning for joint-interpolatedmotions.

The effects of changing program speed andmonitor speed differ slightly for continuous-path
motions. As the robot moves through a series of points, the robot comes as close to the points
as possible while maintaining the program speed and specified accelerations. As program
speed increases, the robot makes coarser approximations to the actual point in order to
maintain the program speed and accelerations.

When the monitor speed is increased, the path of the robot relative to the commanded
destination points is not altered but the accelerations are increased. For applications where
path following is important, the path can be definedwith the monitor speed set to a low
value, and then accurately replayed at a higher monitor speed.

Speed cannot be less than 0.000001 (1.0E-6).

When the Monitor speed is set, its value is limited to a maximum of 100%. No error is
reported if a higher speed setting is specified.

When the program speed is set, its value is limited to a maximum that depends on the robot
being controlled. No error is reported if a higher speed setting is specified. The maximum
speed value for the current robot is returned by the real-valued function SPEED(8).

During straight-line motions, if a tool with a large offset is attached to the robot, the robot
joint and flange speeds can be very large when rotations about the tool tip are made. The r_
speed_factor parameter permits control of the maximum tool rotation speeds during
straight-line motions.

If a rotational speed factor (r_speed_factor) is specified, it is interpreted as a percentage of
maximum Cartesian rotation speed to be used during straight-line motions. If the r_speed_
factor parameter is not specified, one of the following results occurs:

1. If the units parameter is also omitted, the rotational speed is set to the value of
speed_factor.

2. If the units parameter is specified, the rotational speed is not changed.

When IPS or MMPS are specified, the speed_factor is converted internally to the
corresponding nominal speed. If the SPEED real-valued function is then used to read the

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 492

program speed, the value returned is a percentage speed factor and not an absolute speed
setting.

Remember, the final robot speed is a combination of the monitor speed (SPEEDmonitor
command), the program speed (SPEED instruction), and the acceleration or deceleration
(ACCEL program instruction).

Examples

Set the program speed to 50% for the next motion (assuming the monitor speed
is 100):

SPEED 50

Set the nominal tool tip speed to 20 inches per second (assuming the monitor speed is 100)
for straight-line motions. Rotations about the tool tip is limited to 40% of maximum. The
settings remains in effect until changed by another SPEED instruction.

SPEED 20, 40 IPS ALWAYS

Set the monitor speed to 50% of normal:

SPEED 50 MONITOR

Related Keywords

ACCEL program instruction

DURATION program instruction

IPS keyword

MMPS keyword

SCALE.ACCEL system switch

SELECT program instruction

SELECT real-valued function

SPEEDmonitor command

SPEED real-valued function

SPEED program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 493

SPEED real-valued function

Syntax

SPEED (select)

Function

Return one of the system motion speed factors.

Usage Considerations

The SPEED function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the SPEED function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

Parameter

select Real-valued expression whose value determines which speed factor
should be returned (see below).

Details

This function returns the system motion speed factor corresponding to the select parameter
value. The acceptable parameter values, and the corresponding speed values returned, are:

Select Speed value returned

1 Monitor speed (set by SPEEDmonitor command)

2 Permanent program speed (set by a SPEED ... ALWAYS program
instruction)

3 Temporary program speed for the last or current motion

4 Temporary program speed to be used for the next motion

5 Permanent program rotation speed

6 Temporary program rotation speed for the last or current straight-line
motion

SPEED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 494

Select Speed value returned

7 Temporary program rotation speed to be used for the next straight-line
motion

8 The maximum allowable setting for program speed

Note that the value returned should be interpreted as a percentage of normal speed, even if
the program speedwas set by a SPEED program instruction that specified a speed setting.
(See the SPEED program instruction.)

Example

The following program segment makes one motion at 1/2 of the permanent program speed:

new.speed = SPEED(2)/2 ;Compute 1/2 the permanent speed
SPEED new.speed ;Move at the new speed next time
MOVE pick.up ;Perform the actual motion

Note that the following instruction sequence is equivalent:

SPEED SPEED(2)/2 ;Reduce speed for the next motion
MOVE pick.up ;Perform the actual motion

Related Keywords

ACCEL real-valued function

DURATION real-valued function

SELECT program instruction

SELECT real-valued function

SPEEDmonitor command

SPEED program instruction

SPEED real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 495

SQR real-valued function

Syntax

SQR (value)

Function

Return the square of the parameter.

Parameter

value Real-valued expression whose value is to be squared.

Details
This is a convenience function that computes the square of a value. That is, the result is
equal to (value * value).

Examples

SQR(0.123) ;Returns 0.015129
SQR(4) ;Returns 16
SQR(-5.462) ;Returns 29.83344
SQR(1.3125E+2) ;Returns 17226.56

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LISTRmonitor command displays real values to full precision.

SQR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 496

SQRT real-valued function

Syntax

SQRT (value)

Function

Return the square root of the parameter.

Parameter

value Real-valued expression defining the value whose square root is to be
computed.

Details

Returns the square root of the argument if the argument is greater than zero. An error
results if the argument is less than zero.

The square root of a number is defined to be the number that, when multiplied by itself,
yields the original number.

Examples

SQRT(0.123) ;Returns 0.3507136
SQRT(4) ;Returns 2.0
SQRT(-5.462) ;Returns *Negative square root*
SQRT(1.3125E+2) ;Returns 11.45644

NOTE: TYPE, PROMPT, and similar instructions output the results of the above examples
as single-precision values. However, they are actually stored andmanipulated as double-
precision values. The LIST and LISTRmonitor command displays real values to full
precision.

SQRT real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 497

STATE real-valued function

Syntax

STATE (select)

Function

Return a value that provides information about the robot system state.

Usage Considerations

The STATE function returns information for the robot selected by the task executing the
function.

Parameter

select Real value, variable, or expression (interpreted as an integer) that
selects the category of state information returned. The information
categories are listed below. For details on a category, click the category
name to view its description.

Robot State (select=1)

System Settings

Current manual control mode (select=3)

Hardware status (select=4)

Settings of controller switches on the SmartController EX
(select=5)

Trajectory generator execution rate (select=13)

Number of robot selected by the pendant (select=8)

Robot Motion Information

Current or previous robot motion (select=2)

Status of Real-time path-modification facility (alter mode)
for current motion= (select=6 and select= 7)

Time until completion of robot motion (select=9)

Percentage of current motion completed (select=10)

Acceleration profile (select=11)

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 498

Number of motion being executed by the selected robot
(select=15)

Determine whether current or previous motion is
optimized (select=19)

Planned execution time of current motion (select=20-27)

Belt tracking status (select=40)

Details

When select= 1, the function value returns information about the overall robot state as
follows:

Value Interpretation (when select = 1)

0 Resetting system after robot power has been turned off.

1 A fatal error has occurred and robot power cannot be turned on.

2 Waiting for user to turn on robot power.

3 Robot power was just turned on; initialization is occurring.

4 Indicates that Manual control mode is active (see Select=3).

5 A CALIBRATE command or instruction is executing.

6 Not used.

7 Robot is under program control.

8 Robot power is on; robot is not calibrated and cannot be moved.

10 Front panel power light is blinking slowly (1 Hz), waiting to be pressed.
Robot power will be turned on when the blinking button is pressed.

11 Front panel power light is blinking rapidly (4 Hz). Robot power will be
turned on when: the COMP/PWR button on the pendant is pressed.

NOTE: Pressing the front panel power light when it is blinking rapidly will
cause robot power to be turned off fully. The normal process will be
required to turn power back on.

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 499

When select= 2, the function value returns information about the current or previous
robot motion as follows. These modes can change only when the robot is under program
control-that is, when STATE(1) = 7.

Value Interpretation (when select = 2)

0 Nomotion instructions executed yet.

1 Normal trajectory evaluation is in progress (including normal
acceleration, deceleration and segment transitions).

2 Motion stopped at a planned location.1

3 Position error is being nulled at unplanned final location.

4 Motion stopped at an unplanned location due to a belt window
violation.2

5 Decelerating due to a triggered REACTI or BRAKE instruction.

6 Stopped due to a triggered REACTI or BRAKE instruction.2

7 Decelerating due to a hardware error, panic button, or ESTOP
instruction.

8 Stopped due to a hardware error, panic button, or ESTOP
instruction.2

9 Decelerating due to a stop-on-force condition.

10 Stopped due to a stop-on-force condition.

11 Nulling at completion of a SPIN motion.

12 Stopped after completion of a SPIN instruction.

1A RETRY command has no effect. 2A RETRY command completes the previous
motion.

When select= 3, the function value returns information about the current manual control
mode as follows (see JOG program instruction for more information):

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 500

Value Interpretation (select = 3)

0 Manual mode without selection.

1 Free-joint mode.

2 Individual joint control.

3 World coordinates control.

4 Tool coordinates control.

5 Computer control enabled.

6 Unused

7 JogTomode

8 Align mode

9 Framemode

When select= 4, the function value returns information about the

hardware status to be read by programs. Interpret the value as a set of bit flags, each of
which indicates a corresponding condition.

Value Interpretation when bit set (select = 4)

^H1 Not used.

^H2 Not used.

^H4 ESTOP circuit is open1.

^H8 HIGH POWER button is pushed.2

^H10 ESTOP channel 1 is open.

^H20 ESTOP channel 2 is open.

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 501

Value Interpretation when bit set (select = 4)

^H40 Front Panel keyswitch is in manual state.

^H80 Not used.

^H100-^HF00 ESTOP source:

0x0 = No ESTOP or pending (waiting for 120
ms settling period)

0x1 = ESTOP from loss of ESTOP source

0x2 = ESTOP from Front Panel

0x3 = ESTOP from Pendant

0x4 = ESTOP from User ESTOP

0x5 = ESTOP from Line ESTOP Input

0x6 = ESTOP from Muted Safety Gate (auto
mode only)

0x7 = ESTOP from AUTO to Manual change

0x8 = ESTOP from Manual to AUTO change

0x9 - 0xE = Reserved for future use

0xF = Unresolved ESTOP source

^H1000 3-position Enable switch is closed (reported
only in manual mode).

1 If eV+ is detecting a hardware ESTOP condition Bit 4 is non-zero. 2The HIGH
POWER button will not function if its light bulb is burned out or missing.

When select= 5, the function value indicates the settings of the switch on the Front Panel.
For more information, refer to the Adept SmartController User's Guide.

Value Interpretation (select = 5)

1 Automatic mode.

2 Manual mode.

When select= 6, the function returns an indication of whether or not the real-time path-
modification facility (alter mode) is enabled. If zero is returned, alter mode is disabled for the

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 502

current motion. If a nonzero value is returned, alter is enabled, and the low byte of this value
contains bits that correspond to the mode specified in the ALTON instruction that initiated the
path modification.

When select= 7, the function returns an indication of whether or not the real-time path-
modification facility (alter mode) is enabled for the next plannedmotion. If zero is returned,
alter mode is disabled for the next motion. If a nonzero value is returned, alter is enabled, and
the low byte of this value contains bits that correspond to the mode specified in the ALTON
instruction that initiated the path modification. (This option is available only if your system is
equippedwith the eV+ Advanced Trajectory Control License.)

When select= 8, the number of the robot selected by the manual control pendant is
returned.

When select= 9, the function returns the time (in seconds) left until completion of the
current motion. Zero indicates that nomotion is in progress. For continuous-path motions,
the value of STATE(9) decreases during each motion until the transition to the next motion,
and then the value suddenly changes to the time left in the next motion. That is, STATE(9)
does not reach 0 before it is reset to reflect the next motion.

When select= 10, the function returns the percentage of the current motion that has
completed. The value 100 indicates that nomotion is in progress. For continuous-path
motions, the value of STATE(10) increases during each motion until the transition to the
next motion, and then the value suddenly changes to close to 0 to reflect the start of the
next motion. That is, STATE(10) does not reach 100 before it is reset to reflect the next
motion.

When select= 11, the function returns detailed information on which portion of the
acceleration profile is currently being generated for the selected robot.

Value Interpretation (select = 11)

0 Idle, not evaluating trajectory

1 Ramping up acceleration for new segment

2 Constant acceleration section

3 Ramping down acceleration

4 Constant velocity section

5 Ramping up acceleration during the transition section between motions

6 Constant acceleration during the transition section between motions

7 Ramping down acceleration during the transition section between

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 503

Value Interpretation (select = 11)

motions

8 Ramping up deceleration

9 Constant deceleration

10 Ramping down deceleration

11 Nulling final errors

When select= 12, the function returns a flag that is set to nonzero when an ALTER
program instruction is executed for the currently selected robot, and cleared after the
trajectory generator processes the posted ALTER data. This flag can be used to coordinate
the execution of ALTER instructions with the processing of the data by the trajectory
generator.

When select= 13, the function returns the trajectory generator execution rate in Hertz.
That is, if the trajectory generator is executed every 16ms, this function returns the value
62.5.

When select= 15, the function returns the number of the motion that is being executed by
the selected robot. This number is zeroedwhen a program that is attached to the robot first
begins executing. The counter is reset to 1 at the start of each EXECUTE cycle. The value is
incremented each time the trajectory generator begins evaluating a new motion (or
transitions to a new continuous-path motion). The value of STATE(15) ranges from 0 to
^HFFFF. After reaching ^HFFFF, the value rolls back to 0.

The following instructions affect the value of STATE(15):

ALIGN, APPRO, APPROS, DEPART, DEPARTS, DRIVE, JMOVE, MOVE, MOVES,
MOVEF, MOVESF, MOVET, MOVEST, READY

Instructions that affect one or more subsequent motions (e.g., ACCEL, AMOVE, ABOVE,
BELOW, DURATION, FLIP, LEFTY, NOFLIP, MULTIPLE, RIGHTY, SINGLE, SPEED, SPIN, TOOL,
UNIDIRECT, ...) do not affect the value of STATE(15), because those instructions do not
actually initiate a motion.

NOTE: Functions do not affect the value of STATE(15), because a function does not
cause amotion. Location-valued functions (e.g., DEST, FRAME, INVERSE, SCALE, SHIFT,
TRANS, etc.) simply compute location values.

When select= 19, the function returns a flag that indicates if the current motion (or the
previously executedmotion if the robot is stopped) is an optimizedmove (i.e., MOVEF or
MOVESF). The possible values returned by this function are:

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 504

Value Interpretation (select = 19)

0 Not a MOVEF/MOVESF motion.

1 Depart segment of MOVEF/MOVESF

2 Horizontal segment of MOVEF/MOVESF

3 Final segment of MOVEF/MOVESF

When select is 20 through 27, the function returns detailed information on the planned
execution time of the current motion (or the previously executedmotion if the robot is
stopped). Note, unlike STATE(9) that returns the remainingmotion execution time corrected
for the monitor speed setting, the values returned by STATE(20) through STATE(27) are the
planned values and are not affected by the setting of the monitor speed value. The values
returned by these functions (in units of seconds) are:

select Information returned

20 Acceleration ramp up time

21 Constant acceleration time

22 Acceleration ramp down time

23 Constant velocity time

24 Deceleration ramp up time

25 Constant deceleration time

26 Deceleration ramp down time

27 Total motion time (sum of STATE(20) through STATE(26))

When select= 30, the function returns the state of the Front Panel power light. The possible
values returned by this function are:

Value Interpretation (select = 30)

0 Light is off.

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 505

Value Interpretation (select = 30)

1 Light is on.

2 Light is blinking at 4 Hz.

3 Light is blinking at 1 Hz.

When select= 40, the function returns a flag that is set to nonzero when the currently
selected robot is tracking a belt.

Example

The following example shows how the STATE function can be used to determine whether or
not a REACTI was triggered during a robot motion:

REACTI 1001 ;Setup the reaction
MOVES final ;Start the robot motion
BREAK ;Wait for the motion to complete
CASE STATE(2) OF ;Decide what happened

VALUE 2:
TYPE "Motion completed normally"

VALUE 6:
TYPE "Motion stopped by REACTI"

VALUE 8:
TYPE "Motion stopped by panic button"

END

Related Keywords

SELECT program instruction

SELECT real-valued function

STATUSmonitor command

STATUS real-valued function

STATE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 506

STATUS real-valued function

Syntax

STATUS (program_name)

Function

Return status information for an application program.

Usage Considerations

The use of STATUS with a null program name to determine the task number is obsolete. The
TASK real-valued function is more efficient and should be used instead.

Parameter

program_name String constant, variable, or expression that specifies the name
of the application program of interest. Letters in the name can
be uppercase or lowercase. The string can be empty () in order
not to specify a program name (see below), but the parameter
cannot be omitted.

Details

This function returns information about the execution status of the specified program.

If no program name is specified (that is, the parameter string is empty []), the task number
of the program containing the function call is returned. This allows a program to determine
which system task it is executing as. (Tasks and task numbers are described in the section
Scheduling of Program Execution Tasks in the eV+ Language User's Guide.)

If a program name is specified as the function parameter, the status of that program is
returned as follows:

Value
returned Program status

-1 Not executing.

-2 Not defined.

-3 Interlocked because of
write.

STATUS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 507

Value
returned Program status

-4 Not executable.

-5 Interlocked because of
read.

A program is considered write-interlockedwhen it is being copied, deleted, renamed, or edited
in read-write mode. A program is considered read-interlockedwhen it is executing (by one or
more tasks) or is being edited in read-only mode.

A program is considered not executable when it contains a structure error or a bad line.

NOTE: If a program is being executed by multiple tasks, the STATUS function returns -5.
There is no way to use the STATUS function to determine when the program ceases to be
executed by one of those tasks. The STATUS function does not return -1 until all the tasks
stop executing the program.

The function returns a not defined status if an invalid program name is specified (for example,
if the name does not start with a letter).

Example

The following program segment demonstrates how the STATUS function can be used to
decide whether or not to initiate execution of an application program:

IF STATUS("pc.main") == -1 THEN
EXECUTE 1 pc.main

END

NOTE: The STATUS function does not return -1 if the program is being executed by any
program task. Thus, this example may not be appropriate for some situations. (See the
example shown for the EXECUTE instruction for another technique for initiating execution
of another program task.)

Related Keywords

DEFINED real-valued function

STATE real-valued function

STATUSmonitor command

TESTPmonitor command

STATUS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 508

STOP program instruction

Syntax

STOP

Function

Terminate execution of the current program cycle.

Usage Considerations

STOP does not halt program execution if there are more program cycles to execute.

The PROCEED command cannot be used to resume program execution after a STOP
instruction causes the program to halt.

If program execution is halted by a STOP instruction, FCLOSE and/or DETACH are forced on
all attached I/O devices.

Details

Counts one more program cycle as complete and one less remaining. If the result is that no
more cycles are remaining, program execution halts.

If more cycles are remaining, the internal robot motion parameters are reinitialized, and
program execution continues with the first step of the main program (even if the STOP
occurred within a subroutine or reaction program).

Terminates execution of the current program unless more program loops (see the EXECUTE
command and instruction) are to be completed, in which case execution of the program
continues at its first step. Thus, the STOP instruction is used tomark the end of a program
execution pass. Note that the HALT instruction has a different effect-it cancels all remaining
cycles.

A RETURN instruction in a main program has the same effect as a STOP instruction. A main
program is one that is invoked by an EXECUTE command or instruction, or a PRIME or XSTEP
command, whereas a subroutine is a program that is invoked by a CALL, CALLP, or CALLS
instruction (or a reaction) within another program.

Related Keywords

ABORTmonitor command

ABORT program instruction

EXECUTE program instruction

HALT program instruction

PAUSE program instruction

STOP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 509

RETURN program instruction

STOP program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 510

STRDIF real-valued function

Syntax

STRDIF ($a, $b)

Function

Compare two strings byte by byte for the purpose of sorting. This function always compares
bytes exactly. It ignores the setting of the UPPER system switch.

Parameters

$a A string constant, variable, or expression that contains the bytes to be
comparedwith those in $b.

$b A string constant, variable, or expression that contains the bytes to be
comparedwith those in $a.

Details

This function compares strings byte by byte, using the unsigned byte values without any
case conversion. That is, the function ignores the setting of the UPPER system switch. The
two strings can have different lengths. The returned values and their meanings are as
follows:

Returned
value Interpretation

-1 $a is less than $b.

0 $a is exactly the same as $b.

1 $a is greater than $b.

Note that the value is FALSE (0) if the strings are the same.

Example

Sort two names in alphabetical order:

$name[0] = "Michael"
$name[1] = "MARK"
CASE STRDIF($name[0],$name[1]) OF

VALUE -1, 0:

STRDIF real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 511

$list[0] = $name[0]
$list[1] = $name[1]

VALUE 1:
$list[0] = $name[1]
$list[1] = $name[0]

END
TYPE "Names in alphabetic order: ", $list[0], " ", $list[1]

Related Keyword

UPPER system switch

STRDIF real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 512

SWITCH program instruction

Syntax

SWITCH switch_name = value

SWITCH switch_name[index] = value

Function

Enable or disable a system switch based on a value.

Usage Considerations

If the specified switch accepts an index qualifier and the index is zero or omitted (with or
without the brackets), all the elements of the switch array are set according to the value
given.

Parameters

switch_name Name of the switch whose setting is to be modified. The switch
name can be abbreviated to the minimum length that identifies it
uniquely.

index For switches that can be qualified by an index, this is an optional
real value, variable, or expression that specifies the specific
switch element of interest (see above).

value Real value, variable, or expression that determines whether the
switch is to be enabled or disabled. The switch is enabled if the
value is TRUE (nonzero). The switch is disabled if the value is
FALSE (zero).

Details

Sets the given system switch to the setting implied by the value on the right of the equal
sign.

The switch name can be abbreviated to the minimum length that identifies it uniquely.

For details on switch names, see the section Switches in the eV+ Language User's Guide.

Other system switches are available when options are installed. Refer to the option
documentation for details. For example, the switches associated with the AdeptVision
options are described in the AdeptVision Reference Guide.

SWITCH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 513

Example

The following program statements show how the SWITCH real-valued function and
instruction can be used to save the setting of a system switch, and later restore it,
respectively:

old.upper = SWITCH(UPPER) ;Save the current setting
.
. ;Instructions that may change the
. ;setting of the UPPER switch.

SWITCH UPPER = old.upper ;Restore the initial setting

Related Keywords

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH real-valued function

SWITCH program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 514

SWITCH real-valued function

Syntax

SWITCH (switch_name)

SWITCH (switch_name[index])

Function

Return an indication of the setting of a system switch.

Parameters

switch_name Name of the system switch of interest (see below).

index For switches that can be qualified by an index, this is a (required)
real value, variable, or expression that specifies the specific
switch element of interest.

Details

This function returns FALSE (0.0) if the specified switch is disabled. Otherwise, TRUE (-1) is
returned.

The switch name can be abbreviated to the minimum length that identifies it uniquely.

For details on switch names, see the section Switches in the eV+ Language User's Guide.

Other system switches are available when options are installed. Refer to the option
documentation for details. For example, the switches associated with the AdeptVision
options are described in the AdeptVision Reference Guide.

Example

This program segment checks whether the DRY.RUN switch is enabled. If it is, a message is
displayed on the system terminal:

IF SWITCH(DRY.RUN) THEN
TYPE "DRY RUN mode is enabled"

END

Related Keywords

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 515

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 516

$SYMBOL string function

Syntax

$SYMBOL (pointer)

Function

Determine the user symbol that is referenced by a pointer previously obtainedwith the
SYMBOL.PTR real-valued function.

Usage Considerations

The pointer value must have been obtainedwith the SYMBOL.PTR real-valued function.

Parameter

pointer Real variable that identifies the symbol to be referenced.

Details

This function can be used to determine the user symbol (that is, program or variable name)
that is pointed to by a pointer previously determinedwith the SYMBOL.PTR real-valued
function.

A null string is returned if the pointer value is zero or invalid, or if the symbol has been
deleted since the pointer was defined.

Example

After the SYMBOL.PTR function has been used to set the values of elements of the array
my.pgm.ptr[] (for example, see the dictionary page for the CALLP instruction), the
following instruction can be used to display the program name that is referenced by one of
the pointers:

TYPE "Program", index, " is ", $SYMBOL(my.pgm.ptr[index])

Related Keyword

CALLP program instruction

SYMBOL.PTR real-valued function

$SYMBOL string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 517

SYMBOL.PTR real-valued function

Syntax

SYMBOL.PTR (string, type)

Function

Determine the value of a pointer to a user symbol in eV+ memory.

Usage Considerations

The value returned by the function is meaningful only to the CALLP instruction and the
$SYMBOL string function.

Parameters

string String constant, variable, or expression that defines the symbol to be
referenced.

type Optional real value, variable, or expression that specifies the type of
symbol to be referenced. Currently the only value supported is zero,
which specifies that the string parameter defines a program name. The
value zero applies if the parameter is omitted.

Details

The SYMBOL.PTR function can be used to obtain a pointer to a user symbol (that is, a
program or variable name) in eV+ memory. Such a pointer can then be used elsewhere in
the program by the CALLP instruction and the $SYMBOL function. Refer to the descriptions
of those keywords for more information.

The function returns the value zero if the specified symbol is not defined.

Example

Refer to the dictionary page for the CALLP instruction.

Related Keywords

CALLP program instruction

$SYMBOL string function

SYMBOL.PTR real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 518

$SYS.INFO string function

Syntax

$string= $SYS.INFO(mode,$stg)

Function

This function provides general system information. For example, it provides access to the
ActiveVR log data.

Usage Considerations

The AVR.LOG switch must be disabled before calling the $SYS.INFO function usingmode 1.

Input Parameters

mode Determines the type of information returned based on the following
mode values:

Value Description

0 Returns the full file specification (device>subdirectory_
path\filename.extension) for the disk file from which
the eV+ program module specified by $stgwas loaded.
If the module is undefined or was not loaded from a file,
an empty string value is returned.

1 Return information from the ActiveVR log. This mode is
supported only in eV+ version 16.0 or later. See Details
for more information.

If the mode is invalid, $SYS.INFO returns an empty string rather than
generating an execution error.

$stg An optional string valued expression.

Details

Returns the information requested by the mode and $string input parameters. If the mode is
invalid, $SYS.INFO returns an empty string rather than generating an execution error.

$SYS.INFO string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 519

Mode 1

$SYS.INFO(1,$string) returns an entry from the ActiveVR log. The entry returned is identified
by the $string parameter, which should be defined as follows:

$string = $ENCODE(item)

where the value of item is interpreted as follows:

item = 0 the total number of entries in the log(N)

item > 0 request the respective entry in the log.

item = 1 request the oldest log entry

item = N requests the latest entry in the log.

The returned value is an empty string if any error occurs. Otherwise, it is an ASCII string
containing one or three numeric values. If item #0 was requested, the string contains a
single integer value. If a log entry was requested, the string contains timestamps and the
logged instruction in the same format as the trace messages displayedwhen AVR.TRACE is
enabled. That is, the string for the log entry has the format:

"tstart tend trace"

where:

tstart ASCII string showing the timestamp, in milliseconds, when
instruction execution started.

tend ASCII string showing the timestamp, in milliseconds, when
instruction execution completed.

trace ASCII string showing the instruction that was executed.

NOTE: Because of the way eV+ processes motion instructions, the value of tend-tstart
does not indicate how long it took to perform amotion. It indicates how long the
instruction had to wait for any previous motion to complete.

Related Keywords

AVR system switch

$SYS.INFO string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 520

TAS real-valued function

Syntax

TAS (variable, new_value)

Function

Return the current value of a real-valued variable and assign it a new value. The two actions
are done indivisibly so that no other program task can modify the variable at the same time.

Usage Considerations

The eV+ system does not enforce any protection scheme for global variables that are shared
by multiple program tasks. It is the programmer's responsibility to keep track of the usage of
such global variables. The TAS real-valued function (or the similar CAS function) can be used
to implement logical interlocks on access to shared variables.

This function can also be used to work around a restriction on the simultaneous access of
global arrays by multiple program tasks -- program execution can fail if two or more tasks
attempt to increase the size of an array at the same time. For a detailed description of this,
see the "Global Array Access Restriction" section of the information about Arrays, in the eV+
Language User's Guide.

Parameters

variable Name of the real-valued variable to be tested and assigned the new
value given. (If the variable is not definedwhen the function is
executed, the function returns the value 0.)

new_value Real value, variable, or expression that defines the new value to be
assigned to the specified variable.

Details

Because the different program tasks execute simultaneously, time-sharing the system
processor, it is possible for any task to be interrupted by another in the middle of performing
some computation or storing data into variables. When data is shared by two or more tasks,
the programsmust implement an interlock scheme to prevent the data from being accessed
when it is only partially updated.

The TAS function can be used to allow multiple eV+ tasks to modify shared data structures.
That is, the function provides a way for a task to lock out others while the locking task
modifies the data structures. Note that without the TAS function, a much more complicated
polling scheme would be needed to administer the control variable (i.e., to prevent more
than one program from setting the control variable simultaneously).

TAS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 521

As an example of the use of shared variables, consider this eV+ program that increments and
decrements a global variable:

.PROGRAM tas_test()
AUTO i
FOR i = 1 TO 1E+06

counter = counter+1
counter = counter-1

END
.END

If the variable counter starts at 0, and the program tas_test is run simultaneously in tasks
1 and 2, one might expect that counterwill have the value 0 after execution completes. In
fact, it usually will not have that value! Since the two tasks are modifying the same variable
at the same time, the value gets corrupted.

That can be fixed by modifying the program to employ an interlock as follows:

.PROGRAM tas_test()
AUTO i
FOR i = 1 TO 1E+06

; Wait for access to the shared variable to be
; unlocked, and set the lock for our access.
WHILE TAS(locked,TRUE) DO

WAIT
END
; Access the shared variable.
counter = counter+1
counter = counter-1
; Release access to the shared variable.
locked = FALSE

END
.END

Now, when the program is executed simultaneously in two (or more) tasks. The value of the
variable counterwill always end up the same as before the program starts. That's because
each task blocks the other task(s) while accessing the shared variable.

(The global variable locked does not need to be initialized before the program is executed,
because the TAS function returns FALSE if the variable is not defined. Thus, the lock implicitly
starts out being off.)

NOTES: The lock should be released as soon as possible, because the other task could be
waiting for it to be released.

Take care to make sure the lock is always released after it gets applied. Otherwise the
other task could be blocked forever, and the current task would also be blocked the next
time it tries to acquire the lock.

TAS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 522

Example

The following example shows the key aspects of using the TAS real-valued function to ensure
exclusive access by an application program to data that is also used by another program task.
(The same instruction sequence must be used in any other application program that wants
to access the data.)

The real-variable data.locked has the value FALSE when the data is not interlocked, and the
value TRUE when the data is interlocked. This variable is set to TRUE with the TAS function,
so that we can detect if the other program task has already set it to TRUE. Since TAS tests
and sets the value indivisibly, there is no chance of both programs setting data.locked to
TRUE simultaneously without the conflict being detected.

Use of the "semaphore" variable data.locked involves the three steps shown below.

; Step1: Look for the lock variable to have the "unlocked" setting (FALSE),
; and simultaneously apply the "lock" setting (TRUE). This loop will
cycle
; continuously until another task sets the lock variable to the
"unlocked"
; setting (FALSE), at which time this task asserts the lock for
itself.

WHILE TAS(data.locked,TRUE) DO ;Wait for the lock to be released
WAIT ;Sleep this task until the next

cycle
END

; Step 2: Perform desired operations accessing the shared data ...
...

; Step 3: Release the lock on the shared data structure.
data.locked = FALSE

TheWHILE loop causes program execution to be blocked until the variable data.locked is
found to have the value FALSE. Thus, the program is blocked if the other program has locked
the semaphore variable in order to access the shared data. Note that the TAS function will
set the variable data.locked to TRUE each time the function is executed, but that will have no
effect if the variable already has that value.

Once the program gains exclusive access to the shared data, it can safely access the data.

The last instruction releases the data for access by the application executing as the other
program task.

Related Keyword

CAS real-valued function

TAS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 523

TASK real-valued function

Syntax

TASK (select, task_num)

Function

Return information about a program execution task.

Parameters

select Optional real-valued expression that has a value of 0, 1, or 2 and
selects the category of task information returned (see below). The
value 0 is assumed if the parameter is omitted.

task_num Optional integer value that specifies which system program task is to
be accessed (see below).

Details

This function returns various information about the system program execution tasks. (See
the eV+ Language User's Guide for an explanation of execution tasks.)

The select parameter determines the type of information that is returned as follows:

select = 0 Task number: The function returns the number of the task
executing the current program.

select = 1 Task run state: Returns the run state for the task specified by the
task_num parameter. The value returned should be interpreted as
follows:

Value Interpretation

-1 Invalid task number.

0 Idle.

1 Stopped due to program completion.

2 Stopped due to program execution error (for
example, undefined value).

TASK real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 524

Value Interpretation

3 Stopped due to ABORT, panic button pressed,
robot error, or watchpoint.

4 Executing.

5 Stopped due to PAUSE or breakpoint

7 Stopped due to single-step execution

select = 2 Task status bits: Returns an integer value that should be
interpreted as a set of bit flags that indicate the following
information about the task specified by the task_num parameter:

Bit # Bit
mask Indication if bit is set

1 1 Debugger is accessing task

2 2 Task has robot attached

Examples

Display the task number the program is running in:

TYPE "This program is running as task number :", TASK()

The following program segment demonstrates how the TASK function can be used to decide
whether to initiate execution of a program (named pc.job.2) with task #2:

IF TASK(1,2) <> 4 THEN ;If task #2 not executing
IF STATUS("pc.job.2") == -1 THEN ;and if program is okay

EXECUTE 2 pc.job.2() ;start it up
ELSE ;But if program not okay

TYPE /B, "Can't start task #2" ;output error message
END

END

Related Keywords

ERROR real-valued function

STATE real-valued function

TASK real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 525

STATUSmonitor command

STATUS real-valued function

TASK real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 526

TIME program instruction

Syntax

TIME time_string

Function
Set the date and time.

Parameter

time_string String expression whose value specifies the date and time to be set.
The value of the stringmust have one of these formats (see
below):

dd-mmm-yy hh:mm:ss dd-mmm-yyyy hh:mm:ss
dd-mmm-yy hh:mm dd-mmm-yyyy hh:mm

Details

The system clock is set equal to the value of the string expression.

The system clock is maintained automatically and should be changed only when its setting is
incorrect (e.g., the controller is moved to a different time zone).

The system clock is used in the following situations:

l The date and time are displayedwhen the eV+ system is booted from disk.

l Whenever a new disk file is created, the date and time are recordedwith the file
name. (The FDIRECTORY command displays the dates and times for files.)

l The date and time are appended to the message indicating that an application
program has terminated execution.

l The date and time are displayed by the TIME monitor command.

l The date and time are available to an application program by use of the $TIME() and
$TIME4() string functions.

The individual elements of the date and time specification are defined as follows:

Element Description

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

TIME program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 527

Element Description

yy The year, where 80 to 99 represent 1980 through 1999, respectively,
and 00 to 79 represent 2000 through 2079, respectively.

yyyy The year (1980 to 2079)

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0 assumed if :ss omitted)

Example

TIME "23-JUN-99 16:10:25"

Related Keywords

TIME monitor command

TIME real-valued function

$TIME string function

$TIME4 string function

TIME program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 528

TIME real-valued function

Syntax

TIME (string, select)

Function

Return an integer value representing either the date or the time specified in the given string
parameter.

Parameters

string Optional string variable, constant, or expression that specifies the date
and time in the format described below. (See below for details.)

select Real value, variable, or expression (interpreted as an integer) that
selects the value to be returned. An error results if select is not one of
the following:

select Returned Defined ss

1 date (year-1980)*512 + month*32 + day

2 time hour*2048 + minute*32 + second/2

3 seconds time past the minute

Details

This function can be used to encode the date and time into compact (unsigned 16-bit)
integer formats. After the integer date and time values are obtained, they can be
arithmetically compared to other date and time values to determine before and after
conditions.

NOTE: You should not try to manipulate the encoded integer values to perform date or
time arithmetic. For example, you should not attempt to add days to an encoded date
value.

If the string parameter is supplied, both the date and the timemust be specified in the
string. The value of the stringmust have one of the following formats:

dd-mmm-yy hh:mm:ss dd-mmm-yyyy hh:mm:ss
dd-mmm-yy hh:mm dd-mmm-yyyy hh:mm

TIME real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 529

(The function returns the value -1 if the input string does not have an acceptable format [see
the example below].)

The individual date and time elements are defined as follows:

Element Description

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yy The year, where 80 to 99 represent 1980 through 1999, respectively,
and 00 to 79 represent 2000 through 2079, respectively.

yyyy The year (1980 to 2079)

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59; 0 assumed if :ss omitted)

If the string parameter is not supplied and the select parameter is 1, the current date of the
system clock is returned. In addition, the current time of the system clock is stored in the
(internal) administrative data for the program task. If the string parameter is not supplied
and the select parameter is 2 or 3, the selected time value is returned for the system-clock
time previously saved.

Example

The following program segment shows how the TIME real-valued function can be used to
make sure you enter a valid date and time after a prompt:

PROMPT "Enter the date and time (dd-mmm-yy hh:mm:ss): ", $time
WHILE (TIME($time,1) == -1) DO ;Make sure it's valid

TYPE /B, " Cannot interpret date/time."
PROMPT "Try again (dd-mmm-yy hh:mm:ss): ", $time

END
TIME $time ;Set system time

Related Keywords

TIME monitor command

TIME program instruction

$TIME string function

TIME real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 530

$TIME4 string function

TIME real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 531

$TIME string function

Syntax

$TIME (date, time)

Function

Return a string value containing either the current system date and time or the specified
date and time.

Parameters

date Optional integer value representing the year, month, and day (see
below). The value is interpreted as follows (month ranges from 1 to 12):

date = (year-1980)*512 + month*32 + day

time Optional integer value representing the hour, minutes, and seconds
past midnight (see below). The value is interpreted as follows (hour
ranges from 0 to 23):

time = hour*2048 + minute*32 + second/2

NOTE: This function always returns a string containing both the date and the time. That
can result in an erroneous date string if the date parameter is omitted when the time
parameter is specified.

Details

If both the date and time parameters are omitted, this function returns the current system
date and time in the format described below. (An empty string is returned if the system clock
has not been initialized.)

If the date and time parameters are specified, their values are converted to an ASCII string
in the format described below, and the string is returned. This operation is used to decode
the output values generated by the TIME real-valued function.

The date and time are output in the format dd-mmm-yy hh:mm:ss, in which the individual
elements are defined as follows:

Element Description

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB, MAR, APR,

$TIME string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 532

Element Description

MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yy The year, where 80 to 99 represent 1980 through 1999, respectively,
and 00 to 79 represent 2000 through 2079, respectively.

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59)

NOTE: The $TIME() function converts passed arguments (instead of the system time)
when either the date or the time parameter is supplied. However, the function always
tries to generate a string representation of both parameters. You get the date 01-Jan-80 if
you do not provide a date value. The time substring is 00:00:00 if you do not specify a
time value. The following expressions can be used to return only the date and the time,
respectively:

$date = $MID($TIME(date,),1,9)

$time = $MID($TIME(,time),11,8)

Related Keywords

TIME monitor command

TIME program instruction

TIME real-valued function

$TIME4 string function

$TIME string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 533

$TIME4 string function

Syntax

$TIME4 (date, time)

Function

Return a string value containing either the current system four-digit date and time or the
specified four-digit date and time.

Parameters

date Optional integer value representing the year, month, and day (see
below). The value is interpreted as follows (month ranges from 1 to 12):

date = (year-1980)*512 + month*32 + day

time Optional integer value representing the hour, minutes, and seconds
past midnight (see below). The value is interpreted as follows (hour
ranges from 0 to 23):

time = hour*2048 + minute*32 + second/2

NOTE: This function always returns a string containing both the date and the time. That
can result in an erroneous date string if the date parameter is omitted when the time
parameter is specified.

Details

If both the date and time parameters are omitted, this function returns the current system
date and time in the format described below. (An empty string is returned if the system clock
has not been initialized.)

If the date and time parameters are specified, their values are converted to an ASCII string
in the format described below, and the string is returned. This operation is used to decode
the output values generated by the TIME real-valued function.

The date and time are output in the format dd-mmm-yyyy hh:mm:ss, in which the
individual elements are defined as follows:

Element Description

dd The day of the month (1 to 31)

mmm Themonth, specified as a 3-letter abbreviation (JAN, FEB, MAR, APR,

$TIME4 string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 534

Element Description

MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC)

yyyy The year (1980 to 2079)

hh The hour of the day (0 to 23)

mm Minutes past the hour (0 to 59)

ss Seconds past the minute (0 to 59)

NOTE: The $TIME4() function converts passed arguments (instead of the system time)
when either the date or the time parameter is supplied. However, the function always
tries to generate a string representation of both parameters. You get the date 01-Jan-80 if
you do not provide a date value. The time substring is 00:00:00 if you do not specify a
time value. The following expressions can be used to return only the date and the time,
respectively:

$date = $MID($TIME4(date,),1,11)

$time = $MID($TIME4(,time),13,8)

Related Keywords

TIME monitor command

TIME program instruction

TIME real-valued function

$TIME string function

$TIME4 string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 535

TIMER program instruction

Syntax

TIMER timer_number = time_value

Function

Set the specified system timer to the given time value.

Usage Considerations

Timesmeasured by eV+ are precise only to within 1 millisecond (0.001 seconds); shorter
times cannot be measured.

Timers with numbers <= 0 are read-only and cannot be set with this instruction.

Parameters

timer_number Real-valued expression interpreted as the (integer) number of the
timer to be set. The value must range from 1 to 15.

time_value Real-valued expression interpreted as the time, in seconds, to which
the timer is set. This parameter may specify fractions of a second
andmay be negative.

Details

When used as described in the examples below, the timers can be used tomeasure an
interval of 596 hours from when they were set by the TIMER instruction. Timers have a
resolution of one millisecond and amaximum count of > 2.E+009.

Use the TIMER real-valued function to read the instantaneous value of a system timer.

Example

The following examples show two ways to wait for a certain amount of time, using the TIMER
instruction and real-valued function. Each example first sets the timer, and then waits until
the timer value has changed by the delay period:

TIMER 1 = 0 ;Set timer to zero
WAIT TIMER(1) > delay ;Wait until timer > delay
TIMER 1 = -delay ;Set timer to -delay
WAIT TIMER(1) > 0 ;Wait until timer > zero

Related Keyword

TIMER real-valued function

TIMER program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 536

TIMER real-valued function

Syntax

TIMER (timer_number)

Function

Return the current time value of the specified system timer.

Usage Considerations

The accuracy and resolution of the timers vary according to which timer is selected. DOUBLE
variables should be used to achieve maximum resolution. See the Details section below.

Parameter

timer_number Real value, variable, or expression (interpreted as an integer)
that specifies the number of the timer to be read. The value
must be in the range -4 to 15.

Value Description

 1-15 Timers with a resolution of one millisecond and
amaximum count of > 2.E+009. They can be
used tomeasure an interval of up to 596 hours
from when they were set by the TIMER
instruction.

0 Returns the number of seconds since the eV+
system was started, with a resolution of 1
millisecond and amaximum count of about
2.E+009. It is valid only during the first 596
hours of system operation and should generally
not be used.

 -1 Returns the low 24 bits of the time since the
eV+ system was started, in counts of 16
milliseconds. It can be used to compute time
intervals of up to 74 hours. For additional
information, see the Details section below.

 -2 Returns the low 24 bits of the time since the
eV+ system was started, in counts of 1

TIMER real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 537

Value Description

millisecond. It can be used to compute time
intervals of up to 4.6 hours. For additional
information, see the Details section below.

 -3 Returns the time in seconds since eV+ was
started as a 52-bit double-precision value. This
timer has a resolution of 1 millisecond and a
maximum count of > 4.E+015. It can be used
to compute intervals of > 100,000 years. It is
used like timers -1 and -2 except that DOUBLE
variables are required and no BAND operation or
scale factors are used.

AUTO DOUBLE start_time, interval
start_time = TIMER(-3)
...
interval = TIMER(-3)-start_time

 -4 Returns the double-precision time of the
current robot-position or belt-encoder latch for
this task. The timer resolution is 1 microsecond.
This time will only be valid for 128 seconds.

Details

Timers -1 and -2

If you don't want to use timers 1 through 15, or needmore than 15 timers, Timers -1 and -2
may be used as follows:

AUTO DOUBLE start_time, interval, scale
scale = 62.5 ;Set scale = 1000 for TIMER(-2)
start_time = TIMER(-1)
...
interval = ((TIMER(-1)-start_time) BAND ^HFFFFFF)/scale

Note that timer -3 provides a better method for computing such intervals provided that a
DOUBLE value can be used.

The type of eV+ variable used in time computations affects the maximum interval that can
be computedwith full resolution:

l Standard REAL variables have only 24 bits of resolution, which limits the time interval
to 16,777,216 (224) counts. This limit corresponds to about 4.6 hours for millisecond

TIMER real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 538

timers and 74 hours for 16-millisecond timers.

l DOUBLE REAL variables have 52 bits of precision, which stores the full resolution of
the various timers. This is the default type usedwhen none is explicitly specified.

Example

The following example shows how the TIMER instruction and real-valued function can be
used to time the execution of a subroutine:

TIMER 1 = 0 ;Set timer to zero
CALL test.routine() ;Call the subroutine
TYPE "Elapsed time =", TIMER(1)," seconds"

Related Keyword

TIMER program instruction

TIMER real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 539

TOOL program instruction

Syntax

TOOLtransformation_value

Function

Set the internal transformation used to represent the location and orientation of the tool tip
relative to the tool mounting flange of the robot.

Usage Considerations

The TOOL instruction causes a BREAK in continuous-path motion.

The TOOL instruction can be executed by any program task as long as the robot selected by
the task is not attached by any other task. The instruction applies to the robot selected by
the task.

If the eV+ system is not configured to control a robot, executing the TOOL instruction causes
an error.

The word "tool" cannot be used as a program name or variable name.

Parameter

transformation_value Optional transformation variable or function, or compound
transformation expression, that is the new tool
transformation. If the transformation value is omitted,
the tool is set to NULL.

Details

Causes a BREAK in the robot continuous-path motion and sets the value of the tool
transformation equal to the transformation value given.

Refer to the TOOL monitor command for a complete description of the effect of this
instruction. (For information on how to define a tool transformation, see the section Tool
Transformations in the eV+ Language User's Guide.)

Related Keywords

SELECT program instruction

SELECT real-valued function

TOOL monitor command

TOOL transformation function

TOOL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 540

TOOL transformation function

Syntax

TOOL

Function

Return the value of the transformation specified in the last TOOL command or instruction.

Usage Considerations

The command LISTL TOOL can be used to display the current tool setting.

The TOOL function returns information for the robot selected by the task executing the
function.

If the eV+ system is not configured to control a robot, use of the TOOL function does not
generate an error because of the absence of a robot. However, the information returned by
the function may not be meaningful.

The name "tool" cannot be used as a program name or variable name.

Examples

Display the value of the current TOOL transformation from the system prompt:

LISTL TOOL

Save the value of the current TOOL:

SET save.tool = TOOL

Related Keywords

SELECT program instruction

SELECT real-valued function

TOOL monitor command

TOOL transformation function

TOOL transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 541

TPS real-valued function

Syntax

TPS

Function

Return the number of ticks of the system clock that occur per second (Ticks Per Second).

Usage Considerations

The name "tps" cannot be used as a program name or variable name.

Example

The following example shows how an event can be tested each system clock tick, with a
time-out of 5 seconds, using the TPS function and the WAIT instruction.

FOR ticks = 1 TO 5*TPS ;Loop 5*ticks/sec times
IF SIG(1001) THEN

TYPE "Signal ON"
HALT

END
WAIT ;Wait until next clock tick

END
TYPE "Time-out while waiting for signal 1001"

TPS real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 542

TRANS transformation function

Syntax

TRANS (X_value, Y_value, Z_value, y_value, p_value, r_value)

Function

Return a transformation value computed from the given X, Y, Z position displacements and
y, p, r orientation rotations.

Parameters

X_value

Y_value

Z_value

Optional expressions for the X, Y, and Z displacement components,
respectively.

y_value

p_value

r_value

Optional expressions for the yaw, pitch, and roll orientation
components, respectively.

NOTE: If any parameter is omitted, its value is taken to be zero.

Details

The input parameter values are used to compute a transformation value that can be
assigned to a location variable or used in a compound transformation or motion request.

Examples

If r s the radius of a circle and angle is the angle of rotation about the circle, then the
transformation:

TRANS(r*COS(angle), r*SIN(angle), 0, 0, 0, 0)

yields points on that circle.

If frame is a transformation defining the position of the center of the circle and the plane in
which it lies, the following program segment moves the robot tool point around the circle in
steps of 1 degree.

FOR angle = 0 TO 360-1
MOVE frame:TRANS(r*COS(angle), r*SIN(angle), 0, 0, 0, 0)

END

TRANS transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 543

Related Keywords

DECOMPOSE program instruction

DX real-valued function

DY real-valued function

DZ real-valued function

#PPOINT precision-point function

SET program instruction

SHIFT transformation function

TRANSB transformation function

TRANS transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 544

$TRANSB string function

Syntax

$TRANSB (transformation, double_precision)

Function

Return a 48-byte or 96-byte string containing the binary representation of a transformation
value.

Parameter

transformation Transformation variable or function (or compound
transformation) that defines the value to be converted to a
string value.

double_precision Optional real-valued expression that specifies wether the
transformation is returned in single-precision (48 bytes) or
double-precision (96 bytes).

If double_precision is omitted or has a value of 0, the
transformation is returned in single precision in a 48-byte
string, otherwise the transformation is returned in double
precision in a 96-byte string. This parameter is used to offer full
precision while preserving backward compatibility.

Details

This function converts the given transformation value to the binary representation of its
twelve (internal) components. The twelve values defining the transformation are the
components of a 3-by-4 transformation matrix, stored by column. Each of the twelve 32-bit
values is packed as four successive 8-bit characters in a string, resulting in a total of 48 or 96
characters. (The IEEE single-precision or double-precision standard floating-point format is
used for the conversion. See the description of the FLTB or DBLB real-valued function for
details of the IEEE floating-point format.)

The main use of this function is to convert a transformation value to its binary
representation in an output record of a data file.

Related Keywords

$FLTB string function

FLTB real-valued function

TRANSB transformation function

$TRANSB string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 545

TRANSB transformation function

Syntax

TRANSB (string, first_char, double_precision)

Function

Return a transformation value represented by a 48-byte or 96-byte string.

Parameters

string String expression that contains the 48 or 96 bytes to be
converted.

first_char Optional real-valued expression that specifies the position of the
first of the 48 bytes in the string.

If first_char is omitted or has a value of 0 or 1, the first 48 or 96
bytes of the string are extracted. If first_char is greater than 1,
it is interpreted as the character position for the first byte. For
example, a value of 2 means that the second through 49th or
97th bytes are extracted. An error is generated if first_char
specifies 48 or 96 bytes that are beyond the end of the input
string.

double_precision Optional real-valued expression that specifies wether the
transformation is represented by a single-precision (48 bytes) or
double-precision (96 bytes) string.

If double_precision is omitted or has a value of 0, the
transformation is represented by a single precision in a 48-byte
string, otherwise the transformation is represented by a double
precision in a 96-byte string. This parameter is used to offer a
full precision mode while maintaining backward compatibility.

Details

48 or 96 sequential bytes of the given string are interpreted as being a set of twelve single-
precision (32-bit) or double-precision (64-bit) floating-point numbers in the IEEE standard
format. (See the description of the FLTB or DBLB function for details of the floating-point
format.) The twelve values are interpreted as the components of a 3-by-4 transformation
matrix, stored by column.

The main use of this function is to convert the binary representation of a transformation
value from an input data record to values that can be used internally by eV+.

TRANSB transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 546

Related Keywords

FLTB real-valued function

TRANS transformation function

$TRANSB string function

TRANSB transformation function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 547

TRUE real-valued function

Syntax

... TRUE

Function

Return the value used by eV+ to represent a logical true result.

Usage Considerations

The word "true" cannot be used as a program name or variable name.

Details

This named constant is useful for situations where true and false conditions need to be
specified. The value returned is –1.

Example

The following program loop executes continuously until the subroutine process returns a
TRUE value for the real variable error:

DO
CALL process(error)

UNTIL error == TRUE

The program loop below will execute indefinitely:

WHILE TRUE DO
CALL move.part()

END

Related Keywords

FALSE real-valued function

ON real-valued function

TRUE real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 548

$TRUNCATE string function

Syntax

$TRUNCATE (string)

Function

Return all characters in the input string until an ASCII NUL (or the end of the string) is
encountered.

Parameter

string String variable, constant, or expression that specifies the string to be
truncated.

Details

This function is similar to performing a $DECODE operation with an ASCII NUL (^H00)
specified as the break character. $TRUNCATE differs from such a $DECODE operation in two
ways:

l The input can be a string expression.

l The input string is not modified.

Because of its simplicity, the $TRUNCATE function executes much faster than the $DECODE
function.

Example

The instruction below sets the value of the string variable $substring equal to abcdef.
(Obviously, this is an artificial situation, since one would never want to perform a
$TRUNCATE operation when the result is apparent from the input. However, it is presented
to illustrate that this function can scan an arbitrary string expression and return the first
substring delimited by a NUL.)

$substring = $TRUNCATE("abcdef"+$CHR(0)+"ghijk")

Related Keyword

$DECODE string function

$TRUNCATE string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 549

TYPE program instruction

Syntax

TYPE output_specification, ..., output_specification

Function

Display the information described by the output specifications on the system terminal. A
blank line is output if no argument is provided.

Usage Considerations

No output is generated if the MESSAGES system switch is disabled.

Program execution normally waits for the output to be completed before continuing. There is
an output specification described below that can be used to prevent waiting if it is undesirable
for execution to be delayed.

The output from a single TYPE instruction cannot exceed 512 characters. (The /S format
control specifier described below can be used to output longer messages.)

Parameter

An output_specification can consist of any of the following components (in any order)
separated by commas:

1. A string expression.

2. A real-valued expression, which is evaluated to determine a value to be displayed.

3. Format-control information, which determines the format of the output message.

Details

The following format-control specifiers can be used to control the way in which numeric
values are displayed. These settings remain in effect for the remainder of the instruction,
unless another specifier is used to change their effect.

For all these display modes, if a value is too large to be displayed in the specified field width,
the field is filled with asterisk characters (*).

/D Use the default format, which displays values to full precision with a single leading space.
(Scientific notation is used for values greater than or equal to 1,000,000.)

NOTE: The following format specifications accept a zero as the field width (n). That
causes the actual field size to vary to fit the value, and causes all leading spaces to be
suppressed. That is useful when a value is displayedwithin a line of text or at the end of a
line.

TYPE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 550

/En.m Output values in scientific notation (for example, -1.234E+02) in fields n
spaces wide, with m digits the fractional parts. If n is not zero, it must be
large enough to include space for a minus sign (if the displayed value is
negative), one digit to the left of the decimal point, a decimal point (if m is
not zero), m digits, and four or five characters for the exponent.

/Fn.m Output values in fixed-point notation (for example, -123.4) in fields n
spaces wide, with m digits in the fractional parts.

/Gn.m Output values in F format with m digits in the fractional parts if the values
are larger than 0.01 andwill fit in fields n spaces wide. Otherwise /En.m
format is used.

/Hn Output values as hexadecimal integers in fields n spaces wide.

/In Output values as decimal integers in fields n spaces wide.

/On Output values as octal integers in fields n spaces wide.

The following specifiers can be used to control the appearance of the output.

/Cn Output the characters carriage return (CR) and line feed (LF) n times. This
will result in n blank lines if the control specifier is at the beginning or end
of an output specification; otherwise, n-1 blank lines will result.

/S Do not output a carriage return (CR) or line feed (LF) after displaying the
current line.

/Un Move the cursor up n lines. This will work correctly only if the TERMINAL
parameter is correctly set for the terminal being used.

/Xn Output n spaces.

The following specifiers can be used to perform control functions.

/B Beep the terminal (nongraphics-based systems only).

/N Initiate output without having program execution wait for its completion.
A second output request will force program execution to wait for the first
output if it has not yet completed.

Example

Assume that the real variable i has the value 5 and that array element point[5] has the value
12.666666. Then, the instruction

TYPE /B, "Point", i, " = " /F5.2, point[i]

sounds a beep at the system terminal (/B) and display the message

TYPE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 551

Point 5 = 12.67

If point[5] has the value 1000, the instruction displays

Point 5 = *****

because the value (1000.00) is too large to be displayed in the specified format (/F5.2). (The
instruction can display any value for point[5] if the format specification were /F0.5.)

Related Keywords

$ENCODE string function

MESSAGES system switch

PROMPT program instruction

WRITE program instruction

TYPE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 552

$UNPACK string function

Syntax

$UNPACK (string_array[index], first_char, num_chars)

Function

Return a substring from an array of 128-character string variables.

Parameters

string_array String array variable from which the substring is to be extracted. It
is assumed that each string within the array is defined and is 128
characters long.

index Optional integer value(s) that identifies the first array element to
be considered. The first_char value is interpreted relative to the
element specified by this index.

If no index is specified, element zero is assumed.

first_char Real-valued expression that specifies the position of the first
character of the substring within the string array. A value of 1
corresponds to the first character of the specified string array
element. This value must be greater than zero.

The value of first_char can be greater than 128. In that case the
array element accessed follows the element specified in the
function call. For example, a value of 130 corresponds to the
second character in the array element following that specified by
index.

num_chars Real-valued expression that specifies the number of characters to
be returned by the function. This value can range from 0 to 128.

Details

This function extracts a substring from an array of strings. Substrings are permitted to
overlap two string array elements. For example, a 10-character substring whose first
character is the 127th character in element [3] is composed of the last two characters in
element [3] followed by the first eight characters of element [4].

In order to efficiently access the string array, this function assumes that all of the array
elements are defined and are 128 characters long. For multidimensional arrays, only the

$UNPACK string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 553

right-most array index is incremented to locate the substring. Thus, for example, element
[2,3] is followed by element [2,4].

Example

The instruction below sets the value of the string variable $substring equal to a substring
extracted from the string array $list[]. The substring is specified as starting in element $list
[3]. However, because the first character is to be number 130, the 11-character substring
actually consists of the second through 12th characters of $list[4]:

$substring = $UNPACK($list[3], 130, 11)

Related Keywords

$MID string function

PACK program instruction

$UNPACK string function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 554

UNTIL program instruction

Syntax

UNTIL expression

Function

Indicate the end of a DO ... UNTIL control structure and specify the expression that is
evaluated to determine when to exit the loop. The loop continues to be executed until the
expression value is nonzero.

Usage Considerations

UNTIL must be used in conjunction with a DO control structure. See the description of the
DO instruction for details.

Parameter

expression Real-valued expression, constant, or relation that is interpreted as
either TRUE (nonzero) or FALSE (zero).

Details

If the expression in the UNTIL statement is zero, program execution continues with the
statement following the matching DO statement. If the expression is nonzero, program
execution continues with the statement following the UNTIL statement.

Example

The following example is a loop that continues to prompt you to enter a number until you
enter one that is greater than or equal to zero:

DO
PROMPT "Enter a positive number: ", number

UNTIL number >= 0

Related Keyword

DO program instruction

EXIT program instruction

NEXT program instruction

WHILE program instruction

UNTIL program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 555

UPPER system switch

Syntax

... UPPER

Function

Control whether or not the case of each character is ignoredwhen string comparisons are
performed.

Usage Considerations

The switch value is shared globally by all program tasks. If you change the value in one task,
it affects comparisons in all other tasks. Therefore, do not change this switch during normal
program execution.

Details

When this switch is enabled and two strings are compared using the operators <, <=, ==,
<>, >=, or >, all lowercase characters are treated as though they were uppercase
characters. That is, when UPPER is enabled, both of the following comparisons yields a TRUE
value:

"a" == "A" and "A" == "A"

When UPPER is disabled, the case of characters is considered during string comparisons.
Then, for example, the comparison on the left above results in a FALSE value, while the
comparison on the right yields a TRUE value.

By default, UPPER is enabled, so that string comparisons are performedwithout considering
the case of the characters.

The STRDIF real-valued function always compares strings considering their case. You can
leave UPPER enabled always and then use STRDIF in situations where case is important.

Related Keywords

DISABLE monitor command

DISABLE program instruction

ENABLE monitor command

ENABLE program instruction

SWITCHmonitor command

SWITCH program instruction

SWITCH real-valued function

UPPER system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 556

STRDIF real-valued function

UPPER system switch

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 557

VAL real-valued function

Syntax

VAL (string)

Function

Return the real value represented by the characters in the input string.

Usage Considerations

The input string can be a number in scientific notation.

The input string can contain leading number base indicators (^H, for example).

The input string can contain a + or - sign before the numeric part of the string, but after any
optional base indicator.

Any character that cannot be interpreted as part of a number or as a base indicator marks
the end of the characters that are converted.

Parameter

string String constant, variable, or expression.

Examples

VAL("123 Elm Street") ;Returns the real value 123
VAL("1.2E-2") ;Returns the real value 0.012
VAL("^HFF") ;Returns the real value 255

Related Keywords

ASC real-valued function

$ENCODE string function

FLTB real-valued function

INTB real-valued function

LNGB real-valued function

VAL real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 558

VALUE program instruction

Syntax

VALUE expression_list:

Function

Indicate the values that a CASE statement expression must match in order for the program
statements immediately following to be executed.

Usage Considerations

VALUE must be part of a CASE control structure. See the description of the CASE instruction
for details.

Parameter

expression_list List of real values or expressions separated by commas.

Related Keywords

ANY program instruction

CASE program instruction

VALUE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 559

WAIT program instruction

Syntax

WAIT condition

Function

Put the program into a wait loop for one trajectory cycle. If a condition is specified, wait until
the condition is TRUE.

Usage Considerations

l AWAIT with no condition specified is useful in programs that need to perform an
operation only once each trajectory cycle. For more information, see Details and
Example 1.

l To wait for a specific time period, use the WAIT.EVENT program instruction rather
than the WAIT program instruction.

l During execution, use the PROCEEDmonitor command to cancel a WAIT instruction
in an application program.

Parameter

condition Optional real value, variable, or expression that is tested for a TRUE
(nonzero) or FALSE (zero) value.

Details

If no condition is supplied with the WAIT instruction, program execution is suspended until
the next trajectory cycle. Trajectory cycles occur at 16, 8, 4 or 2 millisecond intervals,
depending on the system configuration.

If you need to guarantee at least a trajectory cycle delay (for example, while manipulating
signals monitored by REACT or REACTI), you should execute two consecutive WAIT
instructions (with no arguments).

If a condition is specified, WAIT will suspend program execution until the condition exists. For
example, the state of one or more external signals can be used as the condition for
continuation.

Example

Stop program execution while external input signal #1001 is on and#1003 is off. Poll once
eacheV+ trajectory cycle:

WHILE SIG(1000, -1003) DO

WAIT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 560

WAIT
END

Related Keywords

RELEASE program instruction

WAIT.EVENT program instruction

WAIT.STARTmonitor command

WAIT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 561

WAIT.EVENT program instruction

Syntax

WAIT.EVENTmask, timeout

Function

Suspend program execution until a specified event has occurred, or until a specified amount
of time has elapsed.

Usage Considerations

If a WAIT.EVENT instruction in an application program has execution suspended, the
WAIT.EVENT can be canceled with the PROCEEDmonitor command.

Parameters

mask Optional real value, variable, or expression that specifies the events for
which to wait. The value is interpreted as a sequence of bit flags, as
detailed below. (All the bits are assumed to be clear if nomask value is
specified.)

Bit 1 (LSB)Wait for I/O (mask value = 1)

If this bit is set, the desired event is the completion of any input/output
operation by the current task.

timeout Optional real value, variable, or expression that specifies the number of
seconds to wait. No time-out processing is performed if the parameter is
omitted, or the value is negative or zero (see below for more details).

Details

This program instruction is used to suspend program execution until a specified event has
occurred, or until a specified amount of time has elapsed in the timeout clock. The program
waits efficiently.

When the program resumes execution after a WAIT.EVENT instruction, the GET.EVENT
function can be used to verify that the desired event has actually occurred. This is the only
way to distinguish between the occurrence of an event and a time-out (if one was specified).

If the mask parameter has the value zero (or is omitted), this instruction becomes a very
efficient way to suspend program execution for the time period specified by the timeout
parameter.

WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 562

If the timeout parameter is omitted (or has a negative or zero value), this instruction
suspends program execution indefinitely until the specified event occurs.

If both mask and timeout are zero or omitted, this instruction does nothing.

WAIT.EVENT 1 waits for an event to be signaled for a task. Events are signaled by either a
SET.EVENT program instruction, or by a pending no-wait I/O instruction when the I/O
operation is completed.

In general, there is no way to tell why the event was set. It may have been set by an I/O
operation, a SET.EVENT program instruction, or an internal system process (such as a
triggered REACT condition). For this reason, it is necessary to test for the desired condition
after executing the WAIT.EVENT. For I/O, repeat the no-wait I/O operation or use the IOSTAT
() function. For SET.EVENT issued by other tasks, define and check a global variable.

To avoid race conditions where the event is set or cleared between testing andwaiting, use
the following loop in the waiting task (the statement order is critical).

1. CLEAR.EVENT

2. Issue no-wait I/O if appropriate.

3. Check I/O status or check global variable.

4. Exit loop if operation complete.

5. WAIT.EVENT 1

6. GOTO step 1

If using SET.EVENT to signal another task, use the following sequence (the statement order
is critical).

1. Set the global variable.

2. SET.EVENT for the appropriate task.

Examples

Suspend program execution for 5.5 seconds:

WAIT.EVENT , 5.5

Suspend program execution until the completion of any system input/output, or until
another program task sets events using the SET.EVENT instruction:

WAIT.EVENT 1

Suspend program execution for five seconds, until the completion of any system
input/output, or until another program task uses the SET.EVENT instruction to set events.
(The current program should use the GET.EVENT function to decide whether an event has
occurred or five seconds has elapsed.)

WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 563

WAIT.EVENT 1, 5

Related Keywords

CLEAR.EVENT program instruction

GET.EVENT real-valued function

SET.EVENT program instruction

WAIT.EVENT program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 564

WHILE program instruction

Syntax

WHILE condition DO

Function

Initiate processing of a WHILE structure if the condition is TRUE or skipping of the WHILE
structure if the condition is initially FALSE.

Usage Considerations

Every WHILE statement must be part of a complete WHILE ... DO ... END structure.

Parameter

condition Real-valued expression that is evaluated and tested for a TRUE
(nonzero) or FALSE (zero) value.

Details

This structure provides another means for executing a group of instructions until a control
condition is satisfied (compare it with the DO structure). The complete syntax for the WHILE
structure is

WHILE condition DO
group_of_steps

END

Processing of the WHILE structure can be described as follows:

1. Evaluate the condition. If the result is FALSE, proceed to item 4.

2. Execute the group_of_steps.

3. Return to item 1.

4. Continue program execution at the first instruction after the END step.

Unlike the DO structure described elsewhere, the group of instructions within the WHILE
structure may not be executed at all. That is, if the condition has a FALSE value when the
WHILE is first executed, then the group of instructions are not executed at all.

When this structure is used, it is assumed that some action occurs within the group of
enclosed instructions that will change the result of the logical expression from TRUE to
FALSE when the structure should be exited.

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 565

Example

The following example uses aWHILE structure to monitor a combination of input signals to
determine when a sequence of motions should be stopped. In this example, if the signal from
either part feeder becomes zero (assumed to indicate the feeder is empty), then the
repetitive motions of the robot stops and the program continues.

Note that if either feeder is empty when the WHILE structure is first encountered, then
execution immediately skips to step 27:

20 feeder.1 = 1037
21 feeder.2 = 1038
22 .
23 WHILE SIG(feeder.1, feeder.2) DO
24 CALL move.part.1()
25 CALL move.part.2()
26 END
27
28 ; Either feeder #1 or feeder #2 is empty
29 .
30 .
31 .

Related Keywords

DO program instruction

EXIT program instruction

NEXT program instruction

UNTIL program instruction

WHILE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 566

WINDOW program instruction

Syntax

WINDOW %belt_var = location, location, program, priority

Function

Set the boundaries of the operating region of the specified belt variable for conveyor tracking.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The BELT switch must be enabled for this instruction to be executed.

The belt variable referencedmust have already been defined using a DEFBELT instruction.

Parameters

%belt_var Name of the belt variable whose window is being established.

location Compound transformation that, together with the direction of the
belt, defines one boundary of the operating window along the belt.

The window boundaries are planes that are perpendicular to the
direction of belt travel and include the positions specified by the two
transformations. The order of the transformations is not important-
this instruction automatically determines which transformation
represents the upstream boundary andwhich is for the
downstream boundary.

program Optional program that is called if a window violation occurs while
tracking the belt, subject to the specified priority level and the
current priority level of the system.

priority Optional priority level of the window violation program. If no priority
is specified, a priority of 1 is set.

Details

The operating window defined by this instruction is used both at motion planning time and
motion execution time to determine if the destination of the motion is within acceptable
limits.

WINDOW program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 567

When amotion is being planned, the destination of the motion is compared against the
operating window. If a window violation occurs, the window violation program is ignored and
a program error may be generated depending upon the setting of the BELT.MODE parameter
and the nature of the error.

When amotion relative to the belt is being executed or after the motion is completed and the
robot continues to track the destination, the destination is compared against the window
every eV+ trajectory cycle. If a window violation occurs and a program has been specified, the
program is automatically invoked subject to its priority level, and the robot continues to track
the belt and follow its continuous path motion. (The presumption is made that the specified
program directs the robot as required to recover from the window violation.)

If no program has been specified, the robot is immediately stopped and a window violation
program error is signaled. If a REACTE has been posted, the REACTE routine is activated.
Otherwise, program execution is terminated.

Example

The working window for the belt variable %belt1 is defined by locations win1 andwin2. If a
window violation ever occurs while the robot is tracking the belt, the program belt.error is
executed as a subroutine:

WINDOW %belt1 = win1, win2, belt.error

Related Keywords

BELT system switch

BELT real-valued function

BELT.MODE system parameter

BSTATUS real-valued function

DEFBELT program instruction

SETBELT program instruction

WINDOW real-valued function

WINDOW program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 568

WINDOW real-valued function

Syntax

WINDOW (transformation, time, mode)

Function

Return a value that indicates where the location described by the belt-relative
transformation value is relative to the predefined boundaries of the working range on a
moving conveyor belt.

Usage Considerations

This option is available only if your system is equippedwith the eV+ Extensions option.

The BELT system switch must be enabled before this function can be used.

The belt variable referenced in the compound transformation must have already been
defined using a DEFBELT instruction.

Parameters

transformation Compound transformation value that is defined relative to a
belt. That is, the compound transformation must begin with a
belt variable.

time Optional real-valued expression that specifies the time to look
aheadwhen the transformation is evaluated. That is, the result
of the function is the value predicted to apply time seconds in
the future, based on the current belt position and speed. This
parameter is used to test whether a motion can be correctly
completed within an anticipated time period.

A time of zero (the default value) tests the instantaneous value
of the location. Negative times are converted to 0 and times
greater than 32,768/60 seconds are set equal to 32,768/60.

mode Optional real-valued expression that specifies whether the
result of the function represents a distance inside or outside the
belt window (see below).

Details

The value returned, which is a distance in millimeters, should be interpreted as described
below. (Note that the definitions of upstream and downstream depend on the value of the

WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 569

BELT.MODE system parameter.)

1. If the value of the mode expression is less than or equal to zero (the default), the value
returned is interpreted as follows (see the following figure):

0 The location is outside the window.

<0 The location is inside the window, closest to the downstream
window boundary; the distance is ABS(value_returned).

>0 The location is inside the window, closest to the upstream window
boundary; the distance to the boundary is the returned value.

WINDOW Function for Mode < or = 0

2. If the value of the mode expression is greater than zero, the value returned is
interpreted as follows (see the following figure):

0 Indicates the location is within the window.

<0 Indicates the location is upstream of the upstream window
boundary; the distance is ABS(value_returned).

>0 Indicates the location is downstream of the downstream window

WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 570

boundary; the distance is the value returned.

WINDOW Function for Mode > 0

Note that the value returned by the WINDOW function always becomesmore positive as the
test location moves downstream (except for the discontinuity at the middle of the window
when the mode value is less than or equal to zero).

Example

distance = WINDOW(%belt1:pick.up, 2, 1)

The distance is nonzero if, in two seconds, the location will be outside the operating window
for %belt1. Otherwise, distance is zero if the location is within the window.

Related Keywords

BELT real-valued function

BELT system switch

BELT.MODE system parameter

BSTATUS real-valued function

DEFBELT program instruction

WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 571

SETBELT program instruction

WINDOW program instruction

WINDOW real-valued function

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 572

WRITE program instruction

Syntax

WRITE (lun,record_num) format_list

Function

Write a record to an open file, or to any I/O device. For a network device, write a string to an
attached and open TCP connection.

Usage Considerations

Except for the monitor window or console serial port, the device to receive the output must
have been attached. If the output is to a disk file, the file must have been openedwith an
FOPENA or FOPENW instruction.

Program execution waits for the write operation to complete unless there is a /N format
specifier in the format list.

Parameters

lun Real-valued expression that identifies the device to be accessed.
(See the ATTACH instruction for a description of unit numbers.)

record_num Optional real-valued expression that represents the number of the
record to be written. This should be 0 (the default value) to write
the next sequential record. If the value is not zero, the record is
written in random-access mode (which requires that the records all
have the same length). In random-access mode, records are
numbered from one (to a maximum of 16,777,216).

When accessing the TCP device with a server program, this
parameter is an optional real value, variable, or expression
(interpreted as an integer) that defines the client handle. For more
information, refer to documentation for the READ instruction.

format_list Consists of a list of output variables, string expressions, and format
specifiers used to create the output record. The format list is
processed exactly like an output specification for the TYPE
instruction.

When accessing the TCP device, you can include the /N specifier to
prevent the eV+ system from waiting for a write acknowledgment.

WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 573

Details

This is a general-purpose data output instruction that writes a record to a specified logical
unit. A record can contain an arbitrary list of characters, but must not exceed 512 characters
in length.

For files that are opened in fixed-length recordmode, this instruction appends NULL
characters to the output record if it is shorter than the file records.

When accessing the TCP/IP device, the record_num parameter enables a server to
communicate with multiple clients on a single logical unit. Handles are allocated when a client
connects to the server and deallocated when a client disconnects. During a connection the
read instruction that receives data from the TCP logical unit returns the client handle. A write
instruction can then use the handle value to send data to the corresponding client.

Examples

You can write a message to the manual control pendant with the following instructions:

ATTACH (1) ;Attach the control pendant
WRITE (1) $message ;Output message to pendant
DETACH (1) ;Detach the pendant

A file with variable-length records can be written to the system disk drive with instructions
such as the following:

ATTACH (dlun, 4) "DISK" ;Attach the disk interface
FOPENW (dlun) "A:testfile.dat" ;Open a file on drive "A"
FOR i = 0 TO LAST($lines[]) ;Loop for all the elements

WRITE (dlun) $lines[i] ;to be written
END
FCLOSE (dlun) ;Close the file
DETACH (dlun) ;Release the disk interface

Attach to serial line 1 andwrite a greeting:

ATTACH (slun, 4) "SERIAL:1"
WRITE (slun) "Hello from serial line 1"

Write the string $str to the client defined by the handle, which must have been defined
previously when the amessage was received. Do not wait for acknowledgment:

WRITE (lun, handle) $str, /N

Related Keywords

ATTACH program instruction

DETACH program instruction

FCLOSE program instruction

WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 574

FEMPTY program instruction

FOPEN_ program instruction

IOSTAT real-valued function

PROMPT program instruction

READ program instruction

TYPE program instruction

WRITE program instruction

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 575

XOR operator

Syntax

... XOR value ...

Function

Perform the logical exclusive-OR operation on two values.

Details

The XOR operator operates on two values, resulting in their logical exclusive-OR
combination. For example, during the exclusive-OR operation

c = a XOR b

the following four situations can occur:

a b c

FALSE FALSE -> FALSE

FALSE TRUE -> TRUE

TRUE FALSE -> TRUE

TRUE TRUE -> FALSE

That is, the result is TRUE if only one of the two operand values is logically TRUE. To review
the order of evaluation for operators within expressions, see the section Order of Evaluation
in the eV+ Language User's Guide.

Example

In the following sequence, the instructions immediately following the IF are executed when
not_eq_one is TRUE and count does not equal 1, or when not_eq_one is FALSE and count
equals 1. Otherwise, they are not executed.

IF not_eq_one XOR (count == 1) THEN
...
END

Related Keywords

AND operator

XOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 576

BXOR operator

OR operator

XOR operator

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 577

ID Option Words
The following topics are described in this chapter:

Introduction to ID Option Words 579
Robot Option Words 579
System Option Words 581
Processor Option Word 583

ID Option Words

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 578

Introduction to ID Option Words
This appendix supplements the descriptions of the IDmonitor command and the ID() real-
valued function.

The ID command displays various option words as hexadecimal values; the ID function
makes the same values available to programs. This appendix describes the following:

l Basic eV+ system (two option words)

l Processor option word for each processor

Robot Option Words
The real-valued functions ID(8,8) and ID(8,10+robot) return the first option word for the
selected and specified robot, respectively. The interpretations of the high-order bits in this
option word are described in the following table. Note that the interpretation of the bits in the
high byte of this value (bits 9 through 16) is independent of the particular kinematic module
being used. However, the bits in the low byte depend on the robot module.

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

9 256 100 Motor limit-stop testing is enabled. This
should be enabled only for robots that
have excessive motor coupling, and that
have motor limit-stop data allocated.

10 512 200 FREE mode power off is enabled. Any limit
violations during FREE mode cause robot
power to be disabled.

11 1024 400 The system will automatically execute a
CALIBRATE monitor commandwhen the
system is booted.

12 2048 800 Obsolete

13 4096 1000 Check for collisions with static obstacles
in Cartesian space during joint-
interpolatedmotions. (This bit applies
only to robot modules that can perform
straight-line motions. Thus, for example,
it does not apply to the JTS device

Robot Option Word#1 (from ID(8, 10+robot)]

Introduction to ID Option Words

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 579

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

module.) Note that when this bit is set,
joint-interpolatedmotions have the same
computational load as straight-line
motions.

14 8192 2000 Micron display mode is enabled.

15-16 Reserved for future use (currently zero).

The real-valued functions ID(11,8) and ID(11,10+robot) return the second option word for
the selected and specified robot, respectively. The interpretations of the bits in this option
word are described in the following table.

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

1 1 1 Robot has an RSC.

2 2 2 Robot has an extended-length quill.

3 4 4 Robot has the cleanroom option.

4 8 8
Whenusing the Cobra 600, 800 or 800
Inverted robots: Robot has the joint 4
quill encoder disabled.

5 16 10 Robot has the high-torque option.

6 32 20 Model-specific option, interpreted as
follows:

Robot Model Meaning of Bit Set

Cobra 800
Inverted

Robot has the IP65
option

Robot Option Word#2 (from ID(11, 10+robot)]

Robot Option Words

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 580

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

7 64 40 Robot has the EC certification option.

8 128 80 Robot has high-resolution joint 4.

9 256 100 Model-specific option, interpreted as
follows:

Robot Model Meaning of Bit Set

Cobra
600/800

Robot is inverted

10 512 200 Model-specific option, interpreted as
follows:

Robot Model Meaning of Bit Set

Cobra
600/800

Robot has amber LED
(for UL conformance)

11-16 Reserved for future use (currently zero).

System Option Words
The configuration of a specific eV+ system can be determined by examining two "option
words" that are displayed (as hexadecimal numbers) when the system is loaded from the
system boot disk, and by the IDmonitor command. The values of the option words are also
available to programs from the real-valued functions ID(5) and ID(6).

The option words should be interpreted as bit fields, which indicate information about the
system configuration. The interpretations of the bits in the first system option word [returned
by the function ID(5)] are described in the following table.

System Option Words

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 581

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

1 1 1 "eV+ Extensions" software license
installed

2 2 2 External encoders are supported. (See
Note 1.)

3 4 4 Robot or motion devices are enabled

4-7 Reserved for future use (currently zero)

8 128 80 ALTER instruction enabled. (See Note 2.)

12 2048 800 MOVEF andMOVESF instructions
enabled

NOTES:
1. The External encoder bit is usedwith robot systems to indicate the "conveyor
tracking" capability. With non-robot systems it is used to indicate the "external
encoder option".

2. This bit tracks the "eV+ Extensions" bit.

System Option Word#1 [from ID(5)]

The interpretations of the bits in the second software option word [returned by the function
ID(6)] are described in the following table.

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

1-5 Reserved for future use (currently zero)

6 32 20 Vision is enabled

7 64 40 Guidance vision is enabled

8 128 80 Inspection vision is enabled

System Option Word#2 [from ID(6)]

System Option Words

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 582

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

9 256 100 DDCMP option is installed. (See Note 1.)

10-12 Reserved for future use (currently zero)

13 4096 1000 Network hardware is installed, and TCP
is installed. You can use the NETWORK
real-valued function to obtain detailed
information about the network.

14 8192 2000 EC Safety Category 1 system

15 16384 4000 EC Safety Category 3 system

16 Reserved for future use (currently zero)

NOTES:

1. This bit tracks the "eV+ Extensions" bit in the first option word.

Processor Option Word
The interpretations of the bits in the processor option word [returned by the function ID(6,
4)] are described in the following table.

Bit #
Mask Value

Interpretation When Bit Set
Decimal Hexadecimal

1 1 1 Processor is running the eV+ Operating
System

2 2 2 Processor is running the Vision processing
software

3 4 4 Processor is running the Servo software

4-16 Reserved for future use (currently zero)

Processor Option Word [from ID(6, 4)]

Processor Option Word

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 583

System Messages
The following topics are described in this chapter:

Introduction to System Messages 585
System Messages - Alphabetical List 585
System Messages - Numerical List 662

System Messages

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 584

Introduction to System Messages
While the eV+ system is being used, it is possible for hardware and software errors to occur.
For example, if commands or instructions are not entered in the correct way, eV+ rejects the
input. The usual response is to write an error message to the system terminal indicating what
is wrong so that you can correct the error. In addition to error messages, eV+ can also issue
warning or informational messages.

In eV+, each error message is normally assigned an error number (or code) and an associated
error string. The following numbering conventions are used to identify the type of system
message generated:

l Informational Messages (numbers 0 to 49) list messages that provide information.

l WarningMessages (numbers 50 to 299) list warningmessages that you may receive.

l Error Messages (negative numbers) list the error messages that you may receive.

Most message codes associated with errors can be made available to a program by the ERROR
function, which returns the code of the latest error that occurred. In addition, the $ERROR
function returns the error message associated with any eV+ error code.

Documentation

The eV+ system message documentation allows you to look up the details of an error
message either alphabetically by the message string, or numerically by the system code. For
details, see Related Topics.

For each message, the documentation includes the message code, the text of the message,
and sometimes a comment about the applicability of the message. Angle brackets (<...>) are
used to enclose a description of an item that appears in that position. All numbers are
decimal.

Updates

Changes to eV+ system messages are summarized in the eV+ Release Notes.

Related Topics

Alphabetical List of eV+ System Messages

Numerical List of eV+ System Messages

ERROR real-valued function

$ERROR string function

System Messages - Alphabetical List

Introduction to System Messages

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 585

Almost every eV+ system message has a numeric code that can be used to identify the
message within an eV+ program. The ERROR and IOSTAT functions return this code. The
$ERROR string function returns the error message corresponding to an error code.

All of the eV+ messages are described in this section. Each description includes the text of
the message, its error code if applicable, an explanation of the likely cause of the message,
and a suggestion of what action you should take. The error code for each message is listed
after the error text, for all those messages that have a code.

The system messages are arranged alphabetically by system message text. Click an
underlined letter to jump to the first message that begins with that letter. For a list of the
system messages sorted by numerical codes, see System Messages - Numerical List.

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

NOTE:If the system hasmore than one robot connected and an error is associated with a
specific robot, the robot number is appended to the error message in the form (Robot #).

1394 communications timeout (-927)

Explanation: eV+ has timed out waiting for a node on the 1394-based servo network to
respond. A transient network problem may have interfered with normal communications, or
the network node itself may have failed.

User action: Retry the operation that failed. Reinitialize your servo network. Reboot your
robot controller. If the problem persists, contact Omron Adept Customer Service.

Aborted (-400)

Explanation: The last command requested, or the program that was executing, has been
aborted at your request.

User action: None.

Adept Digital Workcell Simulation mode (None)

Explanation: This message is displayed during eV+ initialization (i.e., during the booting
process), and as part of the output displayed by the IDmonitor command, to indicate that
the eV+ system is operating in Digital Workcell simulation mode.

User action: No response is required if the eV+ system is intended to be used in Digital
Workcell simulation mode. Otherwise, the commandDISABLE ADW should be entered and
the controller should be rebooted.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 586

ACE Sight instance not found (-775)

Explanation: The index of the specified instance does not exist.

User action: Correct the eV+ code.

Already attached to logical unit (-515)

Explanation: A program has executedmore than one ATTACH instruction for a specific
logical unit, without executing a DETACH in between. (The program is still attached to the
logical unit after this error occurs.)

User action: Check the program logic and remove redundant ATTACH instructions.

Ambiguous AUTO invalid (-477)

Explanation:When exiting from the program editor, eV+ has encountered an automatic
variable with undetermined type. That is, the system cannot determine if the variable is real-
valued or a transformation. Automatic variables cannot be ambiguous, since their storage
requirements must be known before they are referenced.

User action: Include the REAL or LOC type specification parameter in the AUTO statement
that declares the variable, or reference the variable in a program instruction in a manner that
makes its type clear.

Ambiguous name (-453)

Explanation: The abbreviation used for the last command, instruction, or system-defined
name was not long enough to identify the operation intended.

User action: Reenter the last line, using a longer abbreviation.

Are you sure (Y/N)? (10)

Explanation: The requested command has a significant effect on the state of the system,
and eV+ wants to know if you really want it to happen.

User action: To have eV+ continue, type y followed by a carriage return. An n followed by a
carriage return or just a carriage return causes the command to be aborted.

Arithmetic overflow (-409)

Explanation: The result of a calculation was outside the allowable range for real variables or
eV+ has encountered a number that is outside the allowed range for integers while
converting a real-valued number to a decimal, hexadecimal, or octal integer, or logical value.
Logical values use 32-bit integers, but most program instructions that require integer
arguments allow only 16-bit integers. Also, real variables can have only magnitudes in the
range from about 5.4E-20 to 9.2E+18.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 587

User action: Modify the program as required.

Attempt to modify active belt (-614)

Explanation: A program instruction has been executed that modifies the belt variable that
is currently being tracked by the robot.

User action: Change the program in order not to modify the variable while the robot is
tracking it.

Attempt to redefine variable class variable_name (-470)

Explanation: Upon exiting from the editor, the named variable was found in two of the
following places: the .PROGRAM argument list, an AUTO statement, a LOCAL statement, or a
GLOBAL statement.

User action: Modify the program to include the variable in only one of these places.

Attempt to redefine variable type variable_name (-469)

Explanation: If a program is being edited, the line just entered contains a reference to a
variable in a manner inconsistent with its use elsewhere in the program. The most likely
problem is confusing a location variable with a real variable. If you just exited from the editor,
the named variable conflicts with a global variable that already exists.

User action: If the new use of the variable is correct, you must delete all references to the
incorrect variable and then reenter the statement that caused the error. If the new use is
incorrect, use a different variable name. If there is a conflict with a global variable, either use
a DELETE_ command to delete that variable, or make the conflicting variable AUTO or LOCAL
to the current program.

Auto Startup... (None)

Explanation: The automatic start-up procedure has begun. (See the discussion of
command programs for more information.)

User action: None required for this message, but subsequent commands in the auto-
startup command program may require user action.

WARNING: The robot may begin to move during the automatic start-
up procedure. If necessary, you can stop the robot by pressing
EMERGENCY STOP or the controller or PANIC on the pendant.

Backplane E-STOP detected by CPU (-630)

Explanation: The AdeptMotion system has detected an error or problem and has asserted
the BRKSTOP signal on the VME bus. If that error is seen, it indicates a transient BRAKE-
ESTOP signal.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 588

User action: Correct the problem that is causing the motion system to report the error.

Bad block in disk header (-523)

Explanation:While formatting a disk, a bad disk block has been found in the disk header
area. The format operation has failed, and the disk is not usable.

User action: Enter the FORMAT command again-use a different diskette if the error persists.

Belt not enabled (-615)

Explanation: A robot operation that references a moving conveyor belt has been attempted
when the conveyor tracking feature is disabled.

User action: Enter an ENABLE BELT command and retry the operation.

Belt servo dead (-617)

Explanation: The belt processor isn't responding to commands from eV+.

User action: After saving the programs, power down the controller and power it up again. If
this error occurs repeatedly, contact Omron Adept Customer Service.

Belt window violation (-616)

Explanation: Either a robot motion has been planned that moves the robot outside of the
belt window, or the robot has moved outside of the belt window while tracking the belt.

User action: Modify the program so that the robot does not move outside the belt window.
Consult the BELT.MODE parameter and the WINDOW instruction for different ways to define
the belt window.

Branch to undefined label Step nnn (-412)

Explanation: A program instruction references a program label that is not defined in the
program. Either the label is missing or wasmistypedwhen defined or in the reference.

User action: Check the label definition and reference.

Breakpoint at (task) program_name, step n (17)

Explanation: A breakpoint was encountered before the indicated step. (Any output
associated with the breakpoint is displayed after the message shown above.)

User action: Enter a PROCEED (Ctrl+P), RETRY, SSTEP (Ctrl+Z), or XSTEP (Ctrl+X)
command to resume program execution.1 Otherwise, enter any other monitor command.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 589

Breakpoint not allowed here (-380)

Explanation: An attempt has been made to set a breakpoint before the first executable
statement of a program.

User action: Enter a new BPT command specifying a step after the first executable
statement. That is, after the .PROGRAM statement, any AUTO and LOCAL statements, and
all comments and blank lines at the start of the program.

Calibration program not loaded(-425)

Explanation: A program required for calibration has not been loaded from disk. This error
occurs if a robot-specific calibration file cannot be found on the disk (i.e., in the same location
as the file for the main calibration program), or if a required calibration program is not
present in memory when it is expected. The latter situation can occur if the CALIBRATION
command or instruction is executed with an input mode that does not cause the calibration
programs to be loaded from disk, and the programs are not already present in memory.

User action: Reissue the CALIBRATE command or instruction with the proper mode. The
default mode of zero causes CALIBRATE to automatically load the required programs from
disk, perform the calibration, and then delete the programs. Alternatively, issue a
CALIBRATE command or instruction with mode "1" (which causes the calibration programs
to be loaded into memory), and then reissue the CALIBRATE command or instruction that
was originally attempted.

Calibration sensor failure Mtr n (-1106)

Explanation: During calibration, the calibration sensor for the indicatedmotor cannot be
read correctly. Either the robot is blocked from moving, or a hardware error has occurred.

User action: Retry the CALIBRATE command or instruction after making sure that the
robot is not blocked. If the problem persists, contact Omron Adept Customer Service.

Canceled (-358)

Explanation: An editor, debugger, or pendant operation has been terminated due to
operator intervention.

User action: This is usually an informative message to acknowledge the cancellation of the
operation.

Can't access protected or read-only program (-310)

Explanation: An attempt has been made to edit a protected or read-only program. These
programs cannot be edited.

User action: None.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 590

Can't ALTER and track belt (-626)

Explanation: Either a belt-relative motion was specified while ALTERmode was enabled, or
an attempt wasmade to enable ALTERmode while the selected robot was tracking a belt.
Both operations are prohibited because belt-tracking and ALTERmode cannot be performed
at the same time.

User action: Either disable ALTERmode or stop tracking the belt.

Can't change modes while task running (-361)

Explanation: A commandwas issued to change from debugmonitor mode to debug editor
mode while the program task being debuggedwas executing. You can change to debug editor
mode only when the associated task is stopped.

User action: Stop execution of the program task being debugged, or continue without using
debug editor mode.

Can't create new slide bar (-557)

Explanation: An attempt has been made to create a graphic slide bar in the horizontal or
vertical scroll bar. Slide bars should be created only in the main window, although they can
appear in the title or menu bars.

User action: Modify the arguments for the GSLIDE instruction to have the slide bar created
within the window.

Can't create program in read-only mode (-364)

Explanation: An attempt has been made to initiate editing of a program in read-only access
mode, but the program does not exist.

User action: If the program name was entered incorrectly, enter the command again with
the correct name. Do not select read-only access (with /R) when creating a new program.

Can't delete .PROGRAM statement (-350)

Explanation: An attempt has been made to delete the .PROGRAM statement while editing a
program.

User action: To change the .PROGRAM statement, replace it with another .PROGRAM
statement. To delete lines at the beginning of the program,move down to line 2 before
issuing delete commands.

Can't execute from SEE program instruction (-362)

Explanation: An attempt has been made to use a SEE editor command that cannot be used
after the editor has been initiated with the SEE program instruction.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 591

User action: Enter another command or exit the editor and reenter from the eV+ monitor.

Can't exit while lines attached (-355)

Explanation: You attempted to terminate execution of the editor while lines were present
in the attach buffer. The attach buffer must be empty before the editor can be exited.

User action: You can use Shift+Copy to deposit the contents of the attach buffer into the
current program. You can also use Esc+K to delete lines from the attach buffer (99 Esc+K
deletes up to 99 lines from the buffer).

Can't find calibration program file (-426)

Explanation:While processing a CALIBRATE command or instruction, the eV+ system
cannot find the calibration utility program file CAL_UTIL.V2.

User action: Restore the missing file from the eV+ distribution disk to the current default
directory, or to the directory \CALIB\ on the local "C" or "D" drive.

Can't go on, use EXECUTE or PRIME (-313)

Explanation: An attempt has been made to continue the execution of a program that has
completed or stopped because of a HALT instruction. Normally, an error results when a
PROCEED, RETRY, or XSTEP command is entered (or the pendant RUN/HOLD button is
pressed) after a program has completed all its cycles.

User action: Use the EXECUTE or PRIME command, or the pendant PRIME function, to
restart the program from the desired instruction.

Can't interpret line (-450)

Explanation: eV+ cannot interpret the last command or instruction entered.

User action: Verify the spelling and usage, and reenter the line. In the case of an error
while loading from the disk, edit the affected programs to correct the indicated lines-they
have been converted to bad lines.

Can't mix MC & program instructions (-414)

Explanation: A program instruction has been encountered during processing of a command
program, or an MC instruction has been encountered in a normal program.

User action: Edit the command program to use the DO command to include the program
instruction, or remove the MC instruction from the normal program.

Can't start while program running (-312)

Explanation: An attempt has been made to start execution of a program from the pendant
while a program is already executing as task #0.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 592

User action: Stop the program currently executing and then retry the operation.

Cartesian control of robot not possible (-635)

Explanation: A program has attempted to perform a straight-line motion with a robot that
does not support such motions.

User action: Change the program to use joint-interpolatedmotion.

Change? (11) Change

Explanation: You are being given an opportunity to modify the location value just created by
a HERE or POINT command.

User action: Enter any desired new components, separated by commas, or press the Return
key to indicate that no changes are desired.

..., change to: (None) Change

Explanation:While initiating a string replacement operation, the SEE editor is prompting for
the string to be used for the replacement.

User action: Enter the desired replacement string. Note that if you press Return, the string
to be searched for is erased (that is, an empty string is used for the replacement).

Collision avoidance dead-lock (-647)

Explanation: Two robots with collision detection enabled are simultaneously blocking each
other's path. That is, neither robot can perform its next motion until the other robot moves
out of the way.

User action: Change the application program to prevent the deadlock situation.

Command? (None)

Explanation: A SEE editor extended command has been initiated with the X command.

User action: Enter the desired extended command, or press Return to cancel the request.

Communication time-out (-531)

Explanation: An I/O operation has not completed within the allotted time interval. For data
communications, the remote communications device has not properly acknowledged data
that was sent.

User action: Make sure the remote device is communicating. Make sure connections to the
remote device are operating properly.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 593

Communications overrun (-524)

Explanation: Data has been received on an I/O device faster than eV+ is processing it, and
some data has been lost. This happens only on the serial interface line or the network.

User action: Modify the program to service the I/O device more often, add a handshaking
protocol, or slow down the transmission rate to eV+.

COMP mode disabled (-603)

Explanation: The command attempted requires computer control of the robot, but
COMPUTERmode was not selected on the pendant.

User action: Select COMPmode on the pendant or enable DRY.RUN mode from the
terminal, then reissue the command.

Connecting to Adept Digital Workcell system via Ethernet (^C to
quit) (None)

Explanation: This message is displayed during eV+ initialization (i.e., during the booting
process) to indicate that the eV+ system is operating in Digital Workcell simulation mode,
and that the eV+ system is waiting for a response from the PC that is running the Digital
Workcell software.

User action: No response is needed if the connection completes successfully. If the
connection does not complete, you can enter CTRL+C to cancel waiting for the connection.
The eV+ system then reports failures of all the robot servos and all the installed licenses are
disabled (except those needed to use the ACE user interface). In that case, you should either
try again to start up the controller (after making sure that the Digital Workcell software is
running on the PC), or enter the eV+monitor commandDISABLE ADW and restart the
controller.

Controller not in automatic mode (-303)

Explanation: An attempt has been made to initiate program execution or PRIME a program
from the monitor window or command terminal when the controller is not in automatic
mode.

User action: Select automatic mode by moving the switch on the front panel to the
automatic position, or by activating the proper switch on a custom control panel. Retry the
previous command.

Controller not in manual mode (-304)

Explanation: An attempt has been made to perform an operation that requires the
controller to be in manual mode when it is not in manual mode. If you do not have a front
panel connected, the controller is assumed to be in automatic mode.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 594

User action: Select manual mode by moving the switch on the front panel to the manual
position, or by activating the proper switch on a custom control panel. Retry the previous
operation.

Controller not in network mode (-317)

Explanation: An attempt has been made to use a serial line configured for network use, but
the controller is not in network mode. If you do not have a front panel connected, the
controller is assumed to be in local mode.

User action: Select network mode by moving the switch on the front panel to the network
position, or by activating the proper switch on a custom control panel. Retry the previous
operation.

Control structure error (-473)

Explanation: An incomplete control structure has been encountered during program
execution.

User action: Edit the program to correct the control structure.

*Control structure error * Step nn (-472)

Explanation: eV+ has detected an incomplete or inconsistent control structure at the
specified step when exiting the program editor, loading a program, or processing a BPT
command.

User action: Edit the program to correct the control structure. (Note that the actual error
may not be at the indicated step.) If the error occurs in response to a BPT command, you can
type dir /? to identify programs that are not executable and thus might contain the control-
structure error.

Cursor at column n (None)

Explanation: The SEE editor WHERE extended command is reporting the current column
position of the cursor.

User action: None. This is an informational message.

Database manager internal error (-859)

Explanation: This error indicates that the system has encountered an inconsistency.

User action: Contact Omron Adept Application Engineering. Please record the details of
exactly what you were doing at the time the error occurred.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 595

Data checksum error (-510)

Explanation: An error was detected while transferring information to or from an external
device.

User action: Attempt the transfer again. If the problem persists, contact Omron Adept
Customer Service.

Data error on device (-522)

Explanation: An error was detected while attempting to read information from an external
device, possibly because a diskette has been damaged or was not formatted properly.

User action: Attempt the read again. Make sure the correct diskette is being used, that it is
properly installed in the drive, and that it is formatted. (Recall that formatting a diskette
erases its contents.)

Device error (-660)

Explanation: An error was detected for an external device such as one specified in the last
DEVICE or SETDEVICE program instruction. The actual error depends upon the type of
device referenced.

User action: Make sure the instruction's parameters are valid. Refer to the documentation
for the device type referenced for information on how to determine what has caused the
error.

Device full (-503)

Explanation: There is nomore space available on a device. If this error is received for a disk
file, it indicates that the disk is full (if there are many small files on the device, this error
indicates the directory is full). If this error is received for a servo device, it indicates that an
attempt has been made to assign toomany servo axes to a single CPU.

User action: Delete unneeded disk files, or use another drive or diskette. Reconfigure your
system so the maximum number of axes per CPU is not exceeded.

Device hardware not present (-658)

Explanation: An attempt has been made to reference a device that is not present in your
system.

User action: Verify that the device was correctly specified. Verify that the device hardware
is present and is configured properly.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 596

Device in use (-668)

Explanation: An attempt has been made to attach, assign, or configure a hardware device
(e.g., a VMI axis) that is already being used.

User action: Check the program code tomake sure the requested device has not already
been attached. If the error occurs during power-up initialization of the eV+ system, enter the
SRV.NETmonitor command and look for multiple nodes that are reporting the same input or
output block number.

Device not ready (-508)

Explanation: (1) The requested disk device (or remote network task) is not prepared to
communicate with the eV+ system.

(2) A limited-access device like the terminal, the pendant, or a serial line is attached to a
different program task.

(3) You have tried to write into a pull-down window while it is displayed.

User action: (1) If the intended device is a system microfloppy disk drive, make sure the
diskette is correctly inserted and formatted.

(2) If a limited-access device is specified, ABORT and KILL the program task that has it
attached, or wait for the program task to release the device. If the intended device is on the
network, verify that the proper connections are made and that the remote system is
operating correctly. (2) ABORT and KILL the program task that has the device attached, or
wait for the task to release the device.

Device reset (-663)

Explanation: The device is busy processing a reset operation. The reset can have been
requested (with a SETDEVICE instruction) by another program task that is accessing the
device, or the device can have initiated the reset on its own.

User action: Use software interlocks to prevent a second program task from accessing the
device after a reset operation has been requested. (Note that the requesting SETDEVICE
instruction waits for the reset to complete.) Refer to the documentation for the specific device
for information on its self-generated resets.

Device sensor error (-662)

Explanation: A hardware error occurred in the sensing system accessedwith the last
DEVICE instruction.

User action: Refer to the documentation for the sensing system for information on how to
determine the cause of the error.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 597

Device time-out -659)

Explanation: The device has not respondedwithin the expected time.

User action: Check the documentation for the device type referenced to determine what
caused the error. Verify that the device hardware is configured properly.

Directory error (-509)

Explanation: This error can occur when performing a READ instruction (following an
FOPEND instruction).

User action: Unlike most other errors, this error can be ignored. Additional READ
instructions to the same directory correctly return additional contents of that directory.

Directory not empty (-571)

Explanation: The operation attempted to remove a directory that was not empty.

User action: Delete the directory's contents before deleting the directory.

DO not primed (-302)

Explanation: A DO commandwas attemptedwithout specifying a program instruction to be
executed and no previous DO had been entered.

User action: Provide the desired instruction with the DO command.

Driver internal consistency error (-519)

Explanation: An I/O device or servo has responded in an unexpectedmanner.

User action: Retry the operation that caused the error. If it persists, contact Omron Adept
Customer Service.

Duplicate .PROGRAM arguments (-468)

Explanation: At least two of the arguments in a .PROGRAM statement have the same
name.

User action: Edit the .PROGRAM line so that all the arguments have unique names.

Duplicate servo node ID (-678)

Explanation: During startup, or after a servo bus reset, eV+ has detected two or more
servo nodes with the same serial number. Either an error has occurred with servo node
detection, or a servo node is configured incorrectly. Servo network operation is not allowed.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 598

User action: Use the SRV.NET command to determine which nodes are causing this error.
Reinitialize your servo network. Reboot your robot controller. If a new servo node has been
added to the network, verify that its serial number is correct. If the problem persists, contact
Omron Adept Customer Service.

Duplicate statement label (-464)

Explanation: The same program statement label is usedmore than once in a user program.

User action: Change one of the duplicate labels.

Duty-cycle exceeded Mtr n (-1021)

Explanation: The indicatedmotor has been driven fast for too long a period of time. The
servo system has disabled Arm Power to protect the robot hardware.

User action: Turn on Arm Power; reduce the speed and/or acceleration for the motion that
was in progress or for motions that preceded that motion; and repeat the motion that failed.

Encoder fault Mtr n (-1025)

Explanation: The servo board has detected a broken encoder wire on the indicated axis.

User action: Inspect the encoder wiring for intermittent connections or broken wires. Try
swapping the encoder cable with another. You can disable this error with the SPEC utility, but
do so only as a last resort.

Encoder quadrature error Belt n (-1013)

Explanation: The position encoder signal from the specified conveyor belt is sending
information that is not phased correctly. The encoder or its cablingmay be defective.
(Encoder error checking is initiated by the DEFBELT instruction and by enabling the BELT
switch while a belt is defined.)

User action: Make sure the encoder cable is properly connected. Try to run the conveyor at
a slower speed. Contact Omron Adept Customer Service if the error persists.

Encoder quadrature error Mtr n (-1008)

Explanation: The position encoder signal from the specifiedmotor is sending information
that is not phased correctly. The encoder or its cablingmay be defective.

User action: Turn on high power, calibrate the robot, and try to perform the motion at a
slower speed. If the error persists, contact Omron Adept Customer Service.

E-STOP 1 detected by CPU (-608)

Explanation: An E-STOP condition on E-STOP channel 1 has been detected by the CPU.
Normally, this message is suppressed and the cause of the E-STOP is reported instead.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 599

User action: If safe to do so, attempt to enable HIGH POWER and note any different error
messages which occur. Verify that the CIP is connected securely. If this error occurs
frequently, contact Omron Adept Customer Service.

E-STOP 2 detected by CPU (-914)

Explanation: An E-STOP condition on E-STOP channel 2 has been detected by the CPU.
Normally, this message is suppressed and the cause of the E-STOP is reported instead. There
may be a hardware problem with the CIP, its cabling, or the AWC.

This error can result from redundant E-STOP channels that do not track each other within a
reasonable time.

User action: Hold the MCP enable switch and reenable HIGH POWER as desired. If this error
persists, contact Omron Adept Customer Service.

E-STOP asserted by CPU (-919)

Explanation: An E-STOP condition has been generated by eV+ in response to an internal
error condition. This error should not normally be seen.

User action: If safe to do so, attempt to enable HIGH POWER and note any different error
messages that occur. If this error persists, contact Omron Adept Customer Service.

E-STOP channels 1 and 2 do not match (-922)

Explanation: An E-STOP condition has occurred because the two redundant E-STOP signal
channels do not report the same E-STOP state.

This error can be caused if redundant E-STOP channels do not track each other within a
reasonable time (around 0.5 sec).

User action: If an external E-STOP circuit is being used, verify that both channels are wired
and functioning properly.

E-STOP circuit is shorted (-923)

Explanation: An E-STOP condition has occurred because a short circuit in the E-STOP wiring
has been detected.

User action: Verify that all E-STOP channels are wired and functioning properly and that
there is no external power source wired to the E-STOP circuit. Check that the E-STOP source
jumper on any connected robot is on the EXT position. If the problem persists, contact
Omron Adept Customer Service.

E-STOP circuit relay failure (-907)

Explanation: An E-STOP condition has occurred because the E-STOP chain on one channel
is not in the same state as the other channel. This can be the result of welded contacts on

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 600

one of the two E-STOP Relays , a short circuit in one of the E-STOP channels , or the result of
a pair of contacts connected to the E-STOP channels being in the opposite state (one open,
the other closed).

User action: Check all user connections to each of the E-STOP channels (plugs fully seated,
contacts on each channel in the same closed state). If no problem is uncovered in the user
connections, call Omron Adept Customer Service.

E-STOP detected by robot (-643)

Explanation: The motion interface board has detected an E-STOP due to the BRAKE-ESTOP
signal being asserted on the VMEbus.

User action: Check for a subsequent message. To determine if there was an unreported RSC
error, type listr error(task,4), where task is the number of the task that received the error.
If no additional information is available, call Omron Adept Customer Service.

E-STOP from amplifier (-641)

Explanation: The SmartController has detected an E-STOP condition generated by the
motor amplifiers. It indicates that the amplifiers have detected some fault condition.

User action: Check for a subsequent message. To determine if there was an unreported RSC
error, type listr error(task,4), where task is the number of the task that received the error.

E-STOP from front panel button (-908)

Explanation: An E-STOP condition has occurred because the E-STOP button on the front
panel has been pressed.

User action: Unlatch the locking E-STOP button. Re-enable HIGH POWER as desired.

E-STOP from front panel external input (-911)

Explanation: An E-STOP condition has occurred because it was requested through the front
panel external input signal.

User action: Restore the front panel external input signal state. Re-enable HIGH POWER as
desired.

E-Stop from Line E-Stop input (-929)

Explanation: An E-STOP condition has occurred because it was requested through the Line
E-STOP input signal.

User action: Restore the state of the Line E-STOP input signal. Re-enable HIGH POWER as
desired.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 601

E-STOP from MCP enable switch (-913)

Explanation: An E-STOP condition has occurred because the enable switch (formerly called
Hold-to-Run switch) on the Pendant has been released. DuringMANUAL mode, releasing this
switch performs a controlled power-off rather than an E-STOP.

User action: Hold the Pendant enable switch and re-enable HIGH POWER as desired.

E-STOP from MCP E-STOP button (-909)

Explanation: An E-STOP condition has occurred because the E-STOP button on the Pendant
has been pressed.

User action: Unlatch the locking E-STOP button. Re-enable HIGH POWER as desired.

* E-STOP from safety system* Code n (-1111)

Because these message codes are related to hardware, refer to your Robot Instruction
Handbook as your primary source of information. If it does not answer your questions,
contact Omron Adept Customer Service. The following table summarizes information about
the codes.

Code n Explanation

0 Omron Adept E-stop, channel 1 error

1 Omron Adept E-stop, channel 2 error

2 Customer E-stop, channel 1 error

3 Customer E-stop, channel 2 error

MMSP External E-STOP Error Message Codes

E-STOP from robot (-640)

Explanation: The motion interface board has detected an E-STOP condition generated by
the RSC in the robot. This error is probably due to low air pressure, joint-1 overtravel, or
motor overheating. A subsequent error message may provide more information.

User action: Check for a subsequent message. To determine if there was an unreported
RSC error, type listr error(task,4), where task is the number of the task that received the
error. If no additional information is available, check for low air pressure, joint 1 overtravel,
or motor overheating.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 602

E-STOP from user enable switch (-912)

Explanation: An E-STOP condition has occurred because the user enable switch (formerly
called the Hold-to-Run switch) has been released. DuringMANUAL mode, releasing this
switch performs a controlled power-off rather than an E-STOP.

User action: Hold the user enable switch and re-enable HIGH POWER as desired. If the
switch was already pressed, check the switch and the associated connectors andwiring.

E-STOP from user E-STOP button (910)

Explanation: An E-STOP condition has occurred because the user E-STOP button circuit has
been broken.

User action: Restore the user E-STOP button circuit. Re-enable HIGH POWER as desired.

E-STOP from user muted safety gate (-921)

Explanation: An E-STOP condition has occurred because the user muted safety gate has
been opened during automatic mode. DuringMANUAL mode, this error should not be seen.

User action: Close the muted safety gate and re-enable HIGH POWER as desired. If the gate
was already closed, check the switch, the associated connectors, andwiring.

E-STOP unstable (-939)

Explanation: The E-STOP source has not been resolved.

User action: Check if there is noise on the E_STOP line.

Executing in DRY.RUN mode (50)

Explanation: The DRY.RUN switch is enabled and program execution has been requested.
Thus, nomotion of the robot occurs.

User action: None unless motion of the robot is desired. In that case, abort execution of the
program and disable the DRY.RUN switch.

Expected servo node not found (-679)

Explanation: After a servo bus reset, eV+ has not detected all the required nodes on the
servo network. Either the network has failed because of noise, a servo node has failed, or a
servo node has been unplugged.

User action: Use the SRV.NET command to determine which node is causing this error.
Verify that all servo network connectors are secure. Reinitialize your servo network. Reboot
your robot controller. If the problem persists, contact Omron Adept Customer Service.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 603

[Fatal] Addr Err at aaaaaa m:n I=xxxx, A=aaaa, F=ff (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what
you were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] Bus Err at aaaaaa m:n I=xxxx, t=aaaa, F=ff (None)

Explanation: A computer error occurred because of a bad read from memory, because of
noise on the internal data bus, or because of a hardware problem.

User action: To save programs that are in memory, you can restart eV+ temporarily by
pressing Ctrl+G. The robot servos do not function, but you can STORE the programs. Then
power down the controller and restart the system. If the problem persists, contact Omron
Adept Customer Service.

[Fatal] CHK Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what
you were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] DIV Instr Err at aaaaaa m:n (None)

Explanation: The eV+ system has detected an error from a divide instruction. This indicates
a processor fault.

User action: Power down the controller and try starting it again. If the problem persists,
contact Omron Adept Customer Service.

[Fatal] Emul 1010 Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 604

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what you
were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] Emul 1111 Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what you
were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] E-STOP signals are stuck off (-904)

Explanation: During system startup, a test is performed to ensure that no E-STOP signals
are stuck in the off state. This error message is followed by one or more standard E-STOP
error messages that indicate which signals are stuck. If this error occurs, robot power cannot
be enabled.

User action: Check the wiring of your E-STOP circuits. Verify that the Controller Interface
Panel (CIP) is connected properly. Contact Omron Adept Customer Service for assistance.

[Fatal Force Err] (None)

Explanation: The force processor has detected an error condition. You can continue to use
the eV+ system, but the force-sensing system cannot be used until you act upon the error.

User action: None required if you do not intend to use the force-sensing system. Otherwise,
refer to the documentation for the force-sensing system for information on how to respond to
the error.

[Fatal] Graphics/display processor error (None)

Explanation: The graphics processing unit on the graphics system processor has failed to
respond to commands from the eV+ system.

User action: Power down the controller and try starting it again. If the problem persists,
contact Omron Adept Customer Service.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 605

[Fatal] Illeg Instr at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what
you were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] Initialization failure Mtr n (-1014)

Explanation: During initialization of a robot kinematic module, the indicatedmotor failed
initialization. The problem may be amissing or improperly configured servo interface board,
or an incorrect motor mapping for this module.

User action: Verify that all servo interface boards are correctly installed and configured (use
the SPEC.V2 utility for motor mapping). If the problem persists, contact Omron Adept
Customer Service.

[Fatal] Invalid serial I/O configuration (None)

Explanation: During initial startup, eV+ has detected that the configuration of the
hardware for serial communications is not valid. An attempt has been made to configure a
serial unit that is not installed, or an invalid byte format or baud rate has been requested.

User action: Power down the controller and try starting it again. Make sure that the boot
disk you are using is valid for your controller. Use the CONFIG_C utility program tomake
sure the serial I/O configuration is correct. If the problem persists, contact Omron Adept
Application Engineering.

[Fatal] I/O processor failure (-905)

Explanation: The I/O processor on the main CPU board did not start up properly. This
processor is critical to the safe operation of the robot. Therefore, if this error occurs, HIGH
POWER cannot be enabled.

User action: Power-down and restart your controller. Try a different boot device. Reload
your system software. If this problem persists, contact Omron Adept Customer Service for
assistance.

[Fatal] Manual mode switch stuck off (-920)

Explanation: During system initialization, a hardware test of the manual mode circuit has
found that the key switch is stuck in automatic mode. This error indicates a safety hazard

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 606

and prevents HIGH POWER from being enabled.

User action: Check any user manual mode switch that may be in use. Verify that the CIP is
connected securely. Restart your eV+ system to clear the error and repeat the test. If the
problem persists, contact Omron Adept Customer Service.

[Fatal] OVF Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what you
were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] Priv Viol at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what you
were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] Servo code incompatible CPU n (-1102)

Explanation: During initialization, eV+ detected an improper version of servo software on
the indicated CPU. eV+ continues to operate, but does not allow high power to be turned on.

User action: Power down the controller and restart. If the problem persists, contact Omron
Adept Customer Service.

[Fatal] Servo dead Mtr n (-1104)

Explanation: The servo process for the indicatedmotor is not responding to commands from
eV+. eV+ continues to operate, but does not allow high power to be turned on.

User action: Power down the controller and restart. If the problem persists, contact Omron
Adept Customer Service.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 607

[Fatal] Servo init failure Board n (-1107)

Explanation: During system initialization the indicated servo interface board cannot be
initialized. The problem may be an invalid servo configuration, a missing or improperly
configured servo interface board, or a hardware failure.

User action: Power down the controller and restart, making sure you are using the correct
system disk. If the problem persists, contact Omron Adept Customer Service.

[Fatal] Servo process dead CPU n (-1101)

Explanation: eV+ failed to detect proper operation of the servo process on the indicated
CPU. eV+ continues to operate, but does not allow high power to be turned on.

User action: Power down the controller and restart. Use the CONFIG_C.V2 utility to verify
that a servo process is enabled for this CPU. If the problem persists, contact Omron Adept
Customer Service.

[Fatal] Spurious Int at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what
you were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] Stk Overflow at aaaaaa m:n (None)

Explanation: A storage stack within eV+ has overflowed. If n is 1, the error indicates that
the eV+ monitor has encountered an expression that has parentheses nested too deeply.
Any of the following values for n indicates that the program task shown has attempted to
evaluate an expression that is too complex to fit in the stack for that task. The value is a
hexadecimal number where ^H1 = monitor task and^HD= task 0, ^HE = task 1,...^H27
= task 26, and^H28 = task 27.

User action: If then value is one of those listed above, reduce the complexity of the
offending expression. If the value is not one of those listed, an internal problem with eV+ is
indicated. In that case, it would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message andwhat you were
doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 608

[Fatal] System clock dead (None)

Explanation: During initial startup, eV+ has failed to detect proper operation of the system
clock and timer hardware. eV+ cannot run without the clock operating properly.

User action: Power down the controller and try starting it again. If the problem persists,
contact Omron Adept Customer Service.

[Fatal] System clock too fast (None)

Explanation: During initial startup, eV+ has detected that the system hardware clock is
running too fast. eV+ cannot run without the clock operating properly.

User action: Power down the controller and try starting it again. If the problem persists,
contact Omron Adept Customer Service.

[Fatal] Uninit Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what you
were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

[Fatal] ZDIV Trap at aaaaaa m:n (None)

Explanation: An internal problem has occurred with the eV+ software or with the system
hardware.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what you
were doing at the time the error occurred.

To save programs that are in memory, you can restart eV+ temporarily by pressing Ctrl+G.
The robot servos do not function, but you can STORE the programs. Then power down the
controller and restart the system.

File already exists (-500)

Explanation: There is already a disk file or a graphics window with the name supplied to the
last storage request.

User action: Reissue the storage request with a different file name, or delete the old file.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 609

File already open (-506)

Explanation: A disk file or graphics window is already open on a logical unit, and another
open request has been attempted.

User action: Modify the program to use a different logical unit number for the file or window
you want to open, or perform an FCLOSE operation on the file or window currently open on
the specified logical unit number before performing the FOPEN operation.

File format error (-512)

Explanation: The requested disk file is not in a format acceptable to eV+ because either it
was not created by eV+ or the file has been corrupted.

User action: Use another diskette or reference another file.

File name too long (-570)

Explanation: The file name in an operation was too long.

User action: Use a shorter file name.

File not opened (-513)

Explanation: A program request wasmade to read or write data from a disk device when no
file was open, or an attempt wasmade to access a graphics window that is not open.

User action: Modify the program to open the file or graphics window before attempting to
read or write data.

File or subdirectory name error (-514)

Explanation: The specified file name or subdirectory was not a valid disk file name, the
directory path contained invalid syntax, or the directory path was too long.

User action: Retry the operation with a correct file name or subdirectory name. Verify that
syntax of the directory path is correct. Verify that any default directory path specified by the
DEFAULT command is correct. Verify that the total directory path is not too longwhen the
default is combinedwith the current file specification.

File too large (-569)

Explanation: The operation caused a file to grow beyond the server's limit.

User action: Close the file, open a new file, and retry the previous operation.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 610

Find: (None)

Explanation:While initiating a string search or replacement operation, the SEE editor is
prompting for the string to be found in the program.

User action: Enter the desired search string, or press Return to cancel the request.

First statement must be .PROGRAM (-351)

Explanation: An attempt wasmade to insert or deposit a program statement above the
.PROGRAM statement, which must be the first statement in the program.

User action: Move the cursor to below the .PROGRAM line of the program before attempting
to insert or deposit statements.

Font not loaded (-551)

Explanation: The specified font does not exist.

User action: Specify another font (font #1 is always loaded).

Force protect limit exceeded (-624)

Explanation: At least one force-sensor strain gauge reading has exceeded the preset limit,
causing a robot panic stop. This may happen due to high forces experienced during an
insertion, a crash, or high acceleration.

User action: If a crash occurred, ensure that the work area is cleared. If the limit was
exceeded in normal operation, the limit should be increased or Protect mode should be
disabled. Enable high power with the pendant and continue operation.

Front panel HIGH POWER lamp failure (-924)

Explanation: HIGH POWER has been disabled because a failure (Open Circuit) in the front
panel HIGH POWER lamp has been detected. The lamp is probably burned out. This condition
is considered a safety hazard. An E-STOP is not signaled. However, HIGH POWER cannot be
enabled until the lamp is replaced.

User action: Replace the HIGH POWER lamp. See theMV Controller User's Guide. Re-enable
HIGH POWER as desired.

Function already enabled (-422)

Explanation: Certain functions or operations must not be enabled when they are already
enabled or active. ALTERmode is an example of such a function.

User action: Avoid reenabling the function or operation.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 611

Graphics processor timeout (-552)

Explanation: The graphics processor (on the system processor) failed to respond to a
command from eV+ within five seconds.

User action: Save all your programs and variables on disk and then reboot the system from
disk. Contact Omron Adept Customer Service if the problem repeats.

Graphics software checksum error (-558)

Explanation: The code on the graphics board has been corrupted.

User action: Save new or modified programs, restart the controller, and reload the
programs. If the problem persists, contact Omron Adept customer service.

Graphics storage area format error (-555)

Explanation: During execution of a FREE command, eV+ has detected that the information
in graphic memory may have been corrupted. This may have been caused by amomentary
hardware failure or a software error.

User action: Attempt to save as much as possible onto disk. Issue ZERO 1 and ZERO 2
monitor commands to delete graphics data. If the error persists, power down the controller
and restart the system.

(HALTED) (8)

Explanation: A HALT instruction has been executed, and thus execution of the current
program has terminated.

User action: Any monitor command can be entered, but PROCEED cannot be used to
resume program execution.

Hard envelope error Mtr n (-1027)

Explanation: The indicatedmotor was not tracking the commanded position with sufficient
accuracy, indicating a failure in the hardware servo system or something impeding the path
of the robot. Because this is considered a serious error, high power was turned off.

User action: Turn on high power and try to perform the motion at a slower speed. Make
sure that nothing is obstructing the robot's motion. If the error recurs, contact Omron Adept
Customer Service.

Hardware not in system (-805)

Explanation: An instruction has attempted to access optional hardware (such as a FORCE
board) that is not installed in the system.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 612

User action: Install the needed hardware or remove the instruction that addresses the
hardware.

Hard overspeed error Mtr n (-1029)

Explanation: Duringmanual mode, the safety hardware has detected an attempt to move a
robot axis at a speed faster than allowed. The motion is terminated and robot power is
disabled. This error should never occur if the servos are properly configured.

User action: Verify that the servos for this motor are properly configured. If the problem
persists, contact Omron Adept Customer Service.

HIGH POWER button not pressed (-646)

Explanation: You did not press the high power on/off button before the timeout period
expired. This message also can result from a faulty cable, Front Panel (FP).

User action: If working from the keyboard, reissue the enable power monitor command and
promptly press the high power on/off button when instructed to do so. If working from the
MCP, follow the procedure appropriate for enabling high power for the safety category of your
system. Promptly press the high power on/off button when instructed to do so. If the timeout
period is too short, adjust it by using the ACE controller config tools to change the POWER_
TIMEOUT statement in the eV+ configuration data.

Illegal array index (-404)

Explanation: An attempt has been made to: (1) use a negative value as an array index, (2)
use a value greater than 32767 as an array index, (3) specify a simple variable where an
array variable is required, (4) omit an array index in a situation where it is required (for
example, a 1-dimension array is specified when a 2- or 3-dimension array is required), (5)
specify an explicit index in an argument for an eV+ operation that requires a null array, or (6)
specify an index to the right of a blank index for a multiple-dimension array.

User action: Correct the line.

Illegal assignment (-403)

Explanation: The assignment operation just attemptedwas invalid, possibly because it
attempted to assign a value to a variable name that is a reservedword or a function.

User action: Reenter the line, using a different variable name if necessary.

Illegal digital signal (-405)

Explanation: A number or bit field specifies a digital signal that is not in one of the allowed
ranges or that is not installed. Attempting to set software signal 2032 (brake solenoid) will
also give this error.

User action: Correct the signal number and check your digital I/O configuration.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 613

Illegal expression syntax (-458)

Explanation:While decoding a numeric or logical expression, a compound transformation,
or a string expression, eV+ has encountered syntax that it does not understand. Possible
errors include unmatched parentheses, missing variables, or missing operators.

User action: Retype the line containing the expression, being careful to follow the eV+
syntax rules.

Illegal in debug monitor mode (-359)

Explanation: An operation was attempted that is not accepted in debugmonitor mode.

User action: Use a different command, change to debug editor mode, or exit from the
program debugger.

Illegal in read-write mode (-365)

Explanation: An editor function was attempted that cannot be performedwhile accessing a
program in read-write mode.

User action: Change to editing the program in read-only mode, or use a different editor
command.

Illegal I/O channel number (-518)

Explanation: An internal I/O channel number has been encountered that is invalid. This
indicates a eV+ internal software problem.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what
you were doing at the time the error occurred.

Illegal I/O device command (-502)

Explanation: A command to an I/O device was rejected by that device. Certain devices do
not accept all commands. For example, random access I/O is illegal to the terminal or to the
Kermit device; the GETC function cannot read from a disk file opened for random access. This
error may also indicate a hardware problem with the device controller.

User action: Correct the I/O command as required to suit the device. If you continue to
have difficulty, contact Omron Adept Application Engineering for assistance.

Illegal I/O redirection specified (-525)

Explanation: An unacceptable I/O redirection has been specified in a DEFAULTmonitor
command, a disk I/Omonitor command (LOAD or STORE_), or in an ATTACH instruction.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 614

Either there is a syntax error, or the requested redirection is not allowed for your I/O
configuration.

User action: Check the syntax of the offending statement. Make sure that the requested
redirection device is allowed on your I/O configuration.

Illegal joint number (-609)

Explanation: A joint number has been specified out of the allowed range.

User action: Correct the joint number.

Illegal memory reference (-418)

Explanation: An operation has attempted to reference an invalidmemory address. That is,
one that is either out of the allowed range, or that is not in use for any input/output module.

User action: Correct the address or install the missingmodule.

Illegal monitor command (-300)

Explanation: The name of the command just attemptedwas not recognized by the system,
possibly because it wasmistyped or because it was a program instruction and not a
command.

User action: Verify the spelling of the command name and enter the command again. Use
the DO command to invoke a program instruction from the terminal.

Illegal motion from here (-613)

Explanation: The motion just attempted cannot be performed from the current robot
location. For example, NEST can be executed only immediately after a READY instruction;
CALIBRATE can be executed only after power-up, LIMP, or NEST; and only CALIBRATE or
READY can be executed when the robot is in the nest.

User action: Perform the appropriate operation sequence before retrying the desired
motion.

Illegal operation (-423)

Explanation: A program instruction has attempted to perform an operation that is not
possible.

User action: Check the instruction executing when the error occurred. Make sure all
conditions necessary for its successful completion are met.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 615

Illegal .PROGRAM statement (-467)

Explanation: An attempt has been made to: (1) enter a line other than a .PROGRAM
statement as the first line of a program, or (2) enter a .PROGRAM statement that contains a
syntax error.

User action: Move below the first line of the program, or reenter the line correctly. (With
the eV+ SEE editor, you can press the Undo function key or press Esc+Ctrl+C to cancel the
changes you have made to a .PROGRAM line.)

Illegal record length (-528)

Explanation: An FOPEN instruction has specified a record length that is not acceptable. For
example, the value is negative or too large, or the record length is zero with random-access
mode specified.

User action: Edit the program to specify a correct record length or specify sequential-access
mode.

Illegal use of belt variable (-466)

Explanation: A belt variable has been used in a context where it is not allowed, probably in a
compound transformation but not at the left-most position.

User action: Edit the program to use the belt variable correctly.

Illegal user LUN specified (-527)

Explanation: An I/O instruction has specified a logical unit number (LUN) that is not defined
in the eV+ system, or cannot be accessed in the manner attempted. (See the description of
the ATTACH instruction for a list of the valid logical unit numbers and the devices to which
they apply.)

User action: Edit the program to use a logical unit number appropriate for the instruction.

Illegal value (-402)

Explanation: A numeric or expression value that is not in the allowed range was specified
within a command or instruction.

User action: Edit the program to use a legal value.

Illegal when command program active (-419)

Explanation: A command program is active and an attempt has been made to execute a
command that interferes with operation of the command program. (For example, processing
a ZERO command causes the command program to be deleted from the system memory.)

User action: Edit the command program and delete the command causing the error.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 616

Illegal when network enabled (-543)

Explanation: An attempt has been made to perform certain network functions that require
that the network be disabled, but the network is enabled.

User action: Disable the network and retry the operation.

Illegal while joints SPIN'ing (-637)

Explanation: An attempt has been made to execute a regular motion instruction while a
SPIN trajectory is being executed.

User action: Stop the SPIN trajectory with a SPIN or BRAKE instruction before executing a
regular motion instruction.

Illegal while protocol active (-548)

Explanation: This message indicates that you tried to enter passthru mode, or did
something unexpected on the serial line configured for use with Kermit while a file was being
processed.

User action: Make sure there is no file being accessed by Kermit, and retry the failed
operation.

Incompatible safety configuration (-644)

Explanation: The robot and controller do not have the same safety options.

On SmartController systems, this error displays if the Cat 3 option is selected while running a
SmartController with an old CIM board. If eV+ detects a 1394 Cat 3 robot when the Cat 3
option is not selected on the SmartController, the message includes the number of the robot
associated with the error.

User action: Make sure that the correct robot and controller are being used together. Install
(or remove) the appropriate EN954 Safety Category license in the controller.

Initialization error (-505)

Explanation: An I/O device reported an error condition during its initialization. Initialization
is performed during power-up, after a reset, andmay also be performed after certain
nonrecoverable I/O errors occur.

User action: Be sure that the hardware for the I/O device is properly installed. Repeat the
failed I/O operation. If the problem persists, contact Omron Adept Customer Service.

Initialization failure Belt n (-1015)

Explanation: The indicated belt encoder monitoring system failed to respond to eV+ during
the initialization caused by the DEFBELT instruction.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 617

User action: Power down the controller and restart. If the problem persists, contact Omron
Adept Customer Service. (You can prevent this error from being reported by enabling the
DRY.RUN system switch.)

Input block error (-511)

Explanation: A read error has occurred while reading a binary data file from the floppy disk.
This indicates that the wrong file was specified or that the data in the file is corrupted.

User action: Try the operation again. If the error recurs, use another diskette.

Input error Try again: (16)

Explanation: The input providedwas not consistent with what eV+ expected.

User action: Provide another response.

Interrupted multi-segment motion (-902)

Explanation: Currently, the only multiple-segment motions are MOVEF andMOVESF. For
these motion instructions, this error is signaled if the DEPARTmotion has been initiated, but
neither the APPROACH nor the final move to the destination is performed. For example, this
situation might occur if an envelope error is detected during the DEPART or the APPROACH
motion segments.

User action: Correct the problem that caused the robot motion to terminate prematurely
and reexecute or skip the multiple-segment motion.

Invalid ACE Sight parameter ID (-773)

Explanation: The ACE Sight parameter that eV+ is trying to set or get does not exist on the
SmartVision EX or ACE.

User action: The parameter code specified is not valid for the tool being referenced. Correct
the eV+ code.

Invalid ACE Sight parameter index (-774)

Explanation: The ACE Sight parameter that eV+ is trying to set is in a parameter array. The
array pointed to is valid, but the index is not.

User action: Correct the eV+ code.

Invalid ACE Sight sequence (-771)

Explanation: The vision sequence number in ACE Sight does not exist.

User action: Correct the ACE Sight sequence in the workspace.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 618

Invalid ACE Sight tool index (-772)

Explanation: The index of the vision tool in the eV+ vision command call does not exist. The
ACE Sight vision tool index is not valid.

User action: Check the sequence and the eV+ code.

Invalid argument (-407)

Explanation: An argument for a function, program instruction, or SEE editor command is
not in the accepted range.

User action: Verify the range of arguments for the function, program instruction, or editor
command being used.

Invalid connection specified (-540)

Explanation: An invalid logical network connection has been specified. For example, a zero
connection ID is invalid.

User action: Specify a valid logical connection ID.

Invalid disk format (-520)

Explanation: An attempt has been made to read a disk that is not formatted, or is formatted
improperly; or a FORMAT command has been entered that specifies invalid format
parameters for the device specified.

User action: If a FORMAT command has been entered, verify the command syntax and
retry the command. Otherwise, try a different diskette or reformat the current one.
Remember that formatting erases all information on the diskette. If the diskette was created
on an IBM PC, be sure it was formatted with one of the formats accepted by the eV+ system.

Invalid error code Belt n (-1010)

Explanation: An unrecognized error was reported by the controller for the indicated
conveyor belt.

User action: Attempt the operation again. If the error repeats, report the situation to
Omron Adept Application Engineering.

Invalid format specifier (-461)

Explanation: An unrecognized output format specifier was encountered in a TYPE or WRITE
instruction, or in an $ENCODE function.

User action: Edit the program to use a valid format specifier.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 619

Invalid hardware configuration (-533)

Explanation: An attempt has been made to access an I/O device in a manner inconsistent
with its current configuration. Either the I/O device is not present in the system, or it is
configured for some other use. For example, if a serial communication line is configured as a
network port, it cannot be accessed as a user serial line.

User action: Make sure the correct device is being accessed. Power down the controller and
try starting it again. Make sure the boot disk you are using is valid for your controller. Use the
CONFIG_C utility program tomake sure the serial I/O configuration is correct. If the problem
persists, contact Omron Adept Application Engineering for assistance.

If the error resulted from a disk I/O operation, it indicates that the disk controller hardware is
not configured correctly. Omron Adept Customer Service should be contacted in that case.

Invalid in read-only mode (-352)

Explanation: An editor function was attempted that cannot be performedwhile accessing a
program in read-only mode.

User action: Change to editing the program in read-write mode, or use a different editor
command.

Invalid network address (-561)

Explanation: This error occurs when a file server has not correctly exported the path being
accessed or when an IP network address specified is not of class A, B, or C.

User action: Check the IP addresses used to refer to network nodes.

Invalid network protocol (-541)

Explanation: Amessage has been received and rejected by a remote node because it does
not follow the expected protocol. If the KERMIT device was being accessed, this error
indicates that the remote server reported an error or sent a message not understood by the
eV+ Kermit driver.

User action: Verify that the network software version on the remote node is compatible
with the network software on the local node. DISABLE and ENABLE the affected network
nodes and retry the operation. If this error occurs repeatedly, contact Omron Adept
Application Engineering for assistance. (For more information about Kermit, see Kermit
Communication Protocol.)

Invalid network resource (-560)

Explanation: This error occurs when referring to a node that has not been defined.

User action: Check the node definitions.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 620

Invalid number format (-456)

Explanation: A syntax error was detected while reading a number. For example, an 8 or 9
digit was encountered while reading an octal number.

User action: Reenter the line with a valid number.

Invalid orientation (-619)

Explanation: Amotion has been requested to a location that is defined by a transformation
with its orientation pointed up instead of down.

User action: Correct the definition of the destination transformation. For example, you may
need to correct the base transformation in the compound transformation. (For SCARA robots,
the p component of all destination transformations should be approximately 180 degrees.)

Invalid program or variable name (-455)

Explanation: A user-defined name used in a command or instruction was not recognized by
eV+.

User action: Verify the name and retype the line.

Invalid qualifier (-476)

Explanation: An invalid qualifier was specified on the last command.

User action: Enter the command again, with a valid qualifier.

Invalid servo error Mtr n (-1001)

Explanation: An unrecognized error was reported for the indicated robot motor.

User action: Attempt the operation again. Contact Omron Adept Customer Service if the
error repeats.

Invalid servo initialization data (-625)

Explanation: During eV+ system initialization after booting from disk, servo initialization
data in the wrong format was found. This can be caused by using a version of the SPEC utility
that is incompatible with the eV+ system.

User action: Make sure your system disk has been configured correctly. Contact Omron
Adept Application Engineering for assistance.

Invalid software configuration (-315)

Explanation: During initial startup, eV+ has detected that the system software is not
configured properly for the options or hardware present.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 621

User action: Power down the controller and try starting it again. Make sure that the boot
disk you are using is valid for your controller. If the problem persists, contact Omron Adept
Customer Service for assistance.

Invalid statement label (-463)

Explanation: The program statement label was not an integer from 0 to 65535.

User action: Reenter the line with a valid label.

Invalid steps will be changed to ? lines (None)

Explanation: The AUTO.BAD extended command has been used to change the action to be
taken when an invalid line is detected while editing. Subsequently, such a line automatically
changed to a bad line with a question mark in column one.

User action: None. This is an informational message.

Invalid when program on stack (-366)

Explanation: An attempt has been made to edit a .PROGRAM or AUTO statement while the
program appears on some task execution stack. While a task is on a stack, its subroutine
arguments and automatic variable values are kept on the stack. Changes to these
statements modify the stack, which is not allowed.

User action: Remove the program from the stack by allowing the task to run until the
desired program executes a RETURN instruction, or issue a KILL monitor command to clear
the stack. If you are using the SEE program editor, press the Undo key to allow you to
continue editing.

Invalid when program task active (-311)

Explanation: An attempt has been made to begin execution of a robot or PC program task
when that task is already active.

User action: Abort the currently executing task, or execute the program as a different task,
if possible.

I/O communication error (-507)

Explanation: A hardware error has been detected in the I/O interface.

User action: Try your command again. If the problem persists, contact Omron Adept
Customer Service.

I/O queue full (-517)

Explanation: Toomany I/O requests have been issued to a device too quickly, and there is
nomore room to queue them.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 622

User action: Retry the operation. If the problem persists, it would be appreciated if you
would report the error to Omron Adept Application Engineering. Please include the details of
the error message and exactly what you were doing at the time the error occurred.

Is a directory (-568)
Explanation: The caller specified a directory in a nondirectory operation.

User action: Specifying a file that is not a directory, repeat the operation; or perform the
correct directory operation.

Joint control of robot not possible (-937)

Explanation: An attempt has been made to perform joint control of a robot for which it is not
allowed, like the Quattro robot.

User action: Select a different mode of control. For example, on the pendant you can use
WORLD or TOOL mode.

Kinematic solution not found (-936)

Explanation:While evaluating the kinematic solution, the current joint angles of the
Quattro robot do not form a consistent set.

User action: Modify the specified destination location (e.g., if a precision point is specified).
Press the Brake Release button, andmanually move the robot to a different location. If the
problem persists, contact Omron Adept Customer Service for assistance.

Line too long (-354)

Explanation: An operation was attempted that would have resulted in accessing a program
step that contains toomany characters. A single program step can contain at most about 150
characters.

User action: Enter the program step as two or more separate steps.

Location out of range (-610)

Explanation: eV+ has encountered a location that is too far away to represent (possibly
within an intermediate computation) or that is beyond the reach of the robot. This probably
indicates an error in a location function argument value or in a compound transformation.

User action: Verify that you are using location functions and operations correctly and edit
the program as required.

Location too close (-618)

Explanation: An attempt has been made tomove the robot to a location that is too close to
the robot column. This probably indicates an error in the value of a location function

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 623

argument or an incorrect compound transformation.

User action: Verify that you are using location functions and operations correctly and edit
the program as required.

Macro (Z ends): (None)

Explanation: Definition of a SEE editor macro command has been initiated.

User action: Enter the keystrokes to define the macro and then enter Z to terminate the
definition.

Manual brake release (-639)

Explanation: The robot's manual brake-release button is active. It is not possible to enable
power when this button is pressed.

User action: Make sure that the manual brake-release button (usually located on the
robot) is not active. If the problem persists even though the button is not pressed, call
Omron Adept Customer Service.

Manual control pendant failure (-650)

Explanation: A program has attempted to access the pendant when it is disconnected or
has failed.

User action: Make sure the pendant is connected properly. If the problem persists, contact
Omron Adept Customer Service.

Manual mode cannot be enabled (-932)

Explanation: The safety system has detected a fault condition that prevents manual mode
operation of the robot.

User action: Toggle the auto/manual switch. Restart the servos and reboot the controller.
Check the safety-related cables. If the problem persists, contact Omron Adept Customer
Service.

Manual mode switch 1 off detected by CPU (-917)

Explanation: An E-STOP condition has occurred duringmanual mode because the CPU has
detected on signal channel 1 that the manual mode key switch has been set to automatic
mode. Normally this message is suppressed and error -645 is reported. There may be a
hardware problem with the CIP, its cabling, or the AWC.

User action: If safe to do so, toggle the auto/manual key switch and attempt to enable
HIGH POWER again. Reseat the plug affixed to the JAWC connector on the CIP and the plug
affixed to the CIP connector on the AWC. Verify that the CIP is connected securely. If this
error persists, contact Omron Adept Customer Service.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 624

Manual mode switch 2 off detected by CPU (-918)

Explanation: An E-STOP condition has occurred duringmanual mode because the CPU has
detected on signal channel 2 that the manual mode key switch has been set to automatic
mode. Normally this message is suppressed and error -645 is reported. There may be a
hardware problem with the CIP, its cabling, or, most likely, the AWC.

User action: If safe to do so, toggle the auto/manual key switch and attempt to enable
HIGH POWER again. Reseat the plug affixed to the JAWC connector on the CIP and the plug
affixed to the CIP connector on the AWC.Verify that the CIP is connected securely. If this
error persists, contact Omron Adept Customer Service.

MCP enable switch 1 off detected by CPU (-915)

Explanation: An E-STOP condition has occurred because the CPU has detected on signal
channel 1 that the MCP enable switch (formerly called Hold-to-Run) has been released.
Normally, this message is suppressed and error -913 is reported. There may be a hardware
problem with the CIP or its cabling.

User action: Hold the MCP enable switch and re-enable HIGH POWER as desired. If this error
occurs frequently, contact Omron Adept Customer Service.

MCP enable switch 2 off detected by CPU (-916)

Explanation: An E-STOP condition has occurred because the CPU has detected on signal
channel 2 that the MCP enable switch (formerly called Hold-to-Run) has been released.
Normally, this message is suppressed and error -913 is reported. There may be a hardware
problem with the CIP or its cabling.

User action: Hold the MCP enable switch and re-enable HIGH POWER as desired. Reseat the
plug affixed to the JAWC connector on the CIP and the plug affixed to the CIP connector on
the AWC.

Memory Err at aaaaaa (None)

Explanation: During initialization, eV+ detected a hardware failure at the indicatedmemory
location.

User action: Power down the controller and start it again. If the error persists, contact
Omron Adept Customer Service.

Misplaced declaration statement (-471)

Explanation: Upon loading a program or exiting from the program editor, eV+ has
encountered an AUTO or LOCAL statement that follows an executable program instruction.

User action: Edit the program tomake sure that AUTO and LOCAL statements are preceded
only by blank lines, comments, or other AUTO and LOCAL statements.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 625

Missing argument (-454)

Explanation: A valid argument was not found for one or more of the arguments required for
the requested command or instruction. That is, the argument was not present at all or an
invalid argument was present. A possible cause is the use of a single equal sign (=) for the
equality relational operator (==).

User action: Verify the operation syntax and reenter the line.

Missing bracket (-475)

Explanation: In the specification of an array element, a left bracket has been foundwith no
matching right bracket. Either toomany left brackets are present or a right bracket has been
omitted.

User action: Reenter the line with correctly matching left and right brackets.

Missing parenthesis (-459)

Explanation: An attempt wasmade to evaluate an expression that did not have correctly
matching left and right parentheses.

User action: Correct the expression.

Missing quote mark (-460)

Explanation: A quoted string has been encountered that has nomatching quote mark
before the end of the line.

User action: Insert a quote mark at the end of the string. Strings may not cross line
boundaries.

Motor amplifier fault Mtr n (-1018)

Explanation: The power amplifier for the indicatedmotor has signaled a fault condition on
fault line 1. This fault occurs only for devices controlled by the AdeptMotion Servo system.
The interpretation of this fault depends on the particular device being controlled.

User action: Turn high power back on and restart the program. If the error persists,
implement procedures appropriate for your AdeptMotion system. If the robot is a standard
Omron Adept product, contact Omron Adept Customer Service.

Motor overheating Mtr n (-1016)

Explanation: The indicatedmotor is overheating.

User action: Reduce the speed, acceleration, and/or deceleration of the robot motions, or
introduce delays in the application cycle to give the motor an opportunity to cool.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 626

Motor stalled Mtr n (-1007)

Explanation: The indicatedmotor has stalled while being driven. This is usually caused by
the robot encountering an obstruction.

User action: Turn high power back on and restart the program. Remove the obstruction or
modify the program to have the robot follow a different path.

Motor startup failure Mtr n (-1105)

Explanation: During calibration, the indicatedmotor did not move as expected. The problem
may be: (1) the motor is obstructed or up against a limit stop, (2) the load on the robot is too
large for calibration, (3) the motor drive hardware is not functioning, or (4) the position
encoders are not functioning.

User action: Move the robot away from its limit stops and remove any unusual load. Turn
high power back on and try to calibrate again. Contact Omron Adept Customer Service if the
error persists.

Must be in debug mode (-360)

Explanation: An editor function was attempted that is accepted only when the program
debugger is active.

User action: Use a different editor command or activate the program debugger with the SEE
editor DEBUG extended command or the DEBUGmonitor command.

Must use CPU #1 (-666)

Explanation: A command or instruction that requires execution on CPU #1 has been
attempted on a different CPU.

User: action: Reexecute the command or instruction on CPU #1.

Must use straight-line motion (-611)

Explanation: A joint-controlledmotion instruction was attemptedwhile the system was in a
mode requiring that only straight-line motions be used. For example, while tracking a
conveyor, only straight-line motions can be used.

User action: Change the motion instruction to one that requests a straight-line motion.

Negative overtravel Mtr n* (-1032)

Explanation: The negative hardware overtravel switch for the indicatedmotor has been
tripped. Robot power has been disabled.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 627

User action: Manually move the robot back into range and re-enable power. Check the the
negative overtravel switch and its wiring. Use the CONFIG_C utility to adjust the robot soft
limits so they are inside the hard limits.

Negative square root (-410)

Explanation: An attempt has been made to calculate the square root of a negative number.

User action: Correct the program as required.

Network closed locally (-535)

Explanation: An attempt has been made to access a DDCMP serial line when the protocol is
not active. The protocol was probably stopped because of some other error condition.

User action: Restart the DDCMP protocol.

Network connection closed (101)

Explanation: A client connection has closed on the given logical unit.

User action: None. This is an informational message.

Network connection opened (100)

Explanation: A new client connection has been established on the given logical unit.

User action: None. This is an informational message.

Network connection terminated (-565)

Explanation: This error occurs when input or output operations are attempted on a
network connection that has already been terminated.

User action: Reestablish the network connection, and retry the original operation.

Network error Code n (value received)

Explanation: An error code between -255 and -1 (inclusive) has been received from the
network. The error code, which does not have meaning to eV+, is being reported to you.

User action: Application dependent. If the indicated code does not havingmeaning for the
current application, verify that the remote computer is sending valid data.

Network node off line (-538)

Explanation: An attempt has been made to send data to a known network node that is off-
line. Either the node has been disabled, or it is not connected to the network.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 628

User action: Make sure that the remote node is active and connected to the network. Make
sure that the local node is connected to the network.

Network not enabled (-542)

Explanation: An attempt has been made to access a remote network node, or perform
certain network functions, when the network is not enabled.

User action: Enable the network and retry the operation.

Network packet partially read (102)

Explanation: A network packet from the UDP driver was too big andwas only partially read.

User action: Retry the READ instruction for the UDP device. Change the parameters of the
sender to transmit smaller packets.

Network resource already in use (-587)

Explanation: An attempt has been made to use a network address or other network
resource that is already in use.

User action: Specify a different address or resource to use.

Network resource name conflict (-564)

Explanation: The name specifiedmatches an existing network resource name.

User action: Choose a different name.

Network restarted remotely (-534)

Explanation: eV+ has received a DDCMP start-upmessage from the remote system when
the protocol was already started. The remote system has probably stopped and restarted its
protocol. The local protocol is stopped and all pending I/O requests are completed with this
error.

User action: (1) Close and reopen the DDCMP line; (2) check the remote program logic to
see why it restarted the protocol.

Network timeout (-562)

Explanation: This error occurs when a network transaction is initiated but no reply is
received from the server.

User action: Check network integrity. Make sure the server is up and running. Make sure
the correct IP address is being used.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 629

No air pressure (-607)

Explanation: eV+ detected that the air supply to the robot brakes and hand has failed.
High power is turned off and cannot be turned on until the air pressure is restored.

User action: Restore the air pressure, turn high power back on, and resume program
execution. If the error persists, contact Omron Adept Customer Service.

No belt latch detected (-778)

Explanation: The belt has not been latched.

User action: Verify the latch signal cabling. Verify the latch signal configuration in eV+.

No data received (-526)

Explanation: An I/O read request without wait has not found any data to return. This is not
really an error condition.

User action: Continue polling the I/O device until data is received, or use a read request
that waits automatically for data to be received.

No matching connection (-539)

Explanation: A request for a logical network connection has been received and rejected
because there is nomatching connection on the remote node.

User action: Make sure that the proper logical connection was specified. Make sure that the
remote node is operating properly.

Nonexistent file (-501)

Explanation: (1) The requested file is not stored on the disk accessed. Either the name was
mistyped or the wrong disk was read.

(2) The requested graphics window title, menu, or scroll bar does not exist.

User action: (1) Verify the file name--use the FDIRECTORY command to display the
directory of the disk.

(2) Verify the name of the graphics window element specified.

Nonexistent subdirectory (-545)

Explanation: The subdirectory referenced in a file specification does not exist on the disk
that is referenced. Note that the subdirectory may be part of a default directory path set by
the DEFAULTmonitor command.

User action: Make sure that the subdirectory name was entered correctly. Make sure that
the correct disk drive was referenced and that the correct diskette is loaded. Use an

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 630

FDIRECTORY command to display the directory containing the subdirectory. Make sure that
the default directory path is correct.

No other program referenced (-353)

Explanation: A commandwas issued that attempted to reference a previously edited
program, but no other program has been edited during the current editing session.

User action: Use theNew orGoTo function-key command (or the N keyboard command)
to change to a new program.

No program specified (-301)

Explanation: No program was specified for an EXECUTE or SEE command or instruction, or
DEBUG command, and no previous program is available as a default.

User action: Type the line again, providing a program name.

No robot connected to system (-622)

Explanation: An attempt has been made to attach a robot with a system that does not
support control of a robot. (Note that some commands, instructions, and functions implicitly
attach the robot.)

User action: Make sure the system has been booted from the correct system disk (for
example, use the ID command to display the system identification). Change the program so
that it does not attempt to attach the robot.

Not a directory (-567)

Explanation: The caller specified a nondirectory in a directory operation.

User action: Specify a directory in the operation, or use the correct nondirectory operation.

Not attached to logical unit (-516)

Explanation: A program has attempted to perform I/O to a logical unit that it has not
attachedwith an ATTACH instruction. Logical unit 4 allows output without being attached,
but all other logical units require attachment for both input and output.

User action: Edit the program tomake sure it attaches a logical unit before attempting to
use it to perform I/O.

Not configured as accessed (-544)

Explanation: An attempt has been made to access a serial line or other I/O device in a
manner for which it is not configured. For example, a Kermit or network line cannot be
accessed as a simple serial line.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 631

User action: Verify the proper way to access the serial line for the current configuration.
Use the configuration utility program to display the serial line configuration and change it if
desired.

Not enough program stack space (-413)

Explanation: An attempt wasmade to call a subroutine, process a reaction subroutine, or
allocate automatic variables when the stack for the program task was too full.

User action: Reorganize the program logic to eliminate one or more nested subroutine calls
or reactions; eliminate some of the automatic variables that are allocated by the programs;
or use the STACKmonitor command to increase the size of the stack for the program task.
The program may be restarted with the RETRY command.

Not enough storage area (-411)

Explanation: There is nomore space in RAM for programs or variables.

User action: Delete unused programs and variables. If the memory is fragmented because
of numerous deletions, it can be consolidated by issuing the commands STORE save_all,
ZERO, and LOAD save_all. This writes the memory contents to the disk and reads them back
into memory. Note, however, that this procedure does not retain any variables that are not
referenced by any program in memory, nor does it retain the values of variables that are
defined to be AUTO or LOCAL.

Not found (-356)

Explanation: The search operation was unable to locate the specified string.

User action: Enter a new search string, or consider this an informational message and
continue with other operations.

Not owner (-566)

Explanation: The client does not have the correct access identity to perform the requested
operation.

User action: Modify the eV+ configuration (using the ACE controller configuration tool) as
required to gain access to the server. You may also need to change the access setup on the
server itself.

Not yet implemented (-1)

Explanation: This keyword is not implemented in this version of eV+.

User action: Upgrade to a newer version of eV+ or don’t use this keyword.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 632

Now reboot the controller to disable Adept Digital Workcell
simulation mode.(None)

Explanation: The eV+ monitor commandDISABLE ADW has been entered. This message
informs you that the controller must be rebooted to actually discontinue Digital Workcell
simulation mode.

User action: If Digital Workcell simulation mode is to be terminated, turn off power to the
controller, and turn power back on to reboot the eV+ system. Otherwise, enter the eV+
monitor command ENABLE ADW to cancel the effect of the previous DISABLE command.

Now reboot the controller to enable Adept Digital Workcell
simulation mode. (None)

Explanation: The eV+ monitor command ENABLE ADW has been entered. This message
informs you that the controller must be rebooted to initiate Digital Workcell simulation mode.

User action: If Digital Workcell simulation mode is to be used, turn off power to the
controller, start up the Digital Workcell software on the PC, and turn on power to the
controller. Otherwise, enter the eV+ monitor commandDISABLE ADW to cancel the effect of
the previous ENABLE command.

No zero index Belt n (-1011)

Explanation: The conveyor belt controller did not detect a zero-index mark for the indicated
belt.

User action: Make sure the belt encoder is connected properly. If the problem persists,
contact Omron Adept Customer Service.

No zero index Mtr n (-1004)

Explanation: The motor controller did not detect a zero-index mark for the indicated joint.

User action: Before you can resume running the program, you must recalibrate the robot. If
the problem persists, contact Omron Adept Customer Service.

NVRAM battery failure (-665)

Explanation: The nonvolatile RAM battery backup has failed and the RAMmay not hold valid
data.

User action: Replace the NVRAM battery.

NVRAM data invalid (-661)

Explanation: The nonvolatile RAM has not been initialized or the data has been corrupted.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 633

User action: Power down your controller and restart your system. If the error persists,
contact Omron Adept Customer Service.

Obsolete keyword (-2)

Explanation: This keyword is no longer supported.

User action: Don't use this keyword.

Obstacle collision detected (-901)

Explanation: A possible or actual collision has been detected between the robot and a
statically defined obstacle. Obstacles may include fixed objects in the workcell as well as
structural elements of the robot, such as its base. This error is similar to *Location out of
range* in that it is often detected by the kinematic solution programs as the robot is moving.

User action: Move the robot away from the obstacle and continue the motion or modify the
executing application program to avoid the obstacle. For application programs, this error may
indicate that either the planned end point of the motion collides with an object or that a
collision has been detected in the middle of a straight-line motion.

Okay to restart the servos (Y/N)? (12)

Explanation: You have entered the command ENABLE ADW while in Digital Workcell
simulation mode. In response to this command, eV+ restarts the servos to account for any
robot configuration changes that have made in the Digital Workcell system. eV+ is asking for
confirmation before restarting the servos.

User action: If ENABLE ADW was entered on purpose to restart the servos, enter "Y".
Otherwise enter "N". See the topic "Communicating with the Controller" in the Adept Digital
Workcell documentation for information about restarting the servos.

Old value: n, New value: n

Explanation: The specified watchpoint has detected a change in value for the expression
being watched. The change occurred because of execution of the program step just before
the one indicated.

User action: Enter a PROCEED (Ctrl+P), RETRY, SSTEP (Ctrl+Z), or XSTEP (Ctrl+X)
command to resume program execution.2 Otherwise, enter any other monitor command.

Option not installed (-804)

Explanation: An attempt has been made to use a feature of a eV+ system option that is not
present in this robot system.

User action: Power down the controller and try starting it again. Contact Omron Adept
Application Engineering if the problem repeats.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 634

Orientation out of range (-935)

Explanation:While evaluating the kinematic solution, the deflection of the moving platform
of the Quattro robot was found to be beyond the allowable extreme.

User action: Press the Brake Release button andmanually move the robot joints so that the
moving platform is nearer to its "square" shape.

Out of graphics memory (-549)

Explanation: There is nomore space in the graphics memory on the system processor for
windows, icons, fonts, or other graphics items.

User action: Delete unused graphics items, or reduce the size of windows, to free up
graphics memory.

Out of I/O buffer space (-532)

Explanation: An I/O operation cannot be performed because the eV+ system has run out of
memory for buffers.

User action: Delete some of the programs or data in the system memory and retry the
operation. (Also see *Not enough storage area*.)

Out of network resources (-559)

Explanation: This error applies to many circumstances. Listed below are several possible
cases:

1. Toomany ports are simultaneously in use for networking; there are nomore buffers
available for incoming and outgoing packets.

2. Toomany drives are beingmounted.

3. Toomany calls were made simultaneously from separate tasks to a nonfunctional server.

4. Toomany node names are being defined.

5. An incoming IP packet was fragmented into toomany pieces and eV+ was unable to
reassemble it. (This is a highly unlikely occurrence.)

User action: Correct the problem generating the error.

Output record too long (-529)

Explanation: A TYPE, PROMPT, or WRITE instruction has attempted to output a line that is
too long. The maximum line length is 512 characters.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 635

User action: Change the program to output less information from each instruction.
Remember that you can concatenate the output from separate instructions by using /S to
suppress the carriage return and line feed normally done at the end of each TYPE output.

Overtravel Mtr n (-1034)

Explanation: The indicatedmotor has moved beyond the hardware-limited range of
motion.

User action: Manually move the robot back into range and re-enable power. Check the the
overtravel switch and its wiring. Use the CONFIG_C utility to adjust the soft limits for the
robot so they are inside hard limits.

PANIC command (-633)

Explanation: You have entered an eV+ PANICmonitor command, or a program has
executed a PANIC program instruction, which has stopped the current robot motion. High
power is still enabled.

User action: To continue the current motion, enter the RETRYmonitor command. To
continue after the current motion, enter the PROCEEDmonitor command.

(PAUSED) (9)

Explanation: A PAUSE instruction has been executed, and thus the current program has
suspended execution.

User action: Any monitor command can be entered. To continue execution of the program,
type proceed followed by the task number if it is not 0.

Pendant Not Connected (-657)

Explanation: The pendant is not connected to the XMCP connector or it is not responding.

User Action: Check the connection, cable, and pendant.

Position out of range Jt n (-1002)

Explanation: (1) The requestedmotion was beyond the software-limited range of motion
for the indicated joint; (2) while enabling high power, eV+ detected that the indicated robot
joint was outside the software limit.

User action: (1) Modify the program as required to prevent the invalidmotion request.
(Because the robot did not actually move out of range, you do not need tomove the robot
before continuing); (2)move the robot back into the working envelope. Correct whatever
caused the robot to get into the restricted area, and enable power.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 636

Position out of range Mtr n (-1023)

Explanation: (1) The requestedmotion was beyond the software-limited range of motion for
the indicatedmotor; (2) while enabling high power, eV+ detected that the indicated robot
motor was outside the software limit.

User action: (1) Modify the program as required to prevent the invalidmotion request
(Because the robot did not actually move out of range, you do not need tomove the robot
before continuing.); (2)move the robot back into the working envelope. Correct whatever
caused the robot to get into the restricted area, and enable power.

Positive overtravel Mtr n (-1033)

Explanation: The positive hardware overtravel switch for the indicatedmotor has been
tripped. Robot power has been disabled.

User action: Manually move the robot back into range and re-enable power. Check the the
positive overtravel switch and its wiring. Use the CONFIG_C utility to adjust the soft limits for
the robot so they are inside the hard limits.

Power disabled: Manual/Auto changed (-645)

Explanation: eV+ disables power when the Controller Interface Panel (CIP) switch moves
from manual to auto or vice versa.

User action: Use any validmethod to enable high power.

Power failure detected (-667)

Explanation: Indicates that a controller AC power-fail condition has been detected. If
battery backup is installed, this error is reported (when power is restored) by any I/O
operations that were canceled due to the power failure. This error code may be trapped by a
program using the REACTE instruction in order to provide some level of automatic power
failure response.

User action: You may need to restart or repeat any operations that were interrupted by the
controller AC power failure. Some reinitialization of the system may be required: for example,
any robot(s) connected to the controller must be recalibrated after a controller power failure.

Power failure detected by robot (-632)

Explanation: Indicates that a robot amplifier has detected an under-or over-voltage of its
internal DC Bus. This may be due to AC power supply out of spec of 200V-240V or a motion
that is too hard or too fast for the payload of the robot.

User action: Verify the voltage on the AC input line. Lower the speed, acceleration or
deceleration of the robot. Reduce the payload if possible.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 637

Press HIGH POWER button to enable power (57)

Explanation: The high power on/off button on the front panel must be pressed to complete
the process of enabling high power.

User action:When the high power on/off button on the Controller Interface Panel (CIP)
blinks, promptly press the button to complete the two-step process of enabling high power.
(You must press the button within the time period specified in the eV+ configuration data.)

Press HIGH POWER button when blinking (60)

Explanation:When enabling power for Cat3 systems which are in manual mode, the HIGH
POWERON/OFF button on the front panel must be pressed after the Hold-to-run button has
been released and held. The light on the HIGH POWERON/OFF button will blink when it is
time to press it. You must press the button within the time period specified in the eV+
configuration data (which by default is ten seconds).

User action:When the HIGH POWERON/OFF button on the VFP blinks, promptly press the
button to complete the two-step process of enabling high power.

Processor crash CPU = n (None)

Explanation: eV+ has detected that the specified CPU within the controller has entered a
fatal error state. A crash message from that processor is displayed immediately following. A
software error or hardware problem with that processor is likely.

User action: It would be appreciated if you would report the error to Omron Adept
Application Engineering. Please include the details of the error message and exactly what
you were doing at the time the error occurred. You should store the programs that are in
memory, power down the controller, and start it again. (If the processor ID shown is 1, you
can restart eV+ by pressing Ctrl+G. The robot servos do not function, but you can STORE the
programs in memory.) If the problem persists, contact Omron Adept Customer Service.

Program already exists (-309)

Explanation: An attempt has been made to LOAD a program that already exists, or to COPY
or RENAME a program to a name that is already in use.

User action: Delete the conflicting program or use a different name.

Program argument mismatch (-408)

Explanation: The arguments in a CALL, CALLS, or EXECUTE instruction do not match the
arguments in the program being referenced because they are of different types.

User action: Modify the CALL, CALLS, or EXECUTE instruction, or the .PROGRAM statement
of the referenced program, so that the argument types match. If arguments are omitted in

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 638

the CALL, CALLS, or EXECUTE instruction, make sure the appropriate commas are included
to position the arguments that are present.

Program completed (3)

Explanation: The program has been executed the number of times specified in the last
EXECUTE command or instruction.

User action: Any monitor command can be entered, except that PROCEED cannot be used
to resume program execution.

Program HOLD (15)

Explanation: The RUN/HOLD button on the pendant has been pressedwhile a robot
program was executing, and it is now suspended.

User action: Any monitor command can be entered. To continue execution of the program,
type proceed or retry, or press the PROGRAM START button on the controller. (The
RUN/HOLD button can be held down to temporarily resume execution of the program if the
front-panel keyswitch is in the MANUAL position.)

Program interlocked (-308)

Explanation: An attempt has been made to access a program that is already in use by some
eV+ process. For example, you have attempted to delete or edit a program that is being
executed, or execute a program that is being edited.

User action: Abort the program or exit the editor as appropriate and retry the operation. You
can use the SEE editor in read-only mode to look at programs that are interlocked from read-
write access.

Program name? (None)

Explanation: A SEE editor command to change to a different program has been entered.

User action: Enter the name of the new program to be edited, or press Return to cancel the
request.

Program not executable (-307)

Explanation: Because of program errors detected during loading or upon exiting from the
editor, this program cannot be executed.

User action: Edit the program to remove any errors.

Program not on top of stack (-421)

Explanation: A DO context specification has referenced an automatic variable or a
subroutine argument in a program that is not on the top of the stack for the specified task.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 639

User action: Reenter the DO command and specify the correct program context or
eliminate references to automatic variables and subroutine arguments. Use the STATUS
command to determine which program is on the top of the stack.

Program program_name doesn't exist. Create it (Y/N)? (None)

Explanation: An attempt has been made to use the SEE editor to access a program that
does not currently exist.

User action: Enter a Y to have the program created. Any other input, including just
pressing Return, cancels the edit request.

Program task # stopped at program_name, step step_number date
time (4)

Explanation: Execution of the program task indicated by # has terminated for the reason
indicated in the message that preceded this message. The step number displayed
corresponds to the next NEXT program step that is executed (for example, if PROCEED were
entered). The current date and time are displayed if the system date and time have been set.

User action: None. This is only an informational message.

Program task not active (-318)

Explanation: An attempt wasmade to abort a task that was not active.

User action: None required if the correct task number was specified. Otherwise, use the
STATUS command to determine which task number should have been used.

Program task not in use (-319)

Explanation: A program task cannot be accessed because it has never been used. (Such
program tasks do not use any system memory and do not appear in the STATUS display.)

User action: None.

Protected program (53)

Explanation: An attempt has been made to list a program that is protected from user
access.

User action: None.

Protection error (-530)

Explanation: An I/O operation cannot be performed because (1) it attempted to write to a
disk that is write protected, or (2) you do not have the proper access status.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 640

User action: Check the diskette to make sure the write-protect tab is in the correct position.
Use an FDIRECTORY command to display the disk directory. If the file has protected (P) or
read-only (R) protection, you cannot access it in the way attempted.

Push, release, hold, MCP enable switch (58)

Explanation: You are attempting to enable HIGH POWERwhile in manual mode. This
operation requires that the MCP enable switch be tested. HIGH POWER cannot be enabled
unless you toggle the switch to test it.

User action: Push, then release, then hold the enable switch within a limited time.
Alternately, you can change from manual mode to automatic mode.

Recursive macros illegal (-357)

Explanation: An attempt wasmade to execute a macro recursively. That is, the macro
contained a command character sequence that (directly or indirectly) restarted execution of
the macro.

User action: Change the macro definitions as necessary to make sure neither macro
invokes itself. You can have the U macro invoke the Ymacro, or vice versa (but not both).

*Release then press Hold-to-run button (58)

Explanation:When enabling power for Cat3 systems which are in manual mode, the Hold-
to-run button in the handle of the MCPmust be released then pressed and held. The release
timemust be between two and ten seconds.

User action: Promptly release then press the button when this message is displayed. Make
sure that you press the Hold-to-run switch and not the Run/Hold button on the top of the
MCP.

Remote digital input failed Block n (-1112)

Explanation: If displayed during startup, eV+ has failed to detect the specified remote digital
input block on the servo network. This is caused by one of the following conditions: the
required node is not connected to the network; the eV+ I/O configuration is incorrect; or the
configuration of the servo nodes is incorrect. If encountered during normal operation, the
remote digital input block has stopped supplying data. The servo network or remote network
node may have failed.

User action: If this error occurs during startup, verify that all required network nodes are
connected. Use the SRV.NETmonitor command to verify that the network nodes contain the
desired input blocks. Verify that the eV+ I/O configuration matches the network node digital
input configuration. If this error occurs during normal operation, reinitialize your servo
network or reboot your controller. If the problem persists, contact Omron Adept Customer
Service.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 641

Remote digital output failed Block n (-1113)

Explanation: During startup, eV+ has failed to detect the specified remote digital output
block on the servo network. This is caused by one of the following conditions: the required
node is not connected to the network; the eV+ I/O configuration is incorrect; or the
configuration of the servo nodes is incorrect.

User action: Verify that all required network nodes are connected. Use the SRV.NET
monitor command to verify that the network nodes contain the desired output blocks. Verify
that the eV+ I/O configuration matches the network node digital output configuration.

Remote has not exported network resource (-563)

Explanation: The server has not exported the designated path for use by clients.

User action: Check the server setup, and check the path that the eV+ system uses.

Reserved word illegal (-457)

Explanation: An attempt has been made to use an eV+ reservedword for a variable name.

User action: Use a different name for the variable. You can, for example, append a prefix or
suffix to the attempted name.

Return manual control pendant to background display (^C to exit)
(None)

Explanation: The pendant display must be in backgroundmode for the operation you have
selected.

User action: Press the DONE button on the pendant one or more times to exit the current
function.

Robot already attached to program (-602)

Explanation: A program has executedmore than one ATTACH instruction for the robot,
without executing a DETACH in between. Or an attempt has been made to SELECT another
robot when one is already attached. The robot is still attached even after this error occurs.

User action: Check the program logic-remove redundant ATTACH instructions, or DETACH
the current robot before attempting to SELECT another robot.

Robot already under manual control (-938)

Explanation: An attempt has been made to control the robot from the ACE virtual pendant,
or a JOG program instruction or Monitor command has been issued, while the robot is already
being controlled from the pendant.

User action: COMPmode from the pendant.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 642

Robot configuration option or model illegal (-930)

Explanation: During the booting sequence, a selected robot kinematic module detected a
specified optional configuration mode or model number that is not supported in either this
version of eV+ or by this kinematic module. Often, this occurs if you have enabled a feature
that is only available in enhanced kinematic module and you have loaded the standard
kinematic module.

User action: Verify that you have the required version of eV+ and that the kinematic
module supports the robot model and configuration options that you have selected. If you do
not have a license for the required kinematic module, either turn off the option or purchase
the required license.

Robot interlocked (-621)

Explanation: (1) An attempt has been made to access a robot or external device that is
already being used by a different program task or by the system monitor; (2) an attempt has
been made to calibrate the robot with the controller in manual mode, which is not allowed for
safety reasons.

User action: (1) Review the program logic andmake sure the robot or device is being
controlled by only one program task; (2) Move CIP key switch to the automatic mode position
or set the user manual mode signals appropriately.

Robot module not enabled (-900)

Explanation: The indicated robot module is present in memory, but it was not enabled for
use due to an error (which is reported by a separate message).

User action: Use the CONFIG_C and/or SPEC utilities to correct the module configuration.

Robot module not loaded ID: n (-628)

Explanation: This error occurs only during startup when a robot module has been
configured using the CONFIG_C utility, but the robot module is not present in memory.

User action: Use the CONFIG_C utility to add the robot module to the boot disk before
rebooting.

Robot not attached to this program (-601)

Explanation: An attempt has been made to execute a robot-control command or instruction
in one of the following invalid situations:

(1) The system is not configured to control a robot. (2) There is no robot connected to the
system. (3) The robot is attached to a different program task.

User action: (1) Make sure the system is booted from the proper system disk, or remove the
robot-control instruction.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 643

(2) Connect the robot or enable the DRY.RUN system switch.

(3) Modify the program logic as required to ensure that only one program task is controlling
the robot at any given time.

Robot not calibrated (-605)

Explanation: An attempt has been made to execute a robot-control program when the
robot is not calibrated. Nomotion is allowed until the robot is calibrated.

User action: If you want to use the robot, issue a CALIBRATE command or have your
program execute a CALIBRATE instruction. Or enable the DRY.RUN switch to allow program
execution without using the robot.

Robot overheated (-606)

Explanation: (1) Robot joint 1 has been moved into the hardware brake track area, which
causes high power to be turned off and prevents the robot from moving.

(2) The robot base has become overheated.

User action: (1) Push the brake release button at the robot base andmove the joints back
into the normal working range. Turn on high power and continue program execution.

(2) Check the fan filter on the robot base, and check the ambient temperature of the robot.
Allow the robot to cool down, turn on high power, and continue program execution.

Robot power off (-604)

Explanation: The requested operation cannot be performed because HIGH POWER is off.

User action: Enable power and retry the operation.

Robot power off requested (-906)

Explanation: HIGH POWER has been turned off because of a program or user request, such
as issuing a DISABLE POWER command.

User action: None required.

Robot power on (-627)

Explanation: An attempt has been made to perform an action that requires high power to
be off.

User action: DISABLE POWER and reexecute the action.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 644

Robot power system failure Code n (-1115)

Explanation: The servo interface has detected a fault in the robot power system. The code
number provides more detailed information about the fault. Consult your amplifier reference
manual to interpret the code values.

User action: Depends on the particular code value. In general, check the servo and amplifier
cabling. Power-down and restart your controller and servo nodes. If the problem persists,
contact Omron Adept Customer Service.

RSC bad packet format (-655)

Explanation: eV+ has received an incorrect data packet from the robot signature card,
during the initial calibration data load.

User action: None unless the calibration load fails. If the problem persists, contact Omron
Adept Customer Service.

RSC calibration load failure (-656)

Explanation: eV+ cannot load calibration data from the robot signature card (RSC).

User action: Power down the controller andmake sure the robot cables are correctly and
securely connected. If the problem persists, contact Omron Adept Customer Service.

RSC communications failure (-651)

Explanation: eV+ has lost communications with the robot signature card (RSC). Either a
hardware problem has occurred or the robot is being operated in an environment with
excessive electrical noise.

User action: Check the connections of the robot cables. Turn high power back on, calibrate
the robot, and resume program execution. If the problem persists, contact Omron Adept
Customer Service.

RSC hardware failure (-669)

Explanation: The RSC has reported an internal failure. Because RSC failures almost always
cause the RSC to stop communicating altogether (rendering it incapable of reporting the
failure), this error message may be due to some other cause, such as electrical noise at the
RSC or within or around the arm signal cable.

User action: If the problem persists, contact Omron Adept Customer Service.

RSC module ID doesn't match robot (-676)

Explanation: The eV+ configuration data contains an explicit ID specification for a robot
module (for example, 6 for the 550 robot), and the robot RSC does not contain that ID

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 645

number.

User action: Make sure that the correct type of robot is being used. Use the CONFIG_C
utility to change the module ID to -1 in the eV+ configuration data. Correct the module ID in
the RSC.

RSC power failure (-670)

Explanation: The RSC has reported that its power is failing. Because a power failure on the
RSC almost always causes it to stop communicating altogether (rendering it incapable of
reporting the failure), this error message may be due to some other cause, such as electrical
noise at the RSC or within or around the arm signal cable.

It is possible that the power lines to the RSC have an intermittent connection somewhere.

On FireWire Robots this error indicates that a robot amplifier has detected an under- or over-
voltage of its internal DC Bus. This may be due to AC power supply out of spec of 200-240V
or a motion that is too hard or too fast for the payload of the robot.

User action: If the problem persists, contact Omron Adept Customer Service.

RSC reset (-652)

Explanation: eV+ has detected that the robot signature card (RSC) has lost power
temporarily, but is now functioning.

User action: Turn high power back on and resume program execution. If the problem
persists, check the cabling to the robot. Contact Omron Adept Customer Service if no
solution can be found.

RSC time-out (-653)

Explanation: eV+ has not received a response from the robot signature card (RSC) when
expected, during the initial calibration data load. The RSC or its cabling is probably faulty.

User action: Power down the controller and check the cables to the robot. If the problem
persists, contact Omron Adept Customer Service.

RSC transmission garbled (-654)

Explanation: eV+ has received an invalid transmission from the robot signature card
(RSC). Either a hardware problem has occurred or the robot is being operated in an
environment with excessive electrical noise.

User action: None unless the calibration load fails or RSC communications fail. If the
problem persists, contact Omron Adept Customer Service.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 646

Safety speed limit error Chn n (-1035)

Explanation: During system startup or a servo reset, the servo self-test has determined
that the safety speed limit hardware is not functioning properly. Robot power cannot be
enabled.

User action: Power-down and restart your controller and servo nodes. If the problem
persists, contact Omron Adept Customer Service.

Safety system fault Code n (-1109)

NOTE: If you are using an AIB robot, such as the Cobra 600/800, refer to the document
Status Code Summary for Embedded Products.

Because the status codes are related to hardware, refer to your robot hardware
documentation as your primary source of information for correct hardware and safety system
setup. You should also re-commission the robot. (For details, see the hardware
documentation for your robot.) If it does not resolve the problem, contact Omron Adept
Customer Service.

If one of these message codes occurs, stand away from the robot and attempt to enable
power again. If the same error code occurs again for no apparent reason, there may be a fault
with the sensor.

Safety system init failure Code n (-1108)

NOTE: See also details of messages codes in error -1109.

Because the status codes are related to hardware, refer to your robot hardware
documentation as your primary source of information for correct hardware and safety system
setup. You should also re-commission the robot. (For details, see the hardware
documentation for your robot.) If it does not resolve the problem, contact Omron Adept
Customer Service.

Safety system not commissioned (-648)

Explanation: A system with the EN954 Safety Category 3 option (pre-2012)—the Manual
Mode Safety Package (MMSP)—has not been successfully commissionedwith the SAFE_UTL
utility program.

OR

A system with the PL=d Safety (according to ISO 13849) has not been successfully
commissionedwith ACE Safety Commissioning Utility or has been decommissioned by the
internal self-checking firmware.

User action: Test the safety with the SAFE_UTL utility program or ACE Safety
Commissioning Utility before enabling power for the first time. You should then rerun the

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 647

SAFE_UTL utility program or ACE every three months to re-commission the robot. If you
have connected the robot to a different controller or replaced the controller or the SIO
module, repeat the test. (For details, see the documentation for the SAFE_UTL program or
the ACE User's Guide, and the hardware documentation for your robot.)

Searching for string (exact case) (None)

Explanation: The SEE editor command 0' has been entered. The editor is prepared to
search for the string indicated, in the search mode indicated.

User action: This is an informational message. You can use the Repeat command to
perform the indicated search, or you can use Find (or Change) to initiate a new search (or
replacement) operation. The EXACT extended command controls the setting of the search
mode.

Searching for string (ignoring case) (None)

Explanation: The SEE editor command 0' has been entered. The editor is prepared to
search for the string indicated, in the search mode indicated.

User action: This is an informational message. You can use the Repeat command to
perform the indicated search; or you can use Find (or Change) to initiate a new search (or
replacement) operation. The EXACT extended command controls the setting of the search
mode.

Servo board E-Stop fuse open (-673)

Explanation: Your servo board has a fused E-STOP circuit, and the system has detected an
open circuit at that location.

User action: Refer to your hardware documentation, consult with Omron Adept Customer
Service as needed for details about types and locations of fuses, and replace the fuse.

Servo board 12v fuse open (-671)

Explanation: Your servo board has a fused 12-volt bus, and the system has detected an
open circuit at that location.

User action: Refer to your hardware documentation, and replace the fuse.

Servo board solenoid fuse open (-672)

Explanation: Your servo board has a fused robot solenoid control line, and the system has
detected an open circuit at that location.

User action: Refer to your hardware documentation, and replace the fuse.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 648

Servo hardware init failure (-931)

Explanation: During system startup or after a servo reset, the servo software had detected
that it could not initialize its hardware. This is a generic error when more specific error
information is not available.

User action: Restart the servos and reboot the controller. Check the safety-related cables. If
the problem persists, contact Omron Adept Customer Service.

Servo node not downloaded (-680)

Explanation: eV+ has attempted to use a servo node that does not contain properly
downloaded software. Servo node software is only loaded at eV+ startup time. One of the
following has happened: 1. You are using a servo node that is not supported by the eV+
system software; 2. You have plugged in a new servo node after eV+ was started.

User action: Reboot eV+ and try again. Make sure your software is compatible with your
1394 nodes. Update the 1394 firmware.

Servo protocol incompatible(-677)

Explanation: During startup, eV+ has detected a remote node on the servo network that is
incompatible with the current eV+ system because incompatible versions of software are
being used. The servo network does not operate.

User action: Use the SRV.NETmonitor command to determine which network nodes are
causing this error. Verify that the proper eV+ software is being used. Verify that the servo
nodes were configured using the proper utility program version.

Servo task overloaded (-674)

Explanation: A servo interrupt task has used up all the execution time. The detection
algorithm reports an error when the servo interrupt task completely occupies 10 or more
time slices per second of real time. The robot went to a fatal error state when this error
occurred, and the servo interrupt task stopped running.

User action: Change one or more of the following: (1)move servo tasks off CPU #1 to allow
more time for trajectory generation, (2) upgrade the system processor to increase the
throughput, or (3) reduce the number of robots or axes that you are operating.

Set for CASE DEPENDENT searches (None)

Explanation: The EXACT extended command has been used to change the method by which
character case is considered during string searches. The message indicates how case is
considered in subsequent searches (for the current or future search-for strings).

User action: None. This is an informational message.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 649

Set for CASE INDEPENDENT searches (None)

Explanation: The EXACT extended command has been used to change the method by
which character case is considered during string searches. The message indicates how case is
considered in subsequent searches (for the current or future search-for strings).

User action: None. This is an informational message.

Skew envelope error Mtr n (-1022)

Explanation: The twomotors associated with a split robot axis were not tracking each other
with sufficient accuracy.

User action: Make sure nothing is obstructing the robot motion. Turn on high power and
try to perform the motion at a slower speed. If necessary, use the SPEC utility to increase
the maximum skew error.

Soft envelope error Mtr n (-1006)

Explanation: The indicatedmotor was not tracking the commanded position with sufficient
accuracy, indicating a failure in the hardware servo system or something impeding the path
of the robot. Because this was not considered a serious error, a controlledmotion stop
occurred and high power remains on.

User action: Try to perform the motion at a slower speed. Make sure nothing is obstructing
the robot's motion.

Soft overspeed error Mtr n (-1028)

Explanation: Duringmanual mode, the servos have detected an attempt to move a robot
axis at a speed faster than allowed. The motion is terminated but robot power remains
enabled.

User action: Move the robot at a slower speed. If you are near a mechanical singularity,
move the robot using jointmode instead ofworld or toolmode.

Software checksum error (-316)

Explanation: During processing of a FREE command the eV+ system has detected a
checksum error in the system memory. This indicates a problem with the system software or
hardware. (Note, however, that a checksum error is introduced if any patches are made to
the system software after the system is loaded from disk and started up.) The following
codes are appended to the message indicating where the error occurred: Os, operating
system; eV+, eV+ interpreter or trajectory generator; Vi, vision software; Sv, servo
software.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 650

User action: Report to Omron Adept Application Engineering the error and information
about any possible contributing circumstances. You can continue to use the system, but you
should keep in mind the possibility of a problem with the hardware.

Software incompatible Code n (-1026)

Explanation: The servo code has detected an incompatibility between the servo code and
calibration software.

User action: Make sure that you are using the calibration software (in the \CALIB\ directory)
that you receivedwith the eV+ system you are using. If you are using the correct software,
note the code number, and call Omron Adept Customer Service.

Speed pot or STEP not pressed (-620)

Explanation:While the controller was in manual control mode, a eV+ program tried to
initiate a robot motion, but you failed to press the step button and speed bar on the MCP.

User action:When an eV+ program is about to initiate robot motions, press the step button
and speed bar on the MCP. To continue the motion once it has started, you can release the
step button but must continue to press the speed bar. Set the controller to automatic mode.

SPIN motion not permitted (-638)

Explanation: Either a SPIN instruction has attempted tomove a joint that has not been
configuredwith the continuous-rotation capability or the robot is currently tracking a belt or
moving under control of an ALTER instruction.

User action: Configure the joint with continuous-rotation capability, or complete the belt
tracking or ALTER instruction before attempting to execute the SPIN instruction.

Step syntax MUST be valid (None)

Explanation: The SEE editor's AUTO.BAD extended command has been used to change the
action to be taken when an invalid line is detected while editing. Subsequently, the editor
requires that such a line be corrected before you are able to perform any operation that
moves the cursor off the bad line.

User action: None. This is an informational message.

Stop-on-force triggered (-623)

Explanation: A force-sensor GuardedMode trip occurred when the robot was not under
program control.

User action: High power must be re-enabled before robot motion may continue. If the trip
was not desired, make sure that GuardedMode is disabled before the program relinquishes
control of the robot to the manual control pendant.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 651

Stopped due to servoing error (-600)

Explanation: Program execution has stopped because of one or more servo errors.

User action: Correct the source of the reported servo errors, referring to your system
hardware manual as required.

Storage area format error (-305)

Explanation: During execution of a FREE command, eV+ has detected that programs or
data in RAMmay have been corrupted. This may have been caused by amomentary
hardware failure or a software error.

User action: Attempt to save as much as possible onto the disk. Then enter a ZERO
command or power down the controller and restart the system.

Straight-line motion can't alter configuration (-612)

Explanation: A change in configuration was requested during a straight-line motion. This is
not allowed.

User action: Delete the configuration change request, or use a joint-interpolatedmotion
instruction.

String too short (-417)

Explanation: A program instruction or command expected a string argument with a certain
minimum length and received one that was too short.

User action: Review the syntax for the program instruction and edit the program to pass a
string of the correct length.

String variable overflow (-416)

Explanation: An attempt has been made to create a string value that is greater than the
maximum string length of 128 characters.

User action: Edit the program to generate strings of the proper length.

Subdirectory in use (-547)

Explanation: An attempt has been made to delete a subdirectory that still contains files or
that is being referenced by another operation (for example, an FDIRECTORY command).

User action: Make sure that all the files within the subdirectory have been deleted. Make
sure that no other program tasks are referencing the subdirectory. Retry the delete
operation.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 652

Subdirectory list too long (-546)

Explanation: A directory path contains toomany subdirectories, or the directory path is too
long to be processed. The path is a combination of subdirectories in the file specification and
the default directory path set by the DEFAULTmonitor command. Directory paths are limited
to a total of 16 subdirectories and 80 characters (including any portion of the directory path
specified by the current default path).

User action: Specify a shorter directory path in the file specification or in the DEFAULT
command. If you are accessing a foreign disk that contains more than 16 nested
subdirectories, you cannot read the files in subdirectories nested deeper than 16 levels. In
this case, you must use the system that created the disk to copy the files to a directory that is
nested less deeply.

Switch can't be enabled (-314)

Explanation: An ENABLE command for a certain switch has been rejected because of some
error condition. For example, ENABLE POWER fails if the system is in FATAL ERROR state.

User action: Review the description for the switch you are trying to enable, correct the error
condition, and try again.

SYSFAIL detected by CPU (-629)

Explanation: A board on the VMEbus has encountered a severe error and asserted the
SYSFAIL signal which turns off HIGH POWER. The watchdog timers on the CPU boards assert
this signal and light the SF LED if severe software errors occur.

User action: Check the SYSFAIL LEDs on the front edge of the boards. The board which has
failed should light its LED. Restart the system. Verify proper seating of the system boards and
correct device connections to the boards. Test the system with as many boards removed as
possible, adding boards back in until the problem board is identified. If the problem persists,
contact Omron Adept Customer Service.

SYSFAIL detected by robot (-642)

Explanation: The motion interface board has detected a SYSFAIL signal on the VMEbus and
has asserted the backplane E-STOP signal. This error is normally superseded by other errors
and not seen.

User action: Check for a subsequent message. To determine if there was an unreported RSC
error, type listr error(task,4), where task is the number of the task that received the error.
If no additional information is available, call Omron Adept Customer Service.

Task = (None)

Explanation: The SEE editor DEBUG extended command has been used to initiate a
program debugging session for the current program. The debugger needs to know which

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 653

program task you want to use when executing the program.

User action: Enter the desired task number, or press Return to access the same task used
for the last debugging session.

Template already defined (-748)

Explanation:When defining a new correlation template with the program instruction
VTRAIN.MODEL, the number of an existing template was given.

User action: Delete the existing template if it is no longer needed, or use a different
number in the VTRAIN.MODEL instruction.

Template of uniform intensity (-746)

Explanation:When defining a correlation template with the VTRAIN.MODEL program
instruction, the area of the image within the given template bounds has uniform intensity.
Image templates must have some variation in brightness. (That is, there must be some
features in the template to correlate with later.)

User action: Check the position of the template in the image andmake sure it is in the
desired place. Also, view the grayscale image in the current frame tomake sure it is valid.
(For example, maybe a strobe light did not fire, or the lens cap is still on the camera.)

Template not defined (-747)

Explanation: The correlation template referenced in a VCORRELATE, VDELETE,
VSHOW.MODEL, or VSTORE operation does not exist.

User action: Verify the correlation number supplied to the operation. Use the Models pull-
down menu in the vision window (or the VSHOW.MODEL program instruction) to get a list of
the templates currently defined in the vision system.

Time-out enabling amplifier Mtr n (-1009)

Explanation: The power amplifier for the indicatedmotor has signaled a fault condition. A
momentary power failure or a hardware error may have occurred.

User action: Turn high power back on and restart the program. If the error persists, contact
Omron Adept Customer Service.

Timeout enabling power (-675)

Explanation: High power did not enable within the allowed amount of time, and the servos
reported no other error during the timeout period.

User action: For non-Omron Adept robots, use the SPEC utility to increase the value of the
high power time-out.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 654

For Omron Adept robots, double-check your installation (cabling, AC power line voltages,
circuit breakers, amplifier retaining screws, cables, and contactors). For information about
the correct configuration for installation, refer to your Robot Instruction Handbook. Make
sure that the amplifier chassis is properly connected to a power source and is turned on. Try
again. If the problem persists, contact Omron Adept Customer Service.

Timeout: MCP enable switch not toggled (-649)

Explanation: eV+ did not enable high power because you failed to properly toggle the MCP
enable switch on the manual control pendant.

User action: Do one or more of the following: (1) when toggling the MCP enable switch,
release it for a minimum of two seconds and amaximum of ten seconds, and then press it
back in; and (2)make sure that you are pressing the MCP enable switch and not the run/hold
button by mistake.

Time-out nulling errors Mtr n (-1003)

Explanation: The indicatedmotor took too long to complete the last motion, possibly
because the robot is blocked and cannot reach its destination.

User action: Retry the motion after making any necessary program changes. If this error
occurs repeatedly, contact Omron Adept Application Engineering for assistance.

Too many arguments (-553)

Explanation: Toomany arguments were specified for the last command or instruction.

User action: Reenter the command or instruction but with the correct number of
arguments.

Too many array indices (-474)

Explanation: The specification of an array element contains more than three indexes.

User action: Reenter the line with the correct number of indexes.

Too many belt latches detected (-779)

Explanation: eV+ detected toomany belt latches.

User action: Verify that multiple belts are not configured in eV+ with the same latch signal.
Check the belt latch cable quality.

Too many closeable windows (-554)

Explanation: The names of toomany graphics windows have been specified to appear in the
pull-down under the Adept logo in the status line at the top of the screen.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 655

User action: Specify all subsequent windows as /NOCLOSEABLE, or delete some existing
windows that appear in this pull-down.

Too many network errors (-536)

Explanation: (1) The number of errors detected by the DDCMP protocol has exceeded the
maximum allowed. The local protocol is stopped, and all pending I/O requests are completed
with this error.

(2) The eV+ Kermit driver experiencedmore errors than permitted by the KERMIT.RETRY
parameter.

User action: (1) Use the NETmonitor command to determine the type of errors that have
occurred. Check for noise on the communication line, errors in the remote DDCMP
implementation, or program logic that sendsmessages faster than they can be processed.
Use the appropriate FCMND instruction to increase the maximum number of errors.

(2) Set the KERMIT.RETRY parameter to a larger value, increase the retry threshold on the
remote server, restart the Kermit session, and retry the operation that failed.

Too many vision requests pending (-703)

Explanation: A program has issued toomany VLOCATE commands before the first ones
have completed.

User action: Edit the program to wait for pending VLOCATE requests to complete before
issuingmore.

Too many windows (-550)

Explanation: An attempt wasmade to create a graphics window when the maximum
number of windows were already defined. (The eV+ system uses two windows for the screen
and the top status line. Every title bar, menu bar, and scroll bar is a separate window. The
pull-down window is always allocated even if it is not visible. Systems with AdeptVision
always have the vision-training window allocated.)

User action:Where possible, change your window definitions to omit menu bars and scroll
bars. If necessary, use the utility program CONFIG_C to increase the number of window
buffers.

Trajectory clock overrun (-636)

Explanation: One of these three conditions has occurred: (1) the time for a new trajectory
point has arrived, but the internal trajectory task has not finished computing the previous
point; (2) the servos did not receive trajectory data at the expected time because the
trajectory task took too long to compute andwrite out the data; or (3) the trajectory interval
is equal to or less than the servo interval.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 656

User action: Perform one or more of the following: (1) if the trajectory cycle time is less
than 16 msec, change it to the next longer time; (2)move servo tasks off CPU #1 to allow
more time for trajectory generation; (3) upgrade the system processor to increase the
throughput; (4) reduce the number of robots or axes that you are operating; or (5) if the
trajectory cycle time is set to 2 msec, make sure the servo interval is 1 msec.

Unable to acquire an image from camera (-776)

Explanation: ACE Sight is unable to acquire an image.

User action: Verify that camera is plugged into the SmartVision EX vision controller. Make
sure the drivers are working properly. Change the camera if necessary.

Unable to read the robot position latch (-777)

Explanation: The robot position has not been latched.

User action: Verify the latch signal cabling. Verify the latch signal configuration in eV+.

Undefined program or variable name (-406)

Explanation: The program or variable, referenced in a command or program step, does not
exist-possibly because the name wasmistyped.

User action: If the correct name was entered, create the program or variable using one of
the eV+ editors or the appropriate eV+ monitor commands, or by loading from a disk file.

Undefined value (-401)

Explanation: (1) A variable has been referenced that has not been assigned a value.

(2) Using the SEE editor, an attempt has been made to use amacro, return to a memorized
cursor position, or perform a repeat string search or change without first performing the
appropriate initialization sequence.

User action: (1) Assign the variable a value or correct its name.

(2) Define the macro, record a cursor position, or enter the desired search/replacement string
(s).

Undefined value in this context (-420)

Explanation: An automatic variable or subroutine argument value appears in a monitor
command, but the specified program is not on the execution stack for the specified program
task. Automatic variables and subroutine arguments have values only when the program
that defines them is on a stack.

User action: Change the monitor command to not reference the variables. Make sure that
the program is on the expected execution stack. You can place a PAUSE instruction or
breakpoint in the program to stop it while it is on the execution stack.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 657

Unexpected end of file (-504)

Explanation: (1) If a file was being loaded from the disk, the end of the file was encountered
unexpectedly.

(2) If a program is reading a file, this error code merely indicates that the end of the file has
been reached and should not be interpreted as a real error.

(3) This message results if a CTRL+Z is pressed in response to a program PROMPT.

(4) A break condition was detected on a serial line.

User action: (1) Try again to read the file.

(2) Close the file and continue program execution.

(3) Treat the program as having been aborted early by user request.

Unexpected PSS state Code nnn (-1110)

Explanation: The software has detected an unexpected change in the power sequencing
control hardware. The code value indicates what state has been encountered. This error
should never be seen, andmay indicate a software or hardware problem on either the AWC
or CIP.

User action: If safe to do so, attempt to enable HIGH POWER and note any different error
messages which occur. If this error persists, contact Omron Adept Customer Service.

Unexpected text at end of line (-451)

Explanation: The previous command or instruction cannot be recognized by eV+, possibly
because of a mistyped function name or because an argument was specified where none is
allowed.

User action: Reenter the line, correcting the syntax error.

Unexpected zero index Belt n (-1012)

Explanation: A zero index signal was received from the encoder for this motor belt at an
unexpected time. The encoder may be gaining or losing counts, there may be a hardware
problem with the zero index signal, or the Counts per zero index configuration parameter
may be set incorrectly.

User action: Continue to use the system. Contact Omron Adept Customer Service if this
error occurs repeatedly.

Unexpected zero index Mtr n (-1005)

Explanation: A zero index signal was received from the encoder for this motor at an
unexpected time. The encoder may be gaining or losing counts, there may be a hardware

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 658

problem with the zero index signal, or the Counts per zero index configuration parameter
may be set incorrectly.

User action: Turn on high power, calibrate the robot, and continue to use the system. If this
error occurs repeatedly, contact Omron Adept Customer Service.

Unknown editor command (-363)

Explanation: An unknown keystroke or extended commandwas issuedwhile using the SEE
program editor.

User action: Enter another command.

Unknown error code (-800)

Explanation: An error code that does not correspond to a known error message was
received by eV+ from an external device.

User action: If an external computer is communicating with eV+ when the error occurs,
verify that it is sending proper error codes. Otherwise, a software error is indicated. It would
be appreciated if you would report the error to Omron Adept Application Engineering. Please
include the details of the error message and exactly what you were doing at the time the
error occurred.

Unknown function (-462)

Explanation:While accepting a program statement, eV+ has encountered a reference to a
function that it does not recognize. This can be due to a mistyped function name or the
leaving out of an operator between a symbol and a left parenthesis.

User action: Verify the spelling and syntax and reenter the line.

Unknown instruction (-452)

Explanation: An instruction was entered (or read from a disk file) that was not recognized by
the system. This error is often caused by mistyping the instruction name, or trying to use a
command as an instruction or vice versa. Note that statements with errors are turned into
bad lines beginning with a question mark.

If the message occurred while loading a file from the disk, the file was probably created off-
line, or with a different eV+ system (different version or options), and the indicated line is not
compatible with the eV+ system in use.

User action: Correct the line or enter it again, making sure the spelling and usage are
correct. When using the SEE editor, an invalid statement is either converted to a bad line or
must be corrected before you can leave that line (depending on the setting of the AUTO.BAD
feature). In the case of an error while loading from the disk, edit the program to correct the
indicated instruction.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 659

Unknown keyword (-424)

Explanation: The keyword in an FSET instruction is unknown in the context in which it was
found. (Most often, a keyword used for a serial line was usedwhen referencing a window or
vice versa.)

User action: Correct the line in the executing program or reenter the commandwith the
correct keyword.

Unknown network node (-537)

Explanation: A reference has been made to a network node address that is not known by
the local network.

User action: Make sure that the correct node address was specified. make sure that the
remote node is active and connected to the network. If explicit routing tables are used, make
sure that they specify this node.

Variable type mismatch (-465)

Explanation: One or more of the variables in the line is of a type inconsistent with the other
variables or with the type required by the command or instruction. For example, you may be
trying tomix location variables with real-valued variables. If this error occurs upon exiting
from the editor, the variable type within the program conflicts with the type of a global
variable that is already defined.

User action: Verify the syntax for the operation and reenter the line, correcting the
mismatch. Delete conflicting global variables, if appropriate.

Vision option not licensed (-770)

Explanation: The ACE Sight license is not enabled on the dongle.

User action: Install an ACE Sight-enabled dongle on the SmartVision EX or PC.

Warning Monitoring watchpoint (55)

Explanation: Program execution has begun while a watchpoint is set.

User action: None. This is an informational message. You may want to disable the
watchpoint to eliminate its slowing down of program execution.

Warning Network monitor interface not open (103)

Explanation: eV+ cannot open a network port for use by ActiveeV+. This error should
never be seen.

User action: Verify that the eV+ controller is properly connected to the network. Reboot
eV+ and try again.

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 660

Warning Not calibrated (51)

Explanation: The robot servo system and joint position sensors are not calibrated. Thus, any
location variables that are definedmay not represent the locations desired.

User action: Enter a CALIBRATE command or have your program execute a CALIBRATE
instruction.

Warning Protected and read-only programs are not stored (52)

Explanation: A STORE command has been executed while protected and/or read-only
programs are loaded in the eV+ system memory. The protected and read-only programs are
not stored in the new disk file.

User action: Use the FCOPY command if you want to move read-only programs from one
disk to another. Protected programs cannot be moved from one disk to another.

Warning SET.SPEED switch disabled (54)

Explanation: A PRIME operation has been performed from the manual control pendant
while the SET.SPEED system switch is disabled. Therefore, the monitor speed specified in the
PRIME command has no effect.

User action: If you want the PRIME command to change the monitor speed, type the
command enable set.speed at the keyboard.

Warning Watchdog timer disabled (56)

Explanation: Displayed at startup by all CPUs if the watchdog timer on the board is disabled.
This timer is a hardware device that asserts SYSFAIL on the VME bus (which drops high
power) if the CPU halts or gets hung. The board that has failed should light its SF LED. This
message is also displayedwhenever a user task is started from the monitor and the watchdog
timer is disabled.

User action: Do not use this system. The watchdog timer must be enabled for safe
operation of your system. The watchdog timer setting on the AWC cannot be changed by you.
Report this problem to Omron Adept Customer Service.

Watchpoint changed at (task) program_name, step n. ... ()

Explanation: A watchpoint has been enabled, and the watchpoint expression has changed.

User action: Continue debugging session.

Wrong disk loaded (-521)

Explanation: The diskette in a disk drive has been changedwhile a file was still open.
Further attempts to access the file result in this error. Data being written into the file may be

System Messages - Alphabetical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 661

lost.

User action: Check your diskette to see if any data was lost. If so, it's too late now. Be more
careful in the future.

1 The command keys Ctrl+P, Ctrl+X, and Ctrl+Z are accepted only while using the eV+
program debugger in its monitor mode.

2 The command keys Ctrl+P, Ctrl+X, and Ctrl+Z are accepted only while using the eV+
program debugger in its monitor mode.

System Messages - Numerical List
This section lists all the eV+ messages that have a numeric code. Most message codes
associated with errors can be made available to a program by the ERROR function, which
returns the code of the latest error that occurred. In addition, the $ERROR function returns
the error message associated with any eV+ error code.

The information for each message below consists of the message code, the text of the
message, and sometimes a comment about the applicability of the message. Angle brackets
(<...>) are used to enclose a description of an item that appears in that position. All numbers
are decimal.

The system messages are arranged numerically by system message code. For complete
details on amessage, click the message number to view the complete documentation. For a
list of the system messages sorted alphabetically by the first character of the message, see
System Messages - Alphabetical List.

Message Numbering Convention

Informational Messages (numbers 0-49) lists messages that provide information.

WarningMessages (number 50-299) lists warningmessages that you may receive.

Error Messages (negative numbers) lists the error messages that you may receive.

Code Message Text Comments

0 Not complete

1 Success (General success
response)

2 <nomessage> (Signals start of
program

Informational Messages

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 662

Code Message Text Comments

execution)

3 Program completed

4 Program task # stopped at ...

5 <nomessage> (Signals start of
DO processing)

6 <nomessage> (Signals
completion of DO
processing)

7 <program instruction step> (For TRACE mode
of execution)

8 (HALTED)

9 (PAUSED)

10 Are you sure (Y/N)?

11 Change?

12 Okay to restart the servos (Y/N)?

15 Program HOLD

16 *Input error* Try again:

17 Breakpoint at (task) program_name,
step n

18 Watchpoint changed at (task)
program_name, step n Old value: n,
New value: n

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 663

Code Message Text

50 Executing in DRY.RUN mode

51 *Warning* Not calibrated

52 *Warning* Protected and read-only
programs are not stored

53 *Protected program*

54 *Warning* SET.SPEED switch disabled

55 *Warning* Monitoring watchpoint

56 *Warning* Watchdog timer disabled

57 Press HIGH POWER button to enable power

58 Push, release, hold, MCP enable switch

60 Press HIGH POWER button when blinking

100 Network connection opened

101 Network connection closed

102 Network packet partially read

103 *Warning* Network monitor interface not
open

WarningMessages

Code Message Text

-1 *Not yet implemented*

-2 *Obsolete keyword*

-300 *Illegal monitor command*

Error Messages

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 664

Code Message Text

-301 *No program specified*

-302 *DO not primed*

-303 *Controller not in automatic mode*

-304 *Controller not in manual mode*

-305 *Storage area format error*

-307 *Program not executable*

-308 *Program interlocked*

-309 *Program already exists*

-310 *Can't access protected or read-only
program*

-311 *Invalid when program task active*

-312 *Can't start while program running*

-313 *Can't go on, use EXECUTE or PRIME*

-314 *Switch can't be enabled*

-315 *Invalid software configuration*

-316 *Software checksum error*

-317 *Controller not in network mode*

-318 *Program task not active*

-319 *Program task not in use*

-350 *Can't delete .PROGRAM statement*

-351 *First statement must be .PROGRAM*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 665

Code Message Text

-352 *Invalid in read-only mode*

-353 *No other program referenced*

-354 *Line too long*

-355 *Can't exit while lines attached*

-356 *Not found*

-357 *Recursive macros illegal*

-358 *Canceled*

-359 *Illegal in debugmonitor mode*

-360 *Must be in debugmode*

-361 *Can't change modes while task running*

-362 *Can't execute from SEE program
instruction*

-363 *Unknown editor command*

-364 *Can't create program in read-only mode*

-365 *Illegal in read-write mode*

-366 *Invalid when program on stack*

-380 *Breakpoint not allowed here*

-400 Aborted

-401 *Undefined value*

-402 *Illegal value*

-403 *Illegal assignment*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 666

Code Message Text

-404 *Illegal array index*

-405 *Illegal digital signal*

-406 *Undefined program or variable name*

-407 *Invalid argument*

-408 *Program argument mismatch*

-409 *Arithmetic overflow*

-410 *Negative square root*

-411 *Not enough storage area*

-412 *Branch to undefined label* Step nnn

-413 *Not enough program stack space*

-414 *Can't mix MC & program instructions*

-416 *String variable overflow*

-417 *String too short*

-418 *Illegal memory reference*

-419 *Illegal when command program active*

-420 *Undefined value in this context*

-421 *Program not on top of stack*

-422 *Function already enabled*

-423 *Illegal operation*

-424 *Unknown keyword*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 667

Code Message Text

-425 *Calibration program not loaded*

-426 *Can't find calibration program file*

-450 *Can't interpret line*

-451 *Unexpected text at end of line*

-452 *Unknown instruction*

-453 *Ambiguous name*

-454 *Missing argument*

-455 *Invalid program or variable name*

-456 *Invalid number format*

-457 *Reservedword illegal*

-458 *Illegal expression syntax*

-459 *Missing parenthesis*

-460 *Missing quote mark*

-461 *Invalid format specifier*

-462 *Unknown function*

-463 *Invalid statement label*

-464 *Duplicate statement label*

-465 *Variable type mismatch*

-466 *Illegal use of belt variable*

-467 *Illegal .PROGRAM statement*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 668

Code Message Text

-468 *Duplicate .PROGRAM arguments*

-469 *Attempt to redefine variable type*:
variable_name

-470 *Attempt to redefine variable class*:
variable_name

-471 *Misplaced declaration statement*

-472 *Control structure error* Step nnn

-473 *Control structure error*

-474 *Toomany array indices*

-475 *Missing bracket*

-476 *Invalid qualifier*

-477 *Ambiguous AUTO invalid*

-500 *File already exists*

-501 *Nonexistent file*

-502 *Illegal I/O device command*

-503 *Device full*

-504 *Unexpected end of file*

-506 *File already open*

-507 *I/O communication error*

-508 *Device not ready*

-509 *Directory error*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 669

Code Message Text

-510 *Data checksum error*

-511 *Input block error*

-512 *File format error*

-513 *File not opened*

-514 *File or subdirectory name error*

-515 *Already attached to logical unit*

-516 *Not attached to logical unit*

-517 *I/O queue full*

-518 *Illegal I/O channel number*

-519 *Driver internal consistency error*

-520 *Invalid disk format*

-521 *Wrong disk loaded*

-522 *Data error on device*

-523 *Bad block in disk header*

-524 *Communications overrun*

-525 *Illegal I/O redirection specified*

-526 *No data received*

-527 *Illegal user LUN specified*

-528 *Illegal record length*

-529 *Output record too long*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 670

Code Message Text

-530 *Protection error*

-531 *Communication time-out*

-532 *Out of I/O buffer space*

-533 *Invalid hardware configuration*

-534 *Network restarted remotely*

-535 *Network closed locally*

-536 *Toomany network errors*

-537 *Unknown network node*

-538 *Network node off line*

-539 *Nomatching connection*

-540 *Invalid connection specified*

-541 *Invalid network protocol*

-542 *Network not enabled*

-543 *Illegal when network enabled*

-544 *Not configured as accessed*

-545 *Nonexistent subdirectory*

-546 *Subdirectory list too long*

-547 *Subdirectory in use*

-548 *Illegal while protocol active*

-549 *Out of graphics memory*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 671

Code Message Text

-550 *Toomany windows*

-551 *Font not loaded*

-552 *Graphics processor timeout*

-553 *Toomany arguments*

-554 *Toomany closeable windows*

-555 *Graphics storage area format error*

-557 *Can't create new slide bar*

-558 *Graphics software checksum error*

-559 *Out of network resources*

-560 *Invalid network resource*

-561 *Invalid network address*

-562 *Network timeout*

-563 *Remote has not exported network
resource*

-564 *Network resource name conflict*

-565 *Network connection terminated*

-566 *Not owner*

-567 *Not a directory*

-568 *Is a directory*

-569 *File too large*

-570 *File name too long*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 672

Code Message Text

-571 *Directory not empty*

-587 *Network resource already in use*

-600 *Stopped due to servoing error*

-601 *Robot not attached to this program*

-602 *Robot already attached to program*

-603 *COMPmode disabled*

-604 *Robot power off*

-605 *Robot not calibrated*

-606 *Robot overheated*

-607 *No air pressure*

-608 *External E-STOP 1 detected by CPU*

-609 *Illegal joint number*

-610 *Location out of range*

-611 *Must use straight-line motion*

-612 *Straight-line motion can't alter
configuration*

-613 *Illegal motion from here*

-614 *Attempt to modify active belt*

-615 *Belt not enabled*

-616 *Belt window violation*

-617 *Belt servo dead*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 673

Code Message Text

-618 *Location too close*

-619 *Invalid orientation*

-620 *Speed pot or STEP not pressed*

-621 *Robot interlocked*

-622 *No robot connected to system*

-623 *Stop-on-force triggered*

-624 *Force protect limit exceeded*

-625 *Invalid servo initialization data*

-626 *Can't ALTER and track belt*

-627 *Robot power on*

-628 *Robot module not loaded* ID:n

-629 *SYSFAIL detected by CPU*

-630 *Backplane E-STOP detected by CPU*

-632 *Power failure detected by robot*

-633 *PANIC command*

-635 *Cartesian control of robot not possible*

-636 *Trajectory clock overrun*

-637 *Illegal while joints SPIN'ing*

-638 *SPIN motion not permitted*

-639 *Manual brake release*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 674

Code Message Text

-640 *E-STOP from robot*

-641 *E-STOP from amplifier*

-642 *SYSFAIL detected by robot*

-643 *E-STOP detected by robot*

-644 *Incompatible safety configuration*

-645 *Power disabled: Manual/Auto changed*

-646 *HIGH POWER button not pressed*

-647 *Collision avoidance dead-lock*

-648 *Safety system not commissioned*

-649 *Timeout: MCP enable switch not toggled*

-650 *Manual control pendant failure*

-651 *RSC communications failure*

-652 *RSC reset*

-653 *RSC time-out*

-654 *RSC transmission garbled*

-655 *RSC bad packet format*

-656 *RSC calibration load failure*

-657 *Pendant Not Connected*

-658 *Device hardware not present*

-659 *Device time-out*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 675

Code Message Text

-660 *Device error*

-661 *NVRAM data invalid*

-662 *Device sensor error*

-663 *Device reset*

-665 *NVRAM battery failure*

-666 *Must use CPU #1*

-667 *Power failure detected*

-668 *Device in use*

-669 *RSC hardware failure*

-670 *RSC power failure*

-671 *Servo board 12V fuse open*

-672 *Servo board solenoid fuse open*

-673 *Servo board E-Stop fuse open*

-674 *Servo task overloaded*

-675 *Timeout enabling power*

-676 *RSCmodule ID doesn't match robot*

-677 *Servo protocol incompatible*

-678 *Duplicate servo node ID*

-679 *Expected servo node not found*

-680 *Servo node not downloaded*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 676

Code Message Text

-770 *Vision option is not licensed*

-771 *Invalid ACE Sight sequence*

-772 *Invalid ACE Sight tool index*

-773 *Invalid ACE Sight parameter ID*

-774 *Invalid ACE Sight parameter index*

-775 *ACE Sight instance not found*

-776 *Unable to acquire an image from camera*

-777 *Unable to read robot latch position*

-778 *No belt latch was detected*

-779 *Toomany belt latches were detected*

-800 *Unknown error code*

-804 *Option not installed*

-805 *Hardware not in system*

-859 *Database manager internal error*

-900 *Robot module not enabled*

-901 *Obstacle collision detected*

-902 *Interruptedmulti-segment motion*

-903 *DeviceNet: Critical device off-line*

-904 *[Fatal] E-STOP signals are stuck off*

-905 *[Fatal] I/O processor failure*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 677

Code Message Text

-906 *Robot power off requested*

-907 *E-STOP circuit relay failure*

-908 *E-STOP from front panel button*

-909 *E-STOP from MCP E-STOP button*

-910 *E-STOP from user E-STOP button*

-911 *E-STOP from front panel external input*

-912 *E-STOP from user enable switch*

-913 *E-STOP from MCP enable switch*

-914 *E-STOP 2 detected by CPU*

-915 *MCP enable switch 1 off detected by CPU*

-916 *MCP enable switch 2 off detected by CPU*

-917 *Manual mode switch 1 off detected by
CPU*

-918 *Manual mode switch 2 off detected by
CPU*

-919 *E-STOP asserted by CPU*

-920 *[Fatal] Manual mode switch stuck off*

-921 *E-STOP from user muted safety gate*

-922 *E-STOP channels 1 and 2 do not match*

-923 *E-STOP circuit is shorted*

-924 *Front panel HIGH POWER lamp failure*

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 678

Code Message Text

-925 *Front panel serial bus failure*

-927 *1394 communications timeout*

-929 *E-Stop from Line E-Stop input*

-931 *Servo hardware failure*

-932 *Manual mode cannot be enabled*

-935 *Orientation out of range*

-936 *Kinematic solution not found*

-937 *Robot already under manual control*

-938 *Joint control of robot not possible*

-939 *E-Stop unstable*

-999 Aborted

-1001 *Invalid servo error* Mtr n

-1002 *Position out of range* Jt

-1003 *Time-out nulling errors* Mtr n

-1004 *No zero index* Mtr n

-1005 *Unexpected zero index* Mtr n

-1006 *Soft envelope error* Mtr n

-1007 *Motor stalled* Mtr n

-1008 *Encoder quadrature error* Mtr n

-1009 *Timeout enabling amplifier* Mtr n

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 679

Code Message Text

-1010 *Invalid error code* Belt n

-1011 *No zero index* Belt n

-1012 *Unexpected zero index* Belt n

-1013 *Encoder quadrature error* Belt n

-1014 *[Fatal] Initialization failure* Mtr n

-1015 *Initialization failure* Belt n

-1016 *Motor overheating* Mtr n

-1018 *Motor amplifier fault* Mtr n

-1021 *Duty-cycle exceeded* Mtr n

-1022 *Skew envelope error* Mtr n

-1023 *Position out of range* Mtr n

-1025 *Encoder fault* Mtr n

-1026 *Software incompatible* Code n

-1027 *Hard envelope error* Mtr n

-1028 *Soft overspeed error* Mtr n

-1029 *Negative overtravel* Mtr n

-1033 *Positive overtravel* Mtr n

-1034 *Overtravel* Mtr n

-1035 *Safety speed limit error* Chn nn

-1101 *[Fatal] Servo process dead* CPU n

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 680

Code Message Text

-1102 *[Fatal] Servo code incompatible* CPU n

-1104 *[Fatal] Servo dead* Mtr n

-1105 *Motor startup failure* Mtr n

-1106 *Calibration sensor failure* Mtr n

-1107 *[Fatal] Servo init failure* CPU n

-1110 *Unexpected PSS state* Code nnn

-1111 *E-STOP from safety system* Code n

-1112 *Remote digital input failed* Block N

-1113 *Remote digital output failed* Block N

-1115 *Robot power system failure* Code n

System Messages - Numerical List

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 681

Index

Index

C

Copyright Notice 3

N

Notice, copyright 3

eV+Language Reference Guide, v2.x, 18319-000 Rev A

Page 682

Authorized Distributor:

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. I605-E-01

Printed in USA
0316

 © OMRON Corporation 2016 All Rights Reserved.

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200 Hoffman Estates,
IL 60169 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON ADEPT TECHNOLOGIES, INC.
4550 Norris Canyon Road, Suite 150, San Ramon, CA 94583 U.S.A.
Tel: (1) 925-245-3400/Fax: (1) 925-960-0590

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.com
Kyoto, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711 OMRON (CHINA) CO., LTD.

Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

	eV+ Language Reference Guide
	Table Of Contents
	Introduction
	Compatibility
	Related Publications
	Dangers, Warnings, Cautions, and Notes in Manual
	Conventions

	Keyword Overview
	New or Enhanced Keywords
	eV+ Language Quick Reference

	Keyword Descriptions
	Descriptions of eV+ Keywords
	Documentation Conventions for Keywords
	ABORT program instruction
	ABOVE program instruction
	ABS real-valued function
	ACCEL program instruction
	ACCEL real-valued function
	ACOS real-valued function
	ALIGN program instruction
	ALIGN transformation function
	ALWAYS keyword
	AND operator
	ANY program instruction
	APPRO program instruction
	ASC real-valued function
	ASIN real-valued function
	ATAN2 real-valued function
	ATTACH program instruction
	AUTO program instruction
	AUTO.POWER.OFF system switch
	BAND operator
	BASE program instruction
	BASE transformation function
	BCD real-valued function
	BELOW program instruction
	BELT real-valued function
	BELT system switch
	BELT.MODE system parameter
	BITS program instruction
	BITS real-valued function
	BMASK real-valued function
	BOR operator
	BRAKE program instruction
	BREAK program instruction
	BSTATUS real-valued function
	BXOR operator
	BY keyword
	CALIBRATE program instruction
	CALL program instruction
	CALLP program instruction
	CALLS program instruction
	CAS real-valued function
	CASE program instruction
	$CHR string function
	CLEAR.EVENT program instruction
	CLEAR.LATCHES program instruction
	CLOSE and CLOSEI program instruction
	COARSE program instruction
	COM operator
	CONFIG real-valued function
	COS real-valued function
	CP system switch
	CPOFF program instruction
	CPON program instruction
	CYCLE.END program instruction
	DBLB real-valued function
	$DBLB string function
	DCB real-valued function
	DECEL.100 system switch
	$DECODE string function
	DECOMPOSE program instruction
	$DEFAULT string function
	DEFBELT program instruction
	DEFINED real-valued function
	DELAY program instruction
	DELAY.IN.TOL system switch
	DELAY.POWER.OFF system switch
	DEPART and DEPARTS program instruction
	DEST transformation function
	DETACH program instruction
	DEVICE program instruction
	DEVICE real-valued function
	DEVICES program instruction
	DISABLE program instruction
	DISTANCE real-valued function
	DN.RESTART program instruction
	DO program instruction
	DOS program instruction
	DRIVE program instruction
	DRY.RUN system switch
	DURATION program instruction
	DURATION real-valued function
	DX, DY, DZ real-valued function
	ELSE program instruction
	ENABLE program instruction
	$ENCODE string function
	END program instruction
	.END keyword
	ERROR real-valued function
	$ERROR string function
	ESTOP program instruction
	EXECUTE program instruction
	EXIT program instruction
	FALSE real-valued function
	FCLOSE program instruction
	FCMND program instruction
	FCOPY program instruction
	FDELETE program instruction
	FEMPTY program instruction
	FINE program instruction
	FLIP program instruction
	FLTB real-valued function
	$FLTB string function
	FOPEN program instruction
	FOPEN_ program instruction
	FOR program instruction
	FORCE._ program instruction
	FRACT real-valued function
	FRAME transformation function
	FREE real-valued function
	FSEEK program instruction
	FSET program instruction
	GETC real-valued function
	GET.EVENT real-valued function
	GLOBAL program instruction
	GOTO program instruction
	HALT program instruction
	HAND real-valued function
	HAND.TIME system parameter
	HERE program instruction
	HERE transformation function
	ID real-valued function
	$ID string function
	IDENTICAL real-valued function
	IF logical_expr THEN program instruction
	IF logical_expr GOTO program instruction
	IGNORE program instruction
	INRANGE real-valued function
	INSTALL program instruction
	INT real-valued function
	INTB real-valued function
	$INTB string function
	INVERSE transformation function
	IOSTAT real-valued function
	IPS keyword
	JHERE program instruction
	JMOVE program instruction
	JOG program instruction
	KEYMODE program instruction
	KILL program instruction
	LAST real-valued function
	LATCH transformation function
	LATCHED real-valued function
	LEFTY program instruction
	LEN real-valued function
	LNGB real-valued function
	$LNGB string function
	LOCAL program instruction
	LOCK program instruction
	MAX real-valued function
	MC program instruction
	MCS program instruction
	MESSAGES system switch
	$MID string function
	MIN real-valued function
	MMPS keyword
	MOD operator
	MOVE and MOVES program instruction
	MOVEC program instruction
	MULTIPLE program instruction
	NETWORK real-valued function
	NEXT program instruction
	NOFLIP program instruction
	NONULL program instruction
	NOOVERLAP program instruction
	NORMAL transformation function
	NOT operator
	NOT.CALIBRATED system parameter
	NULL program instruction
	NULL transformation function
	OFF real-valued function
	ON real-valued function
	OPEN program instruction
	OR operator
	OUTSIDE real-valued function
	OVERLAP program instruction
	PACK program instruction
	PANIC program instruction
	PARAMETER program instruction
	PARAMETER real-valued function
	PAUSE program instruction
	#PDEST precision-point function
	PDNT.CLEAR program instruction
	PDNT.NOTIFY program instruction
	PDNT.WRITE program instruction
	PENDANT real-valued function
	#PHERE precision-point function
	PI real-valued function
	PING monitor command
	#PLATCH precision-point function
	POS real-valued function
	POWER system switch
	#PPOINT precision- point function
	PRIORITY real-valued function
	PROCEED program instruction
	.PROGRAM program instruction
	PROMPT program instruction
	RANDOM real-valued function
	REACT program instruction
	REACTE program instruction
	REACTI program instruction
	READ program instruction
	READY program instruction
	RELAX and RELAXI program instruction
	RELEASE program instruction
	RESET program instruction
	RETRY program instruction
	RETRY monitor command
	RETURN program instruction
	RETURNE program instruction
	RIGHTY program instruction
	ROBOT system switch
	ROBOT.OPR program instruction
	ROBOT.OPR real-valued function
	RUNSIG program instruction
	RX, RY, RZ transformation functions
	SCALE transformation function
	SCALE.ACCEL system switch
	SCALE.ACCEL.ROT system switch
	SELECT program instruction
	SELECT real-valued function
	SET program instruction
	SET.EVENT program instruction
	#SET.POINT precision point function
	SETBELT program instruction
	SETDEVICE program instruction
	SHIFT transformation function
	SIG real-valued function
	SIG.INS real-valued function
	SIGN real-valued function
	SIGNAL program instruction
	SIN real-valued function
	SINGLE program instruction
	SOLVE.ANGLES program instruction
	SOLVE.FLAGS real-valued function
	SOLVE.TRANS program instruction
	SPEED program instruction
	SPEED real-valued function
	SQR real-valued function
	SQRT real-valued function
	STATE real-valued function
	STATUS real-valued function
	STOP program instruction
	STRDIF real-valued function
	SWITCH program instruction
	SWITCH real-valued function
	$SYMBOL string function
	SYMBOL.PTR real-valued function
	$SYS.INFO string function
	TAS real-valued function
	TASK real-valued function
	TIME program instruction
	TIME real-valued function
	$TIME string function
	$TIME4 string function
	TIMER program instruction
	TIMER real-valued function
	TOOL program instruction
	TOOL transformation function
	TPS real-valued function
	TRANS transformation function
	$TRANSB string function
	TRANSB transformation function
	TRUE real-valued function
	$TRUNCATE string function
	TYPE program instruction
	$UNPACK string function
	UNTIL program instruction
	UPPER system switch
	VAL real-valued function
	VALUE program instruction
	WAIT program instruction
	WAIT.EVENT program instruction
	WHILE program instruction
	WINDOW program instruction
	WINDOW real-valued function
	WRITE program instruction
	XOR operator

	ID Option Words
	Introduction to ID Option Words
	Robot Option Words
	System Option Words
	Processor Option Word

	System Messages
	Introduction to System Messages
	System Messages - Alphabetical List
	System Messages - Numerical List

	Index

